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Abstract

We first present the concept of duality appearing in order theory, i.e. the notions of dual isomorphism and of

Galois connection. Then we describe two fundamental dualities, the duality extension/intention associated with a
binary relation between two sets, and the duality between implicational systems and closure systems. Finally we

present two "concrete" dualities occuring in social choice and in choice functions theories.
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1. Introduction

In the index of the Encyclopaedia of Mathematics (Kluwer, 1987) the terms duality or dual
appear about 120 times. Here we will only consider the duality occurring in order theory. Why
order duality matters ? for a very simple reason. When one can show that two sets of objects art
two dual posets, then one can automatically transfer any result on one of these posets to thi

other. We will begin by recalling the notion of dual posets and the notion of Galois connection,
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a useful tool to obtain dual posets. Then we will present two significant dualities obtained

through a Galois connection: the “extension/intention” duality associated to a binary relation
and the duality between implicational systems and closure systems. The first one is applied to
an example in social choice theory. The second one generalizes the well known duality betweer
posets and g-topologies (or distributive lattices). We will finally present a duality between
path-independent choice functions and anti-exchange closure operators. Some other uses ¢
order duality are mentionned in the conclusion.

N.B. Unless explicitly stated, all the sets considered in this paper are finite.

2. Order Duality and Galois Connection

A partially ordered sefor pose} P = (X, <p ) is a seK equipped with a reflexive, transitive and
antisymmetric binary relatioglp. Often, we shall only denote such a poset®)s] or simply
by P. Moreover, we writxe P orF € P rather tharxxe X orF € X.

Thedual of the poseP = (X,<) is the posePd = (X, =), wherex =y if and only if y< x.

A mapf from a poseP = (X,<p ) to a poseQ = (Y, <) isisotone(respectivelyantitong if
x<py impliesf(x) <5 f(y) (respectiveli <py impliesf(x) 24 f(y)).

Two posetd? andQ areisomorphicif there exists arsomorphisnbeetwen them,e. a bijective
mapf from P to Q which is isotone as well as its invefsé(equivalently, a bijective méifrom

P to Q atisfyingx <p y if and only iff(x) <9 f(y)).

Definition 1

Two posets? andQ aredual if there exists @ualisomorphisnbeetwen them, i.e. a bijective

mapf from P to Q satisfyingx <p y if and only iff(x) = f(y).

Observe that the pose®s= (X, <) andPd = (X, =) are dual since the identity map is a dual
iIsomorphism between them, and tHatandQ are duaif and only if there exists an
isomorphism between P ag¥.

Many interesting dual posets can be obtained through a Galois connection between two posets

a notion that we define below, after recalling the notions of closure operator and closure system.
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Definition 2

A closure operaton on a poseP is a map fronP to itself which is isotonegxtensiveand
idempotentx <o (X) = $2(x)). The fixed points of are called thelosed elementsf P.

A closure syten® on a poseP is a subset of P such that for eackin P, the setye C:x<

y} has a least element denoteddigy(x).

It is well known that the set of all closure operators and the set of all closure systems defined on
a poset are in a one-to-one correspondence (by the two inverse bijective maps associating to

closure operator the set of its fixed points and to a closure system the applieatins(x)).

Definition 3

A Galois connectiotbetween two poseBBandQ is an ordered paif,§j) of maps
f:P=Q g:Q—=P

satisfying the following condition:

forallxe Pandye Q, x < g(y) if and only ify < f(x).

An equivalent definition uses the composite miggsdenoted byg(fg(x) = f(g(x))) andgof
denoted byf: (f,g) is a Galois connection if and only if the md@sdg are antitone, and the
mapsfg andgf are extensive.

Now one can state the easily proved but significant result:

Theorem 4

Let (f,g) be a Galois connection between two poBeaadQ. Then

1) gfis a closure operator ¢handfg is a closure operator @;

2) the two closure systerg§P) onP andfg(Q) onQ are two dual posets.

One can add tha(Q) = gf(P), f(P) =fg(Q) and that the two inverse dual isomorphims between
gf(P) andfg(Q) are given by the restrictions fofindg to the two posetg(Q) andf(P).

