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1 Introduction

This paper deals with existence of a competitive equilibrium in a one-sector
growth model with heterogeneous agents and endogenous leisure. The issue of
endogenous labor supply in intertemporal models have been analyzed before.
These models focused on the existence and uniqueness of stationary equilibrium
paths in stochastic infinite horizon economies with elastic labor that are subject
to externalities, taxes or other distortions. See, for example, Greenwood and
Huffman [1995], Coleman(1997), and Datta et al. [2002]. Although models
with elastic labor have provided the basic framework for a substantial body of
applied work in macroeconomics, there are few studies that are concerned with
the question of existence of equilibria, especially for models with heterogeneous
agents and endogenous leisure.

The question of existence of a competitive equilibrium in a one-sector growth
model with heterogeneous agents with inelastic labor supply have been studied
by Le Van and Vailakis [2003] in which they used the Pareto-optimum prob-
lem involving individual weights in a social value function and constituted a
price equilibrium with transfers. Recently, Nguyen and Nguyen Van [2005]
have proved the existence of a competitive equilibrium in a version of a Ramsey
model for only one agent in which leisure enters the utility function by exploiting
the existence of Lagrange multipliers in infinite dimensional spaces and their
representation as a summable sequence that relies on some results in LeVan
and Saglam [2004]. To develop these above methods for the heterogeneous-
agents Ramsey model studied in Le Van-Vailakis[2003] is extended to include
an endogenous non-reproducible factor such as labor, this paper exploits the
existence of Lagrange multipliers in infinite dimensional spaces and the link
between Pareto-optima and competitive equilibria for studying the existence of
competitive equilibrium without attempting to impose the usual Inada condi-
tions.

Following the pioneer work of Debreu (1954), Bewley [1972] studied the ex-
istence of equilibrium in an economy in which [*° is the commodity space and
the method of using the limit of equilibria of finite dimensional economies. The
most important development since Bewley’s work was provided by Mas-Collel
[1986], by using Negishi’s approach when the commodity space is a topological
vector lattice. Many others works can be found in Florenzano [1983], Alipran-
tis et al. [1990], Mas-Collel and Zame [1991], Dana and Le Van [1991],...Their
methods yield a general results but require a high level of abstraction. Our
simple approach uses the existence of Lagrange multipliers in infinite dimen-
sional spaces and their representation as a summable sequence to show that the
necessary conditions of the planner’s problem guarantee the existence of a set of
multipliers or shadow prices which together with the optimal allocations satisfy
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the sufficient conditions for the optimization problems of the consumer and the
firm. The existence of a competitive equilibrium is carried out by exploiting
the link between Pareto-optima and competitive equilibria (Negishi method) in
which the Browder fixed-point theorem for multivalued maps with boundary
condition is used.

The paper is organized as follows. Section 2 describes the economic environ-
ment and characterizes the competitive equilibrium for this economy. In section
3 we describe the Pareto-optimum problem and prove existence of Lagrange
multipliers in E}r. Section 4 proves the existence of a competitive equilibrium.

2 Characterization of Equilibrium

We consider an intertemporal one-sector model with m > 1 consumers and one
firm. The preferences of each consumer take additively form: S22 Btu;(cl, If)
where 3; € (0, 1) is the discount factor. At date ¢, agent i consumes the quantity
¢, spends a quantity of leisure ¢ and supplies a quantity of labor Li. Produc-
tion possibilities are presented by gross production function F' and a physical
depreciation 0 € (0,1)

For any initial condition ky > 0, when a sequence k = (ko, k1, ..., k¢, ...)
such that 0 < ki1 < F(ke,m) + (1 — 0)ke for all ¢, we say it is feasible
from ko and we denote the class of feasible capital paths by II(kg). Let ¢, =
(¢}, c2,...c™) denote the m—vector of consumptions and Iy = (I},17,...I"") de-
note m-vector of leisure of all agents at date t. A pair of consumption-leisure
sequences (c,1) = ((co,lp),(c1,11),...) is feasible from ky > 0 if there exists a
sequence k € II(kop) that satisfies

