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1 Introduction

The NOAA panel recommends the use of a dichotomous choice format in contingent
valuation (CV) surveys. This format has several advantages: it is incentive-compatible,
simple and cognitively manageable. Furthermore, respondents face a familiar task, sim-
ilar to real referenda. The use of a single valuation question, however, presents the
inconvenience of providing the researcher with only limited information. To gather
more information, Hanemann et al. (1991) proposed adding a follow-up question. This
is the double-bounded model. This format, however, has been proved to be sensitive to
starting point bias, that is, respondents anchor their willingness-to-pay (WTP) to the
bids. It implies that WTP estimates may vary as a function of the bids. Many au-
thors propose some specific models to handle this problem (Herriges and Shogren 1996,
Alberini et al. 1997, DeShazo 2002, Whitehead 2002, Cooper et al. 2002, Flachaire
and Hollard 2006). The behavioral assumption behind these models is that respondents
hold a unique and precise willingness-to-pay prior to the survey. Observed biases are
interpreted as a distortion of this initial willingness-to-pay during the survey.

Independently, several studies document the fact that individuals are rather unsure
of their own willingness-to-pay (Li and Mattsson 1995, Ready et al. 1995, 2001, Welsh
and Poe 1998, van Kooten et al. 2001, Hanley and Kriström 2002, Alberini et al. 2003).
To account for such uncertainty, these studies allow respondents to use additional an-
swers to valuation questions. Rather than the usual ”yes”, ”no” and ”don’t know”
alternatives, intermediate responses, such as ”probably yes” or ”probably no”, are al-
lowed. Alternatively, an additional question asks respondents how certain they are of
their answers and provides a graduated scale.

In contingent valuation, starting-point bias and respondent’s uncertainty have been
handled in separate studies. In this article we develop a dichotomous choice model -
hereafter called the Range model - in which individuals hold a range of acceptable
values, rather than a precisely defined value of their willingness-to-pay. The range
model is drawn from the principle of coherent arbitrariness, suggested by Ariely et al.
(2003b). Prior to the survey, the true willingness to pay is assumed to be uncertain in
an interval with upper and lower bounds. Confronted with the first valuation question,
respondents select a value and then act on the basis of that selected value. Because of
this initial uncertainty, the initial choice is subject to starting point bias. In contrast, the
subsequent choices are no longer sensitive to the bid offers. A clear-cut prediction follows:
biases occur within a given range and affect the first answer only. The Range model
thus provides an alternative interpretation of the starting point bias in the dichotomous
choice valuation surveys.

An empirical study is presented to compare various models, using the well-known
Exxon Valdez contingent valuation survey. Results show that a special case of the
proposed Range model, in which a “yes” response is given when the bid value falls
within the range of acceptable values, is supported by the data, i.e. when uncertain,
individuals tend to say ”yes”.
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The article is organized as follows. The following section presents the Range model
and the respondent’s decision process. The subsequent sections provide estimation de-
tails, give further interpretation and present an application. Conclusions appear in the
final section.

2 The Range model

The Range model derives from the principle of “coherent arbitrariness” (Ariely et al.
2003b). These authors conducted a series of valuation experiments (i.e. experiments
in which the subjects have to set values for objects they are not familiar with). They
observed that “preferences are initially malleable but become imprinted (i.e. precisely
defined and largely invariant) after the individual is called upon to make an initial
decision”. But, prior to imprinting, preferences are “arbitrary, meaning that they are
highly responsive to both positive and normative influences”.

In a double-bounded CV survey, two questions are presented to respondents. The
first question is ”Would you agree to pay x$?”. The second, or follow-up, question is
similar but asks for a higher bid offer if the initial answer is yes and a lower bid offer
otherwise. Confronted with these iterative questions, with two successive bids proposed,
the principle of coherent arbitrariness leads us to consider a three-step decision process:

1. Prior to a valuation question, the respondent holds a range of acceptable values

2. Confronted with a first valuation question, the respondent selects a value inside
that range

3. The respondent answers the questions according to the selected value.

The following subsections detail each step.