A special case of this result occurs wikeandQ are two lattices. Recall that@eet-semilattice

(respectively goin-semilatticg is a poset where any two elemextndy have aneet xy, i.e.a
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greatest lower bound (respectivelypm, i.e. a lowest upper boundry) and that dattice (L, <)

is both a meet-semilattice and a join-semilattice. Then one has:
Theorem 5

Let (f,g) be a Galois connection between two latticesdL'. Then
1) gfis a closure operator @anandfg is a closure operator dn,

2) the two closure systerg§(L) andfg(L") are two dual lattices.

One can add that the lattigéL) (respectivelyfg(L")) is a meet-subsemilattice bfrespectively

of L") and that its least element({%,) (respectivelyg(1,)).

This result can be in particular applied wHer (2F, ©) (respectivelyL' = (2F, ©)) is the
Boolean lattice of all the subsets of alsétespectively of a sét) ordered by set inclusion. We
begin by recalling what becomes the definition of a closure system in the case of the fattice

(2E, ©). Note that we say that such a closure system is defined on E although it is in fact a

subset of .

Definition 6

A closure system oB ( is a familyC of subsets oE satisfying the two following conditions:
1)Ee C,

2)C1,Coe C =C1nCoe C.

Then, C, ©) is a lattice whose the meet operatidns the set intersection, whereas the join

operationv is given byC,vC,=n{Ce C:C,uC,c C}

Remarks

1) The ("abstract") notion of Galois connection (or connexion) is due to Ore (Ore,1944).

The term Galois connection refers to the existence of such a connection (between subfields anc
subgroups) in the Galois theory of equations. Before Ore, Birkhoff (1940) has considered the
("concrete") Galois connection associated to a binary relation and defined in the next section (in

fact Ore showed that any Galois connection can be obtained as such a Galois connection).
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2) Proofs of Theorems 4 and 5 can be found in, for example, Barbut and Monjardet (1970)

and Szasz (1963).

3. The Galois Connection associated with a Binary Relation and the
Extension/Intention Duality

WhenR is a binary relation between the two de@ndF, we say that the triplde( F, R) is a
bigraph. The following theorem, due to Birkhoff, is an example of an easily proven but
fundamental result.

Theorem 7

Let (E, F, R) be a bigraph. One defines a Galois connecfjght{etween the lattices§2<) and

(2F, ©) by setting foiX cE andY c F

f(X) ={ye F: xRy for everyxe X} ; o(Y)={xe E: xRy for everyye Y}.

Let (X,Y) be such thaX < E (respectivelyY € F) is a closed set in the associated closure
systemgf(2E) on E (respectivelyfg(2F) onF) and such thaX = g(Y) (andY = f(X)). Then, it
follows from Theorem 7 that

1) forallxe X,y e Y, xRy,

2) for allx & X, there existy € Y such thakFCy (i.e. ky) € R),

3) for ally ¢ Y, there existx € X such thakRy.

These facts induce the below definition:

Definition 8

Let (E, F, R) be a bigraph. The ordered pa¥,Y), whereX = g(Y) andY = f(X) are two
corresponding closed sets in the Galois connection associated with the bigraph is called a
concepbof (E, F, R). Xis called theextension(or theextenj of the conceptX,Y) andY is called

its intention (or itsinteny.

Indeed, wherk is a set of object$; a set of attributes ariRIthe relation "the object x has the
attribute y", a concept is a set of objects and a set of attributes such that these objects are th

only ones satisfying all these attributes and these attributes are the only ones satisfied by al
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these objects. So, it is not inadequate to use the traditional terms used in éoggmsiorand

intention

Ordered by set-inclusion the two sets of extensions and intentions are two posets. It results
from the properties of a Galois connection between two lattices (Theorem 5) that one has the
following result:

Corollary 9

Let (E, F, R) be a bigraph. The two posets of extensions and intentions associated with the

Galois connection induced by this bigraph are two dual lattices.