m m
> et kg < Flky, Y (1=1) + (1= 6k and 0 < 1§ < 1¥¢,
i=1 i=1
The set of feasible from ky consumption-leisure is denoted by > (ko).
We make the following assumptions:
Al: For i =1,...,m, u(c,l) € Ry if (¢,l) € R, ui(c,l) = —o0 if (c,1) ¢ R
, u; s strictly increasing, strictly concave and continuous in Ra_. Moreover,
u;(0,0) = 0, and Vi, lim._, @ < +o00.
A2: The gross production function F(k,L) € Ry if (k,L) € R%, F(k,L) =
—oo if (k,L) ¢ R2, F strictly increasing, strictly concave and continuous in
R2. Moreover, F(0,L) = F(k,0) =0, F(0,m) > § and kETka(k,m) = 0.
Observe that 4;(0,0) = 0 in A1 is weaker than than assuming w;(0,1) =
u;(¢,0) = 0 and there is no need to impose Inada conditions on utility functions.
In A2, we only require the capital’s marginal to be greater than the depreciation
rate that is weaker than F(0,m) > mirllﬁi
homogeneous property required on production function.

—1-+4. Neither Inada conditions nor
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Define f(ki, Li) = F(k¢, Lt) + (1 — )k Assumption A2 implies that

ful4oo,m) = Fi(+oo,m)+(1—-8)=1-5<1
fe(0,m) = F(0,m) + (1 -6) > 1.

From above, it follows that there exists & > 0 such that: (i) f(k,m) =k ,
(ii) k > k implies f(k,m) < k, (iii) k¥ < k implies f(k,m) > k. Therefore for
any k € II(kg), we have 0 < k; < max(ko, k). Thus, a feasible sequence k € %°
which in turn implies a feasible sequence (c,1) € I5° x [0, 1]*°.

Now, we give the characterization of Equilibrium. For each consumer 4,
denote:

A sequence of prices (po, p1,.) € 11\{0},a price r > 0 for the initial capital
stock.

A consumption allocation ¢’ = (cf), i, ...ct,...) where ¢ denote the quantity
which agent ¢ consumes at date t.

A sequence of capital stocks k = (ko, k1, ...k¢, ...) where kg is the initial en-
dowment of capital.

Denote o' > 0 is the share the profit of the firm owned by consumer i,
m

Yot =1.
i=1 A
Denote ¢#* > 0 is the share of initial endowment owned by consumer 4,

m ,
> 19 =1 and 9" ko is the endowment of consumer i.
i=1

A sequence of leisure I' = (13,1}, ..., 1}, ...), a sequence of labor supply L* =

(LE, LY, ..., LE,..) with Li =1 — L.

A sequence of wage w = (wg, wy, ...., Wy, ...).

In what follows we show that with an allocation {c*,k*, 1% L} one can
associate a price sequence p* for consumption good, a wage sequence w* for
labor and a price r for the initial capital stock kg such that

i

¢t eI I el L* el k* eI, prell,w ell,r>o0.

ii)For every i, (¢*,1*) is a solution to the problem

max 37,2 BFiui(ci, 1)

. S . 0 . .
s.t Cpict+ S will <> wi+d'rky + o'm*
t=0 t=0 t=0

where 7* is the maximum profit of the single firm.
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iii) (k*,L*) is a solution to the firm’s problem:

T = max ZPIF(kt, Ly) — ZP (kty1 — (1 = 6)ke)
=0 t=0

wath —rko
t=0
st 0 < kg < F(k‘t,Lt) + (1 - 5)k}t),0 < Ly, Vit

iv)Markets clear: Vi,

ZC + ki — (1= 0)ki = F(k, ZLi*)v
i=1

m
I+ Li* =1,Lf = > L’ and kf = ko.
=1

3 Lagrange Multipliers for Pareto-Optimum Prob-
lem
We prove the existence of a competitive equilibrium by studying the Pareto

optimum problem. Let A = {9y, 7y, ...,n,,/n; > 0 and ;" n; = 1}.
Define the Pareto problem

max y ;Y Bui(ci, 1) (P)
i=1 =0

subject to

m

Zcé + ki1 < F(’%Z(l — 1)+ (1 =)kt VE>0

=1 i=1

Vi=1...m, Vt >0

[ A
VAN VAN VAR VAN

0
0
0
0
0

™
S
v

is given.

Note that, for all kg > 0, 0 < k; < max(kg, k) = A, then 0 < ¢t < f(A,m) Vt,
Vi =1..m.
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Define the sequence
(c',1%) Zﬂtu, (i, 1%).