2.1 A range of acceptable values

At first, let us assume that a respondent i does not hold a precise willingness-to-pay but
rather an interval of acceptable values:

wtpi ∈
[

W i, W i

]

with W i − W i = δ. (1)

The lower bound and the upper bound are different for each respondent, but we assume
the width of the range δ to be constant across individuals.1

1It would be interesting to consider a model in which δ varies across individuals. Some variables
that are proved to play a role in individual value assessment (such as repeated exposure to the good
or representation of the good (Flachaire and Hollard 2007)) may also influence the length of the range.
This requires a particular treatment which is beyond the scope of this paper.
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Several psychological and economic applications support this idea. For instance,
Tversky and Kahneman (1974) and Ariely et al. (2003b, 2003a) suggest the existence of
such an interval. In addition, several studies in contingent valuation explore response
formats that allow for the expression of uncertainty, among others see Li and Mattsson
(1995), Ready et al. (1995), Welsh and Poe (1998), van Kooten et al. (2001), Hanley
and Kriström (2002) and Alberini et al. (2003). These studies also conclude that there
is a range of values for which respondents are uncertain.

2.2 Selection of a particular value

Confronted with a first bid offer b1i a respondent i selects a specific value inside his range
of acceptable values

[

W i, W i

]

. The selection rule can take different forms. We propose
a selection rule in which the respondent selects a value so as to minimize the distance
between his range of willingness-to-pay and the proposed bid:

Wi = Min
wtpi

|wtpi − b1i| with wtpi ∈
[

W i, W i

]

. (2)

This selection rule has attractive features. It is very simple and tractable. It is
also in accordance with the literature on anchoring, which states that the proposed bid
induces subject to revise their willingness to pay as if the proposed bid conveyed some
information about the “right” value (Chapman and Johnson 1999). At a more general
level, the literature on cognitive dissonance suggests that subjects act so as to minimize
the gap between their own opinion and the one conveyed by new information.

In this range model the first bid plays the role of an anchor: it attracts the willingness-
to-pay. A different b1i results in the selection of a different value Wi. Thus, this selection
rule should exhibit a sensitivity of the first answer to the first bid, that is, an anchoring
effect. Consequently, it is expected to produce anomalies such as starting point bias.

2.3 Answers to questions

The last step of the decision process deals with the respondent’s answer to questions.
It is straightforward that a respondent will answer yes if the bid is less than the lower
bound of his range of acceptable value W i. And he will answer no if the bid is higher
than the upper bound of his range W i . However, it is less clear what is happening when
the bid belongs to the interval of acceptable values.

- Answers to the first question -

A respondent i will agree to pay any amount below W i and refuse to pay any amount
that exceeds W i. When the first bid belongs to his interval of acceptable values, he
may accept or refuse the bid offer. Here, we do not impose a precise rule: respondents
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can answer yes or no with any probability when the bid offer belongs to the interval. If
the bid belongs to the range of acceptable values, respondents answer yes to the first
question with a probability ξ and no with a probability 1 − ξ. Thus, the probability
that a respondent i will answer yes to the first question is equal to:2

P (yes) = P (b1i < W i) + ξ P (W i < b1i < W i) with ξ ∈ [0, 1]. (3)

In other words, a respondent’s first answer is yes with a probability 1 if the bid is below
his range of acceptable values and with a probability ξ if the bid belongs to his range.
A ξ close enough to 1 (resp. 0) means that the respondent tends to answer yes (resp.
no) when the bid belongs to the range of acceptable values. Estimation of the model
will provide an estimate of ξ.

- Answers to follow-up questions -

The uncertainty that arises in the first answer disappears in the follow-up answers. A
respondent answers yes to the follow-up question if the bid b2i is below his willingness-to-
pay, Wi > b2i ; and no if the bid is above his willingness-to-pay, Wi < b2i (by definition,
the follow-up bid is higher or smaller than the first bid, that is b2i 6= b1i).