Then, if one defines an “order of generality” between two concEpisgnd K',Y’) by:
XY)<(X,Y)if XeXandY2Y

(i.e. if the extension of the first concept is smaller and its intention bigger), one gets that the sets

of concepts (ordered by this order) is a lattice isomorphic to the lattice of extensions and dually

iIsomorphic to the lattice of intentions. This lattice catleelGalois (or theconcepy lattice of

the bigraphE, F, R) has many applications for instance in data analysis, formal concept analysis

and knowledge representation theory (see for instance Barbut and Monjardet, 1970, Ganter anc

Wille, 1999, Valtchev, 1999 or Valtchevd, 2000).

In section 5, we will present two examples of a Galois connection associated with a bigraph,

occuring in social choice theory and game theory.

Remark
According to Barbut's result (Barbut, 1965) any lattice L can be represented as the Galois lattice

of a bigraph (see Barbut and Monjardet, 1970).

4.The Duality between Implicational Systems and Closure Systems

We consider now a fundamental duality arising from a Galois connection between binary
relations between subsets of a set and families of subsets of this set. In fact, it is a generalizatiol
of the well-known duality between posets angtdpologies (or distributive lattices), arising

from a Galois connection between binary relations on a set and families of subsets of this set.

We first begin by giving a name to a binary relation between subsets of a set.
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Definition 10
An implicational syster® on a seSis a binary relation on2

¥ < 25x2S,

(X)Y) € £ will be denoted b — Y (X), and one says thaX) is animplication and thaX
impliesY (w.r.t.X).
One defines &-closed setby:

Cc S is ax-closed seif for everyXc S [Xc C andX—=Y )] = [Y<c C].
We seff(X) = Cy. = {Z-closed set€}.
Let nowC be aset systenon S (i.e. a family of subsets d§). One defines an implicational
system or§, denoted by, by :

X—=Y ([pif Yc CforeveryCe Csuch thaX c C.

We setg(C) =I¢.
Then we have the following resulie to Doignon and Koppen (1989) and Muller (1989) (see
also Doignon and Falmagne, 1999).
Theorem 11
Let (225 ) and (2% ©), be the Boolean lattices of all implicational systems and of all set

systems on S. The ordered pdjg), with f(X) = Cy andg(C) =I[(, is a Galois connection

between these two lattices.

The implicational systems closed for the associated closure opgfatoiS<2S are the so-
called full implicational systems, defined below:

Definition 12

A full implicational systems an implicational systent” satisfying the three following
properties : for all XY, Z = S

DX2Y=X=Y([)

DX=YM), Y=Z([I) =X=2(I)

IX=YD),Z=TI) = XuwZ—=YUT[D).
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On the other hand, it is easy to check that the set systems closed for the associated closure

operatorfg on 2 are the closure sytems &So, it results from the properties of a Galois
connection that:

Corollary 13

The poset of all full implicational systems 8rand the poset of all closure systems on S are

two dual lattices.

Remarks

1) In early works of Tarski (for instance Tarski, 1930, see also Martin and Pollard's book,
1996) the consequence relation ddgical deductive systern defined as a closure operator on

an infinite setS satisfying a “finitary” axiom. Other logicians (like Hertz,1929, Scott, 1974)
defined it as a binary relation between sets and, later, a one-to-one correspondence betwee
Scott's “informations systems” and “algebraiestructures” has been displayed (see Davey
and Priestley, 1990). In the finite case, this correspondence becomes exactly the one-to-one
correspondence between full implicational systems and closure systems. This last one has bee
first shown by Armstrong (1974), who, in the context of relational data bases, called a full
implicational systena full family of functional dependencies

2) Particular cases of the above duality are the well-known dualities between preorders and
topologies, and between partial orders aigetdpologies (or distributive lattices). See for
instance, Barbut and Monjardet, 1970, or Davey and Priestley, 1990. This duality between
preorders and topologies plays important roles in many situations, for instance in the study of
the structure of the (distributive) lattices of stable marriages (see Gusfield and Irving's book,
1989).