Since this sequence is increasing and bounded, it converges, and we can write

277125 ui(cy, ly) = szﬁ ui(ch, 1)
i=1 t=

t=0 i=1

1 . . o .
Denote ¢ = (¢',c?, ..., ¢’ ...,c™) where ¢’ = (¢}, cl,...ci, ...),

1= (1112, .., 1, .., 1™) where ! = (I3, 1}, .11, ...),
x = (¢, k,1) € (I)™ x IS x (I3°)™ Define

Fx) = = nbiuilc, 1)

t=0 i=1
Di(x) = Zci +hipr — F(ke, Y (1= 18) — (1= 8)ky
i=1
PF(x) = —ct,Vt,Vz:l...m
PI(x) = —ky Wi
dYi(x) = —I,Vt,Vi=1.m
Y (x) = II—1,Vt,Vi=1..m
o = (O, P}, D}, P, B}, Vi, Vi=1..m

The Pareto problem can be written as:

min F(x)
st.®(x) < 0,xe (IF)™ <1 x (I)™

where:

F oo ()" <1 x (I2)™ - RU {400}
P = (Pr)i=0..00 : ()™ x 1T x (IF)™ = RU {400}
Let C = dom(F)={xe (I)" xIF x (I)"|F(x) < o0}
I' = dom(®)={xe (IF)" xIF x (IF)"|®(x) < +o0, Vt}.

The following theorem follows from Theoreml and Theorem2 in Le Van and
Saglam [2004].

Theorem 1 Letx,y € (I)™ x I x ()™, T € N.
x if t<T

ye of t>T

Suppose that two following assumptions are satisfied:

Define a7 (x,y) =
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T1: Ifx € C,y € (I)™ x I x (I2°)™ satisfy VT > Ty, x* (x,y) € C then
F(xT(x,y)) — F(x) when T — oo.

T2: Ifxcl,y el and x'(x,y) € T, VT > Tp.

Then,

a) CDt(xT(x,y)) — Oy (x)as T — 0
b) IMs.t.NT > Tp, | @ (xT (x,y))|| < M
¢) VN = T, lim [@y(x" (x,y)) — ®e(y)] = 0

Let x* be a solution to (P) and x € C satisfy the Slater condition:

sup®;(x) < 0.
t

Suppose xT (x*x) € C NT. Then, there exists A € l}r such that
F(x)+ AP(x) > F(x*) + AD(x¥), Vx e (CNT)
and A®(x*) = 0.

Obviously, for any n € A, an optimal path will depend on 7. In what
follows, we will suppress 7 and denote by (c**, k* L* 1*) any optimal path for

each agent i if possible.

Proposition 1 If x* = (c¢*,k*,1*) is a solution to the following problem:

— min Z Z mﬂﬁui(Ci, l%)

t=0 i=1

sty itk < Pk Y (1—19)+ (1—6)k ¥t >0
=1 =1
— < 0,Vi=1.m,Vt>0
—k < 0,Vt>0
—Il < 0,Yi=1.m,Vt>0
li—1 < 0,¥i=1.m,¥t>0
ko > 0 is given.

Then there exists, ¥i = L..m, A= (AL, A2 N3 A% A% € (Lx (IL)™ x I} x
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(IL)™ x (IL)™ such that: ¥x = (c, k,1) € (I)™ x 1% x (I)™

Zmﬁtuz 1) = SO e ke — PO S (- 1)
=0 =t t=0 =1 i=1
1 - kt + Z)\m b -+ Z )\3k;t + Z )\4le* 4 Z}\fﬂ lz*
> ZZU Biui(ch, If) — Z)\% th + ki1 — kt’z(l — 1))
t=0 =1 t=0 -1 im1

—(1—8)k) + me TN R Y MY A1) (1)
t=0 t=0 t=0 t=0

MDY et + ki = Pk Y L) — (1= 8)k;] =0 (2)
i=1 =1
Mk =0,Vi=1..m (3)
MNkf=0 (4)
MIF =0,Vi =1..m (5)
N(1L—1)=0,¥i=1..m (6)
0 € n;B01ui (e, 1) — I\ + {\#1,Vi=1..m (7)
0 € 0, B00ui (1) — Moo F(kF, LY) + {2}y — {1}, Vi=1..m  (8)
0 € MOF(kf, L)+ {(1 = )N\ + (N} = (A1) (9)

m . m . . .

where, Ly = Y Ly = Y (1 = 1), Oju(cy, "), 0;F (ki, L}) respectively de-
i=1 i=1

note the projection on the j*" component of the subdifferential of function u at

(¢, 1) and the function F at (k}, L}).