3 Estimation

In this section, we present in detail how to estimate the Range model. It is assumed that
if the first bid b1i belongs to the interval of acceptable values of respondent i, [W i; W i],
he will answer yes with a probability ξ and no with a probability 1 − ξ. We can write
these two probabilities as follows:

ξ =
P (W i < b1i < W ξ

i )

P (W i < b1i < W i)
and 1 − ξ =

P (W ξ
i < b1i < W i)

P (W i < b1i < W i)
, (4)

with W ξ
i ∈ [W i; W i]. Note that, when ξ = 0 we have W ξ

i = W i, and when ξ = 1 we
have W ξ

i = W i. From (4) and (3), the respondent i answers yes or no to the first
question with the following probabilities

P (yes) = P (W ξ
i > b1i) and P (no) = P (W ξ

i ≤ b1i). (5)

It is worth noting that these probabilities are similar to the probabilities derived from
a single-bounded model with W ξ

i assumed to be the willingness-to-pay of respondent i.
It follows that the mean value of WTPs obtained with a single-bounded model would
correspond to the mean of the W ξ

i in our model, for i = 1, . . . , n. The use of follow-up
questions will lead us to identify and estimate ξ and to provide a range of values rather
than a single mean of WTPs.

2P (yes) = P (yes|b1i < W i)P (b1i < W i) + P (yes|W i < b1i < W i)P (W i < b1i < W i) + P (yes|b1i >

W i)P (b1i > W i) where the conditional probabilities are respectively equal to 1, ξ and 0.
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If the initial bid belongs to his range of acceptable values, respondent i selects the
value Wi = b1i, see (2). If his first answer is yes, a follow-up higher bid bh

2i > b1i is
proposed and his second answer is necessarily no, because Wi < bh

2i. Conversely, if his
first answer is no, a follow-up lower bid bl

2i < b1i is proposed and his second answer is
necessarily yes, because Wi > bl

2i. It follows that, if the first and the second answers
are similar, the first bid is necessarily outside the interval [W i; W i] and the probabilities
of answering no-no and yes-yes are respectively equal to

P (no, no) = P (W i < bl
2i) and P (yes , yes) = P (W i > bh

2i). (6)

If the answers to the initial and the follow-up questions are respectively yes and no, two
cases are possible: the first bid is below the range of acceptable values and the second
bid is higher than the selected value Wi = W i, otherwise the first bid belongs to the
range of values. We have

P (yes , no) = P (b1i < W i < bh
2i) + ξ P (W i < b1i < W i) (7)

= P (b1i < W i < bh
2i) + P (W i < b1i < W ξ

i ) (8)

= P (W i < bh
2i) − P (W ξ

i < b1i). (9)

Similarly, the probability that respondent i will answer successively no and yes is:

P (no, yes) = P (bl
2i < W i < b1i) + (1 − ξ) P (W i < b1i < W i) (10)

= P (W ξ
i < b1i) − P (W i < bl

2i). (11)

To make the estimation possible, a solution would be to rewrite all the probabilities
in terms of W ξ

i . In our model, we assume that the range of acceptable values has a
width which is the same for all respondents. It allows us to define two parameters:

δ1 = W i − W ξ
i and δ2 = W i − W ξ

i . (12)

Note that δ1 ≤ 0 and δ2 ≥ 0 because W ξ
i ∈ [W i; W i]. Using (12) in (6), (9) and (11),

we have

P (no, no) = P (W ξ
i < bl

2i − δ2), P (no, yes) = P (bl
2i − δ2 < W ξ

i < b1i), (13)

P (yes , yes) = P (W ξ
i > bh

2i − δ1), P (yes , no) = P (b1i < W ξ
i < bh

2i − δ1). (14)