3) There exists significant results on thasesof full implicational systems (or of closure
operators)i.e. on the minimal sets of implications allowing to recover all the implications of the
system (or, equivalently, all the closed sets). In particular, the existencarasrsical basihas

been shown by Maier, 1983, and Guigues and Duquenne, 1986 (see also Caspard ant
Monjardet, 2003, where this result is presented in the context of the study of the lattice of all

closure systems).
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5.The Duality between Profiles of Preferences and Simple Games
We consider here the aggregation preference problem. There & af sdternatives, a sét of
n voters and one assumes that the preference of a voter on the altersgfivess by dinear
order (l.e. a complete partial ordekr) belonging to the sef of all linear orders oA. P = ZN
denotes the set of all possible profies (L1,...Ln) of preferences of voters. In order to define
a class of aggregation rules, we recall the notion of (monotonic) simple game.
Definition 14
A simple gam®nN is a (non-empty) sef of subsets oN satisfying:

[Te FandTc U] =[Ue &F].

We denote bysthe set of all simple games bin

Now one can associate with any simple game a preference aggregation fuacéianap from
the sefP of profiles of linear orders to the set of “collective” preference relations:

Definition 15

Thepreference aggregation function-fassociated with the simple garieis given by:
for everym e P, f& (1) = R-(x), where
forallxye A, [XRx(m)y] & [{ie N:xLy} e F].

Thus,x s collectively preferred tg according to the preference aggregation fundtionf and

only if the set of voters preferringtoy in the profilex belongs to the simple gana®. Then

R (®) is a complete and antisymmetric relation (a so-cédlechameny, but since it is not non
necessarily transitive, it is not necessarily a linear order.

Now we consider the binary relation between profiles and simple games which describes the
“good” case where the collective preference relation is tranditves a linear order.

Definition 16

Let P be the set of all profiles of linear orders &&the set of all simple games. One defines a

binary relatiorR betweerP andG by :
TRF & Rg@e L.
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Thus, one can apply the results of section 3 on the Galois connection associated to a binary

relation defined between two sets. So, there is a Galois conn@ggfjdretween the Iattices'i’z

C) and (ﬁ, <) and two dual lattices of closed setsfpandG The least elements of these two
lattices, i.e. the closed sé(QP) andg(ZG) are characterized in the below result (Monjardet,
1978).

Theorem 17

Let (f,g) be the Galois connection associated to the binary rel&idefined between the
Boolean lattices (@ C) of all sets of preference profiles ancﬁ(Z;) of all sets of simple
gamesThe least element of the Iattigé(zp) of closed sets oR is the set of profiles without
cyclical subprofilg(like, for instancexyz yzxandzxy), and the least element of the lattice @(2
of closed sets o6 is the set otiltrafilters onN, i.e. the set of simple gamesj ={T< N :i

€ T} 1 €N

This characterization result shows the duality between Guilbaud's Arrovian theorem (1952, see
also Monjardet, 2004) and Sen’s possibility theorem (1966) for profiles of linear orders: the
only preference aggregation rules defined by simple games providing a transitive collective
preference for all profiles of linear orders are the dictatorial rules, and the only profiles for
which all such rules provide always a linear order are the “value-restricted”profiles. (One will

find other results on this duality in Monjardet, 1978).

Remark

Preference aggregation functions associated with simple games are a particular case o
preference aggregation functions associated efiéictivity functionsi.e. maps (satisfying some

mild conditions) from the set of all subsets of theNstd the set of all set systems on theSet

(in the case of simple games the image of a subd¢ioéither the empty set or the set of all
non-empty subsets &. But such a map is the same than a binary relation betWeand2®

and so one can consider the Galois connection and the Galois lattice associated to this relatior
It is exactly what is made by Vannucci in several papers (1999,2002,2003) where he studies this
Galois lattice and uses it to get new “structural” representationdesidhbilty relationsor

effectivity functions.
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6.The duality between convex geometries and path-independent choice operators

We consider now a significant duality between a class of closure operators and a class of choice

operators which is not induced by a a Galois connection.