Proof: We show that the Slater condition holds. Since f;(0,m) > 1, then
for all kg > 0, there exists some 0 < k < ko such that: 0 < k < f(%, m) and
0 < k < f(ko,m).Thus, there exists two small positive numbers ¢, £ such that:

0<E+5<f(@,m—51) and0<E+8<f(k0,m—51).

Denote x = (¢, k, 1) such that ¢ = (61,62, €'y, €™), where

; E € €
= (Ct )t:o,.. oo — (E’ %» E’)
- -1 2 ) -m
1=(1,1,..1,...1 ), where
oy h €1 €1 &1
I =t )i—0..0o = (—, —, —,..nn.
(It )i=o,.. ( g )
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and k = (ko,E,E, ...). We have

p(x) = Y ch+k < F(ko, Y (1—1h)+ (1= 0d)ko
=0 =1

~

= k—f(k‘(), —61) <0

(%) = Z

Ms

21 <Fk‘1, 1—lZ 1—5)k1
=0 =1
= —l—jf\ (2m—€1)<
dl(x) = e+k-— (Em—sl)<o V> 2

PF(X)=—¢'=—— <0, Vt>0,Vi=1..m
t m

Pp(x) = —ko<O;
P}(x) = —k<O0 Vt>1.
Bli(x) = —L <0, Vt>0,Vi=1.m
m
(x) =L —1<0,Vt>0,Vi=1.m
m
Therefore the Slater condition is satisfied. Now, it is obvious that, VT, x* (x*,x)
belongs to (13°)™ x I3° x (I%°)™
As in Le Van-Saglam 2004, Assumption T2 is satisfied. We now check
Assumption T1.
For any x € C,x € (I2)™ x I x (I¥°)™ such that for any T, x” (X,x) € C
we have
" T m - 00 m ~ ~
F(&%) == > miBilch, 1) — Y > nibiuilci. ).
t=0i=1 t=T+1i=1
As X € (I2)™ x 12 x (I2)™, sup]é~75| < 400 , there exists a > 0, Vt, ’é’ < a.
t

Since § € (0,1),as T'— oo we have

0< Y Sl il <u(a1) Y s =Y 3wt —o0.

t=T+11=1 t=T+11i=1 i=1t=T+1

Hence, F(x7 (%, §)) — F(x) when T' — oo.Taking account of the Theorem 1,
we get (1) - (6).

Obviously, N, ri(dom(u;)) # 0 where ri(dom(u;)) is the relative interior of
dom(u;). It follows from the Proposition 6.5.5 in Florenzano and Le Van (2001),

we have .
82 nzﬁfuz(ci*7 lz* _ mﬁt Z auz * lz*
=1

We then get (7) - (9) from the Kuhn-Tucker ﬁrst-order conditions. m
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4 Existence of a Competitive Equilibrium

With the optimal path c*(n), k*(n),1*(n), L*(n) we have proved that there
exists the Lagrange multipliers

Am) = (N(0), X (), X (), N (1), A5 () €Ll x ()™ x 1} x (1)™
(li)m, i = 1...m, for the Pareto problem. As in the previous section we will

suppress 17 whenever it is impossible.
m

We will prove that there exits f?(kj, L}) € 02F(k}, L}),where L} = > L¥*,
i=1
then one can associate a sequence of prices p;, a sequence of wages w; defined

as

pro= AWt
wy = N fEkLY) vt

and a price r > 0 for the initial capital stock kg such that ( c*, k*, I*, L* p*, w* r
) is a price equilibrium with transfers. That means
i)
e (ID)™ 1 e (I°)™ k* eI, prell,well, r>0

ii) For every i = 1...m, (c**,1**) is a solution to the problem

oo
max Y _ Bhui(c}, 1))
t=0

oo o o ) o )
st Y pie+ > wily < pie+ > wily”
=0 =0 =0 t=0
iii) (k*,L*) is a solution to the firm’s problem:

7w = max ZP:F(kt, L) — Zp:f‘(k’t+1 — (1= 0)kt)
=0 =0

wath —1rko
t=0
st 0 < k1 < F(k‘t,Lt) + (1 - 5)]%),0 < Ly, Vit

iv)Markets clear
Vi, Z()ai* +hiy - (L=0kf = F(kf, ) L),
= i=1

Ly=>L*l;*=1-L} and kj = ko
i=1

Lemma 1 Let kg > 0. The sequence of wages w; defined as
wy = NLF2(k}, L) Vit where f2(ki, L) € 0 F (K, L)

s a sequence which belong to li.



halshs-00197533, version 1 - 14 Dec 2007

Proof: Consider A(n) = ()\1,)\2i,>\3,)\4i,)\5i) of Proposition 1. Conditions
(7),(8),(9) in Proposition 1 show that Vi = 1...m, 8uz(ct*,l’*) and OF(kf, L})
are nonempty. Moreover,Vt, Vi = 1...m, there exists uf(ci*,1i*) € Oyu;(ci, 11¥),
W2 (cl", 1) € Byuslcl®, 1), fA (K7, LE) € OvF (K7, Li)and f2(kF, 1Y) € OuF (kf, L)
such that

n: Bl (1) — A+ A2 =0,Vi=1..m (10)
miBgui (e 1) = N FE (ki LE) + N = A = 0,Vi = 1..m (11)
MR L) + (=0 + N =N =0 (12)

We have -
+o0 > Zﬂtuz CANE Zﬁﬁm(o, 0) >

o0
> Bl (e 1) +Zﬁt 2 IV Yi=1..m
t=0

which implies

Zﬂﬁufi(ci*, I < +o0,Vi = 1..m (13)
=0

and for any 1,

oo (0.)
+oo > Y NF(kf,Ly) = Y MNF(0,L; — L) >
t=0 t=0

oo o0
D NSk LKy + ) NS (kL L)LY
t=0 t=0
which implies

Z)‘tft (kt, Ly)Li* < +oo. (14)

Given T, we multiply (11), for each i, by L¥* and sum from 0 to 7. We then
obtain

T
v, Zmﬂﬁut’ v ll* Ly = Z)‘tft kt,L*)Ll* (15)
t=0

T T
=Y ML+ ALY Vi=1..m
t=0 t=0
Observe that

[ee] o

<D NLE <Y A < +oo,Vi=1..m (16)
t=0 t=0
o oo

0< > MLF <Y A < +oo,Vi=1...m (17)
— -

10
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Thus, since L¥* = 1 — [*, Vi = 1...m, from (15), we get

T
Z’rliﬁgutl Ct*a lz* an i 21 Ct*) lz* lz* Z)‘t ft kt ’ Lt)Lz*
t=0

t=0

+Z>\51Lz* _ Z)\ZLZL%*

t=0

Using (13),(14),(16),(17) and letting T" — oo, we obtain

00 o]
t=0 t=0

o o o0
D NSRS LOLY + Y N'LE =Y ALY < oo
t=0 t=0 t=0
Consequently, from (11),
o
Zwt Z)xft (kf,L}) < +ooie. w*ell.
t_

Theorem 2 Let ( k*,c*,L*1*) solve Problem (P). Take

p; = )\%, wy = )\%ff(k;f,Lf) for any t
AN(1—=46
andr = 0(2) > 0.

Then {c*,k*,L*, p*, w*,r} is a price equilibrium with transfers .

Proof: From Proposition 1 and Lemma 1, we get

e (I 1 e (I°)™ k* el prell,well,r>0.

We now show that (c™*,1*) solves the consumer’s problem. Let (c?,1?) satisfies

[e.9] o0 o0 o0

* 1 * 71 * 1% * 70%
E ptct+§ wtlt§§ Dt ¢ +§ wily”
t=0 t=0 t=0 t=0

By the concavity of u;, we have:

> Bluid 1) = Biui(c, 1)
t=0 t=0

Zzﬁgutz Ct*allzt* *Ct +Zﬂt z z* lz* (l;**lz)
t=0

Combining (3 ),(6),(10),(11) yields that

A=A e e NSRS L) = NN e
Az Y TR S )+ Y S S )
t=0 g t=0 i

11
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ii Cé)"’i)fch: Z)‘2Z +Z)‘tft (kt,L*)(l l)
—o 'l t=0 't