Let us consider that the willingness-to-pay is defined as,

W ξ
i = α + Xiβ + ui, ui ∼ N(0, σ2), (15)

where the unknown parameters β, α and σ2 are respectively a k × 1 vector and two
scalars, Xi is a 1 × k vector of explanatory variables. The number of observations is
equal to n and the error term ui is Normally distributed with a mean of zero and a
variance of σ2. This model can easily be estimated by maximum likelihood, using the
log-likelihood function

l(y, β) =
n

∑

i=1

(

r1i r2i log
[

P (yes, yes)
]

+ r1i (1 − r2i) log
[

P (yes, no)
]

+ (1 − r1i) r2i log
[

P (no, yes)
]

+ (1 − r1i) (1 − r2i) log
[

P (no, no)
]

)

, (16)
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where r1 (resp. r2) is a dummy variable which is equal to 1 if the answer to the first
bid (resp. to the second) is yes, and is equal to 0 if the answer is no. To estimate our
model, we can derive from (13) and (14) the probabilities that should be used:

P (no, no) = Φ[(bl
2i − δ2 − α − Xiβ)/σ], (17)

P (no, yes) = Φ[(b1i − α − Xiβ)/σ] − Φ[(bl
2i − δ2 − α − Xiβ)/σ], (18)

P (yes, no) = Φ[(bh
2i − δ1 − α − Xiβ)/σ] − Φ[(b1i − α − Xiβ)/σ], (19)

P (yes, yes) = 1 − Φ[(bh
2i − δ1 − α − Xiβ)/σ]. (20)

Non-negativity of the probabilities (18) and (19) require respectively b1i > bl
2i − δ2

and bh
2i + δ1 > b1i. We have defined δ1 ≤ 0 and δ2 ≥ 0, see (12): in such cases the

probabilities (18) and (19) are necessarily positive. However, the restrictions δ1 ≤ 0 and
δ2 ≥ 0 are not automatically satisfied in the estimation. To overcome this problem, we
can consider a more general model, for which our Range model becomes a special case.

3.1 Interrelation with the Shift model

It is worth noting that the probabilities (13) and (14) are quite similar to the probabilities
derived from a Shift model (Alberini et al. 1997), but in which we consider two different
shifts. Indeed, in a Shift model, respondents are supposed to answer the first question
with a prior willingness-to-pay Wi and the second question with an updated willingness-
to-pay defined as:

W ′

i = Wi + δ. (21)

The probability of answering successively yes and no is:

P (yes, no) = P (b1i < Wi ∩ W ′

i < bh
2i) = P (b1i < Wi < bh

2i − δ), (22)

which is equal to the corresponding probability in (14) with δ = δ1. Similar calculations
can be made for the other probabilities, to show that the Range model can be estimated
as a model with two different shifts in ascending/descending sequences. The underlying
decision process is very different from the one developed in the Range model. In the
Shift model, respondents answer questions according to two different values of WTP, Wi

and W ′

i . The first bid offer is interpreted as providing information about the cost or the
quality of the object. Indeed, a respondent can interpret a higher bid offer as paying
more for the same object and a lower bid offer as paying less for a lower quality object.
Alternatively, a higher bid can make no sense to the individual, if delivery was promised
at the lower bid.

3.2 Random-effect model

Cameron and Quiggin (1994) propose taking into account the dynamic aspect of follow-
up questions: they suggest specification allowing the initial and follow-up answers to be
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based on two different WTP values. The WTP is broken down in two parts, a fixed
component and a varying component over repeated questions. The random effect model
can be written:

{

W1i = W ⋆
i + ε1i

W2i = W ⋆
i + ε2i

where W ⋆
i = α + Xiβ + νi. (23)

The difference between the two WTP values is due to the random shocks ε1i and ε2i,
assumed to be independent. The fixed component W ⋆

i can be split into two parts. Xiβ
represent the part of the willingness-to-pay due to observed individual specific charac-
teristics. νi varies with the individual, but remains fixed over the indivual’s responses:
it relates unobserved individual heterogeneity and introduces a correlation between W1i

and W2i. The correlation is high (resp. low) if the variance of the fixed component is
large (resp. small) relative to the variance of the varying component, see Alberini et al.
(1997) for more details. At the limit, if the two WTP values are identical, W1i = W2i,
the correlation coefficient is equal to one, ρ = 1.