Definition 18

A closure operataos on Sis anantiexchangelosure operator if it satisfies the following two
properties:

-9(2) = 9,

-xy € o(X), xzyandy e ¢(X +x) imply xe ¢(X +y).

It is easy to check that the set of all antiexchasiggure operators df ordered by the point-
wise order between maps, is a meet-semilattice (without greatest element).
An antiexchangelosure operatosp is associated with any podet= (X, <). It associates to
any subseA of P, the set of all elements below or equal to an element of A ; forimahy =
{y e S:there existx e Awithy=<x}. We call such an antiexchange closure operatarder
closure operatgrand in particular, we call itlmear order closure operatowhenP is linearly
ordered. The closed sets of an order closure opejatme theorder ideals(called alsaown
setg of P, i.e. the subsetX of P such thay € Xandx <yimply xe S.
Definition 19
A choice operators on a seSis a map associating to any sub&etf S a non empty subset
o(A) contained imA. A choice operator igath independent it satisfies the following property:
for all A, B subsets 06

S(ALB) = o(c(A)wa(B)).

It is easy to check that the set of all path-independent choice operatgreroiered by the
pointwise order between maps, is a join-semilattice (without lowest element).

A path-independent choice operatgris associated with any podet= (X, <). It is obtained

by associating to any subsebf P the set of its maximal elements. FormadipA) = {xe A:
there does not exist existe A with x<y}. We call such a path-independent choice operator an

order choice operatgrand in particular, Bnear order choice operatoif P is linearly ordered.
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The chosen sets by an order choice operst@re theantichainsof P, i.e. the subsets d?

which do not contain two elementsindy with x<y.

It is easy to understand that the obvious one-to-one correspondence between order ideals an
antichains of a poset induce a one to one correspondence between order closure operators ai
order choice operators. But this is a particular case of a general result (Monjardet and
Raderanirina, 2001):

Theorem 20

The join-semilattice of all the path-independent choice operators on a set S is dual of the meet-

semilattice of all the antiexchang®sure operators on S.

Then, we have for instance the consequence that the representation result of any antiexchang
closure operator as a meet of linear closure operators obtained by Edelman and Saks (1988, s¢
also Matalon, 1965, P.96) is the same (under the duality) that the representation result of any
path-independent choice operator as a join of linear choice operators obtained by Aizerman anc
Malishevski (1981). Moreover the use of the duality allows to get interesting precisions on the

way to get such representations (see Monjardet and Raderanirina, 2001).

Remarks

1) The notion of path-independent choice operator introduced in Plott, 1973, have been
previously studied by Afriat (1967). Aizerman and Malishevski’'s representation result quoted
just above amounts to say that choices by such an operator can be obtained by the so-calle
“extremal choice* mechanism, where the agent collects the best choices obtained under
different -linearly ordered- criteria (see Aizerman and Aleskerov, 1995).

2) The fact that there exists a one-to-one correspondence between antiextbaunge
operators and path-independent choice operators has been independently obtained by Koshevc
(1999) and Johnson and Dean (2001). It would be interesting to find a Galois connection
inducing this correspondence.

3) The closure systems corresponding to the antiexchdogare operators are called the
convex geometriemnd are characterized by two properties: the empty set @ is closed, and for

every closed sef (# S) there existx & C such thaC w{x} is closed. Since the poset of all
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convex geometries on S (ordered by set inclusion) is dual of the meet-semilattice of all the

antiexchangelosure operators dj it is a join-semilattice isomorphic to the join-semilattice of

all path-independent choice operatorsSon

7. Conclusion

As said in our introduction order duality matters since as soon as two sets of objects are showr
be two dual posets, then any result on one of these posets can be tranferred to the other. We st
illustrate this point by a last (rather trivial) duality: the meet-semilattice of all asymmetric binary
relations on a s&is dual of the join-semilattice of all complete relations on S (by theRmap

RY= {(xy) : (vX) € R}). Then to work, for instance in social choice, with asymmetric prefences

Is totally equivalent to work with complete preferences, a fact that is not universally well

understood.
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