=0 i

+ZA5lz — 1) sz% ZA%

t= 0

St )\1 ) ) o )\1 2 k‘*,L* ) ] e )\Si 1 _lz
> Z%(Ci* — )+ ZM([;* . ZM
=0 'li t=0 i t=0 t

— MNIEKE LY i
> g +Zi“ 20 g
=0 Up ni
t=0 1 0

This means (c™*,1*) solves the consumer’s problem.
We show that (k*,L*) is solution to the firm’s problem. Since p; = A/,
— ALf2(k; L), we have

th (ky, Ly) + (1 — 0k — ki)

*Z/\tlff(kf,fl?) Ly —rko.

t=0

Let :

T T
Ar = ZA%[F(@,L:)JF@— — ki) = Y NFAR LY Ly — ko
t=0

T
(Z)‘t (ke, L) + (1 — — k1] — Z/\ fE(kf LY Ly —T’k0>
=0

By the concavity of F' , we get
T T
Ar > ZAtlftl(kZ,Lf)(kZ‘ — k) + (1= 8)) M(kj — ki) —
t=1
ZAt Ky — keen) = SR LT) + (1= 6)A = MJ(KT — k) +
[/\Tft (K7, L) + (1 = O)Ap = Ap_a] (K] — kr) = Ap(Kpyy — kr)-
By (4) and (12), we have: Vt =1,2,...,T

INFE (R LE) + (L= 0N = Nal(ky — ki) = =N (ky — ki) = Nke 2 0. (18)

12
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Thus,
Ar > =Ap(kpyr — kran) = =Apkfgy + Apkrin > —=Apkpgg.

Since Al e l}r, supkr,, < +00, we have
T

lim Az > lim — Apkj,, = 0.

T—+o0 T—+o0

We have proved that the sequences (k*, L*) maximize the profit of the firm. m

The appropriate transfer to each consumer is the amount that just allows the
consumer to afford the consumption stream allocated by the social optimization

problem. Thus, for given weights nn € A, the required transfers are:

Z)‘t )+ Zwt ¥ (n Zwt —9'rko — o'm*(n)

where

PR OIACAT) ) = D A (ki1 (n) — (1= 8)k; (n))
t=0 t=0

= wi(n)L; (n) = rko.
t=0

A competitive equilibrium for this economy corresponds to a set of welfare
weights 17 € A such that these transfers equal to zero.

Proposition 2 i) Let kg > 0 . Then for any n € A, 7*(n) > 0.
ii) If n; = 0 then Vt, ci* = 0, [I* = 0.

Proof: i) Let (ko,0,0,...) € II(kg). Then

m(n) = A(n)[F(ko,0) + (1 — 8)ko] — rkg
= N =8)ko — 7k >0

ii) Let n; = 0. Suppose for simplicity that cf)* > 0.
Let j satisfies n; > 0. Define ¢f™* = 0, ¢§™ = " + ¢. We have

nui(c™, 167) = miua(ch', 16) = 0,nju; ()™, 1) > njui () 1)).

Hence we get new utility is greater than the optimum which leads to contradic-
tion. Now, assume that [ > 0.
Let j satisfies n; > 0. Define

@ = Flko,m =Y I§)+(1—0)ko—ki— > cf
ki k#j

li**

13
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We have cé** > C(j)* and
Uiui(cé vlz**) = muz‘(Cé*,lé*) =0, njUj(C‘g)**,lé*) > ﬁjuj(cé*alé*)-

that also leads to contradiction. m

Theorem 3 For every i, ¢;(n) is compact valued, upper semi-continuous and

CONVET.

Proof: It is easy to check that, for given n € A,

o m
U(n,k,c, 1) = 2277 B ( ct,lt
=0 i=1

is continuous over A x IT(ko)x > (ko), H(ko)x > (ko) are compact, it follows
from Berge’s Theorem that ci*(n), kj(n), 1i*(n) are continuous functions of 7 for
the product topology.

Let n™ € A and ™ — 1.

i) Assume that ci*(n") — ¢i*(n) = 0.