Alberini et al. (1997) have modified this random-effect model to the case of the Shift
model. Since the Range model can be estimated as a model with two different shifts
in ascending/descending sequences (see above), the use of a random-effect model in the
case of the Range model is straightforward. From equations (17), (18), (19) and (20), we
can write the probability that the individual i answers yes to the jth question, j = 1, 2:

P (Wji > bji) = Φ [(α + Xi β − bji + δ1 Dj r1i + δ2 Dj (1 − r1i)) /σ] , (24)

where D1 = 0, D2 = 1, and r1i equals 1 if the answer to the first question is yes and 0
otherwise. Consequently, the Range model can be estimated from the following bivariate
probit model:

P (yes, yes) = Φ [α1 + Xi θ + γ b1i ; α2 + Xi θ + γ b2i + λ r1i ; ρ ] . (25)

The parameters are interrelated according to:

α = −α1/γ, β = −θ/γ, σ = −1/γ, δ1 = −λ/γ and δ2 = (α1 − α2)/γ. (26)

Estimation with a bivariate probit model based on equation (25) does not impose any
restriction on the parameters. The Range model is obtained if δ1 ≤ 0 and δ2 ≥ 0; the
Shift model is obtained if δ1 = δ2. It is clear that the Range model and the Shift model
are non-nested; they can be tested through (25).

4 Interpretation

We have seen above that the estimation of the Range model derives from a general model,
that also encompasses the Shift model proposed by Alberini et al. (1997), see (25)
and (26). Estimation of model (15), based on equation (25), provides estimates of
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α, β, σ, δ1 and δ2, from which we can estimate a mean µξ and a dispersion σ of the
willingness-to-pay - (Hanemann and Kanninen 1999) by

µξ = n−1

n
∑

i=1

W ξ
i = n−1

n
∑

i=1

(α + Xiβ). (27)

This last mean of WTPs would be similar to the mean of WTPs estimated using the
first questions only, that is, based on the single-bounded model.

Additional information can be obtained from the use of follow-up questions: esti-
mates of δ1 and δ2 allows us to estimate a range of means of WTPs. The mean value
of WTPs estimated from our model µξ is the mean of the estimates of W ξ

i for all the
respondents, i = 1, . . . , n. From (12), we can derive the lower bounds of the range of
acceptable values for all respondents and a mean of WTPs associated with it:

µ0 = n−1

n
∑

i=1

W i = n−1

n
∑

i=1

(W ξ
i + δ1) = µξ + δ1, δ1 ≤ 0. (28)

It would be the mean of WTPs when respondents always answer no if the bid belongs
to their range of acceptable value. Similarly, we can derive the upper bounds of their
range,

µ1 = n−1

n
∑

i=1

W i = n−1

n
∑

i=1

(W ξ
i + δ2) = µξ + δ2, δ2 ≥ 0. (29)

It follows that we can provide a range of means of WTPs

[µ0; µ1] = [µξ + δ1 ; µξ + δ2] with δ1 ≤ 0, and δ2 ≥ 0. (30)

This range can be estimated with µ̂ξ, δ̂1 and δ̂2. The lower bound µ0 corresponds
to the case where respondents always answer no if the bid belongs to the range of
acceptable values (ξ = 0). Conversely, the upper bound µ1 corresponds to the case
where respondents always answer yes if the bid belongs to the range of acceptable values
(ξ = 1). How respondents answer the question when the bid belongs to the range of
acceptable values can be tested as follows:

• respondents always answer no corresponds to the null hypothesis H0 : δ1 = 0,

• respondents always answer yes corresponds to the null hypothesis H0 : δ2 = 0.