It follows from Assumption A1 that

1\<y 1
viel={ip" > o} lim “EY 4o
e—0 g

we have

3B (2 (™), 1 (™)) — 3 Bhau; (0, 1% (™))

> ;B (e (n™), 1 (™))l (™)

= [M™) = AF0™)] (™) = A (™) (™). (19)

Thus

0< )\%(,’7 ) /gtul(ct ( *n)’f;*(nn)) < n?ﬁfUz(Ci(n:)71) < 2(1,
(") i (n")

when 7" is close to 1, where a = lim._, %ﬂ) This shows that A}(n") is
bounded from above. -

Moreover, > A (n") < a> 03! < +oo when 5" is close to 7. Hence there
=0 =0

exists a subseq;ence of {/\tl(;”)}, denoted again by {A\(n™)}, say A (n") —

A(n) €l
Furthermore, from (19) we get

oo
D ud (e (™) (™) < +oo
t=0

14
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It implies from (10) A\7"(n™) € I when 1™ — .
ii) Assume that I*(n™) — 1i*(n) = 0. We shall prove that

wi(n™) = N (") JE(kE ™), L (™)) — M (n) S (ki (), Ly (n) € 1L
u;(g,1)

£

For any v € (0,¢), lim._, wil) im,_,

€
lim (08 gy wig)
e—0 o) e—0 £

< 400 which implies

We have

i B (e (™), 17 (™)) — miBiwi (¢ (n™), 0)
> B (e (™), 1 (™)1 (™)

= [wf(™) = N0 + N M (™)
=y (™) + A M (") = wp (M) (™)
This implies
wi(n") _ e (™), 1" ("))
e 1 (nm)
It follows that

<M < +4o0asn” —n.

oo oo
szﬁ(n") < Zn?ﬂfM < 400 when " — 1.
t=0 t=0

Similarly, we get

uF (™ (™), 1 (™)™ (™)
n? 35

< My <+4o0casn” —n

< M; < 400,

A (™)
5 5;

oo [e.¢]
then Zu?i(ci*(n"), 1™(n")) < 400 and Z)\?l(n") < 400 as " —n.
=0 =0

Thus, it follows from (11) that A{*(n™), A(n") belong to I when n™ — .
i) If ci*(n™) — c*(n) > 0, we have
niBus (e (™), 17" (")) — 1 B5ui (0,15 (™))
> By (e (") 1" (™))" (")
= M@ =AM et (") = M (0")e” (")

or
NPREYoN ) lz* n
0 < )\%(nn) < n?ﬁgm(ct (7* )7 t (77 )) < oM when nn — .
(™)
ATk 1o
where M = ui(ct (ZZ)’ () < 400
c*(n)
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This means A} (n™) contains a convergent subsequence, denoted again by A} (n"),
o o0
say N (") — Aj () and A1 () < M3 miff} < +oo.

iv) If I&*(n™) — 1 (n) > 0. By the same argument above, we get wj(n™) —
wy(n) €1}

We have proved that A} (n™), A2 (n™), \t*(n™), AP (n™), wi (n™) belong to 1%
when 7™ — 17.We shall show that \}(7") € I} when 5™ — 7. Indeed, we have :

+o00 > ZAt iA ) >
t=0

Z/\t ft (k¥ (n"), L +Z)‘t ft (ki (n™), Ly (™))L (n")

This 1mphes that
Z)‘t ) FE k(™) Ly (™)) Ky (™) < +oo it (20)

Since f;,(0,m) > 1, then for all ky > 0, there exists some 0 < k < ko such that:

0 < k< F(ko,m)~+ (1—08)ko.
0 < k<F(k,m)+(1-08k

Take a feasible sequences from ky :
k = (ko k, k..
(c;) = ((0,0),(
It follows from (18) that
I\ (™) F (R (™), LE (™)) 4 (1= )M (1) = N_a (™)K (0 ")z
e (™) £ (R (™), L (™)) 4 (1= §)A: () = Ay_1 (™) ]k

This implies

ZAt ) f (k7 (n B < D ON A (™), Ly (™) ks (™) +
t=0

DI = N (M") = Ay )+ S N (") — (1= OAL)IR.

t=0 t=0

It follows from (20), 0 < kf < max(ko, k) and A} (") — M (n) € I}, by using a
convergent subsequence, we can say that

Z)‘t ) [ (K (™), Li(n™)) < oo when 1" — 1.

16
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Therefore, from (12), we conclude A} (n) € 1.
Now, take y(n™) € ¢;(n™), then there exists A} (™) such that

yn — Z)\%(nn +Zwt lz*

where
S L") — SNk )
t=0
[ee) 1 n .
RO = S wi i)~

We may suppose that y(n™) — y(n). It follows from the continuity of ci*(n™),

kE (™), (™), F (ki (™), Li (™)) that
v, Af(n™) — Ai(n) € +,wt (") — wi(n) € l}r.

By taking ™ — 7 in all the inequalities and equalities from (1) to (6) in the
Proposition 1,all A (1), A¥ (1), X3(n), A\f'(n), A? (1) satisfy conditions (1) — (6).
This means A(n) is Lagrange Multipliers of the Pareto-Optimum problem.

Therefore, we have y(n) € ¢;(n). Moreover, ¢,(n) is bounded. Hence ¢;(n)
is compact valued and upper semi-continuous.

We shall prove that ¢;(n) is convex .

For given weights n € A, each consumer’s utility function is strictly concave,
the Pareto-optimum problem will have unique solution for each n € A. Thus,
the maps

(" () 7 o), 15 (0) = g maas U K 1) over T1(ko) x 3 (ko)

is well-defined on A.
Let y € ¢;(n), y € gbl(n), there exists two sequences {A}}, {A\;'} such that

v € 6N M), v € (N ()
We have, for all « € [0, 1],

ayr + (1 —a)y =

SN () + (1= @)X ()l

t=0
+Z AL () + (1 — )N ()] f2 (ks L)L
—Z aA () + (1 — )N ()] F2(kF, L) =9 rko

17



halshs-00197533, version 1 - 14 Dec 2007

'Y (@A (m) + (1= @)X () F (K}, L)
t=0

=2 0) + (1= N ) — (1= 90k

o0

—Z(M%(n) (1—a)\ ( ))ft (kt, Li)Li — rko
t=0

Since AH(n) and ;' (n) satisfy the conditions (1) — (6), it is easy to check that
aXl(n) + (1 — )\ (n) satisfies (1) — (6). Thus, aX}(n) + (1 — a)A;'(n) is also
Lagrange multipliers for Pareto-Optimum problem.

Therefore, ay; + (1 — o)y € ¢;(n) or ¢;(n) is convex . =m

We now use the Browder Fixed-Point Theorem for Multivalued Maps with
Boundary Condition to prove there exists an equilibrium.

Theorem 4 (See Zeidler[1992], Theorem 9.C) Suppose that
(i) the map T(n) : A — 2% is upper semi-continuous, and that A is a
nonempty, compact, conver set in a locally convex space X ;
(ii) the set T'(n) is nonempty, closed, and convez for all n € A;
(iii) one of the following two boundary conditions is satisfied:
For every n € OA there are points ( € T(n) and & € A,
and a number a > 0 such that ¢ = n+ a(§ —n);
For every n € OA there are points ( € T(n) and £ € A,
and a number a < 0 such that { =n+ a(§ —n);
Then T'(n) has a fixed point.

Lemma 2 ( The inward boundary condition)

For given ne Aako > 0 and @(77) = (¢1(77)7¢2(77)77¢m(77)) € R™ . If
n; =0 then for ally € ¢(n), y; < 0.

Proof: Indeed, if there exists ¢ such that 1, = 0 then, by the Proposition 2(ii),
c* =0, I* =0 for all ¢.
Then, if y € ¢(n),
Yi € ¢;(n)
= {Z pi(n)e*(n) + Zwt it ()= _wi () —d'rke — o' (1)}
t=0
= {- Zwt —0rky — o' (n)}.

It follows from Proposition 2(i) that y; < 0. =

18
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Theorem 5 Let kg > 0. Then there exists n € A,n >> 0, such that 0 €

o;(n), Vi, that means there exist an equilibrium.

Proof: Let T'(n) = n+ ¢(n), T(n) = (T1(n), T2(n), ..., Tm(n)).It follows from
Lemma 2 that 7; = 0 implies y; € ¢;(n) C R— _ or y; € T;(n) and y; < 0. From
the Theorem 4, there exists 7 such that n € T'(n). This implies that 0 € ¢(n)
or0€ ¢;(n) foralli=1...m. =
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