Finally, an estimation of the probability ξ would be useful. For instance, we could
conclude that when the first bid belongs to the range of acceptable values, respondents
answer yes in (100 ξ̂) % of cases. If the first bids are drawn randomly from a probability
distribution, ξ can be rewritten

ξ =
P (µ0 < b1i < µξ)

P (µ0 < b1i < µ1)
. (31)

In addition, if the set of first bids are drawn from a uniform distribution by the surveyors,
it can be estimated by ξ̂ = δ̂1/(δ̂1 − δ̂2).
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5 Application

Since independent variables other than the bid are not needed to estimate the Range
model, we can use data from previously published papers on this topic. In this applica-
tion, we use data from the well-known Exxon Valdez contingent valuation survey.3 The
willingness-to-pay question asked how the respondent would vote on a plan to prevent
another oil spill similar in magnitude to the Exxon Valdez spill. Details about the Exxon
Valdez oil spill and the contingent valuation survey can be found in Carson et al. (2003)

5.1 Results

With the assumption that the distribution of WTP is lognormal, results in Alberini et
al. show evidence of a downward shift. Here, we consider the more general model given
in (25) from which the Double-bounded, Shift and Range models are special cases.

Estimation results are given in Table 1. We use the same model as in Alberini et al.:
there are no covariates and the distribution of the WTP is assumed lognormal (θ = 0
and bij are replaced by log bij in (25)). The mean of log WTP is given by α = −α1γ and
the median of WTP is given by exp(α). Estimation results of the Single-bounded model
are obtained from a probit model. Estimation results obtained from a bivariate probit
model with no restrictions in (25) are presented in column M ; the Double-bounded
model is obtained with δ1 = δ2 = 0 ; the Shift model is obtained with δ1 = δ2 and the
Rangeyes model is obtained with δ2 = 0.

Table 1: Exxon Valdez Oil Spill Survey: Random-effect models

Parameter Single Double Shift M Rangeyes

(δ1 = δ2 = 0) (δ1 = δ2) (n.c.) (δ2 = 0)

α 3.727 3.080 3.754 3.797 3.789
(0.124) (0.145) (0.127) (0.129) (0.134)

σ 3.149 3.594 3.236 3.298 3.459
(0.432) (0.493) (0.421) (0.387) (0.272)

δ1 -1.108 -1.424 -1.583
(0.212) (0.356) (0.222)

δ2 -0.062
(0.114)

ρ 0.694 0.770 0.997 0.998
(0.047) (0.045) (0.010) (0.014)

ℓ -695.51 -1345.70 -1303.36 -1301.32 -1301.45
Note: standard errors are in italics; n.c.: no constraints.

From Table 1, we can see that the estimates of the mean of log WTP in the Single-
bounded and Double-bounded models are very different (3.727 vs. 3.080). Such incon-

3The bid values are given in Alberini, Kanninen, and Carson (1997, Table 1).
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sistent results lead us to consider the Shift model to control for such effects. It is clear
that the estimates of the mean of log WTP in the Single-bounded model and in the
Shift model are very close (3.727 vs. 3.754), and that the Double-bounded model does
not fit the data as well as the Shift model. Indeed, we reject the null hypothesis δ1 = 0
from a likelihood-ratio test (LR = 84.68 and P < 0.0001).4 To go further, we consider
estimation results obtained from the model defined in (25) with no restrictions (column
M). On the one hand, we reject the null hypothesis δ1 = δ2 from a likelihood-ratio test
(LR = 4.08 and P = 0.043). It suggests that the Shift model does not fit the data as
well as model M. On the another hand, we cannot reject the null hypothesis δ2 = 0
(LR = 0.26 and P = 0.61). It leads us to select the Rangeyes model hereafter.

The estimated values of the parameters δ1 and δ2 allow us to interpret the model as
a Range model (δ1 ≤ 0, δ2 = 0). Respondents are unsure of their willingness-to-pay in
an interval; they answer yes if the initial bid offer belongs to their interval of acceptable
values. We compute an interval of the median WTP:

[exp(α̂ − δ̂1); exp(α̂ − δ̂2)] = [9.45; 44.21]. (32)

This interval suggests that, if the respondents answer no if the initial bid belongs to
their range of acceptable values, the median WTP is equal to 9.45; if the respondents
answer yes if the initial bid belongs to their range of acceptable values, the median WTP
is equal to 44.21 (see Section 4).

5.2 Main findings

From these empirical results, we select the Rangeyes model, with an interval of the
median WTP [9.45; 44.21]. Previous researchers have also found that, when uncertain,
individuals tend to say yes (Ready et al. 2001). New with the Range model is the fact
that no additional question such as ”how certain are you of your answer?” is required.
From our results, several conclusions can be drawn:

1. From the Rangeyes model, we cannot reject the null hypothesis ρ = 1.5 This result
has an important implication. It suggests that the underlying decision process
defined in the Range model is supported by the data. Confronted with an initial
bid, respondents select a value, then they answer both the first and the second
questions according to the same value (see Sections 2 and 3.2). This is in sharp
contrast to the existing literature that explains anomalies by the fact that respon-
dents use two different values to answer the first and follow-up questions.6 The

4A LR test is equal to twice the difference between the maximized value of the loglikelihood functions
(given in the last line ℓ); it is asymptotically distributed as a Chi-squared distribution.

5Estimation results of the Range and of the Rangeyes models obtained by using the constraint ρ = 1
are not reported: they are similar to those obtained without imposing this constraint and the estimates
of the loglikelihood functions are identical.

6Cameron and Quiggin 1994, Kanninen 1995, Herriges and Shogren 1996, Alberini et al. 1997,
Whitehead 2002.

11



Range model supports the view that anomalies can be explained by a specific re-
spondent’s behavior prior to the first question, rather than by a change between
the first and the second questions.

2. As long as the Rangeyes model is selected, the Single bounded model is expected to
elicit the upper bound of the individual’s range of acceptable WTP values. Indeed,
in the case of Exxon Valdez, the estimated median WTP is equal to exp(α̂) = 41.55.
This value is very close to the upper bound provided by the interval of the median
WTP in the Rangeyes model, i.e. 44.21. The discrete choice format is then likely
to overestimate means or medians compared to other surveys’ formats. It confirms
previous research showing that, with the same underlying assumptions, the discrete
choice format leads to a systematically higher estimated mean WTP than the open-
ended format (Green et al. 1998) or the payment card format (Ready et al. 2001).

3. Existing results suggest that anomalies occur in ascending sequences only (i.e. after
a yes to the initial bid).7 DeShazo (2002) offers a prospect-theory explanation,
interpreting the first bid as playing the role of a reference point. The Range
model offers an alternative explanation: anomalies come from the fact that, when
uncertain, respondents tend to answer yes. Indeed, if the bid belongs to his range of
acceptable values, a respondent answers yes to the first question and necessarily no

to the second question (see Section 2). This specific behavior occurs in ascending
sequences only. Such asymmetry can be viewed from the estimation of the model
too, since the Range model can be estimated as a model with two different shift
parameters in ascending/descending sequences (see Section 3.1).

All in all, based on Exxon Valdez data, the Range model: (1) confirms existing
findings on the effect of respondent uncertainty; (2) offers an alternative explanation to
anomalies in CV surveys.

6 Conclusion

In this article, we develop a model that allows us to deal with respondent uncertainty
and starting-point bias in the same framework. This model is based on the principle of
coherent arbitrariness, put forward by Ariely et al. (2003b). It allows for respondent
uncertainty without having to rely on follow-up questions explicitly designed to measure
the degree of that uncertainty (e.g., “How certain are you of your response?”). It provides
an alternative interpretation of the fact the some of the responses to the second bid
may be inconsistent with the responses to the first bid. This anomaly is explained
by respondents’ uncertainty, rather than anomalies in respondent behavior. Using the
well-known Exxon Valdez survey, our empirical results suggest that, when uncertain,
respondents tend to answer yes.

7DeShazo 2002, Cooper et al. 2002, Flachaire and Hollard 2006.
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