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Abstract

We first present the concept of duality appearing in order theory, i.e. the notions of dual isomorphism and of

Galois connection. Then we describe two fundamental dualities, the duality extension/intention associated with a

binary relation between two sets, and the duality between implicational systems and closure systems. Finally we

present two "concrete" dualities occuring in social choice and in choice functions theories.

Keywords: antiexchange closure operator, closure system, Galois connection, implicational system, Galois

lattice, path-independent choice function, preference aggregation rule, simple game.

JEL classification:  C00, D71

1. Introduction

In the index of the Encyclopaedia of Mathematics (Kluwer, 1987) the terms duality or dual

appear about 120 times.  Here we will only consider the duality occurring in order theory. Why

order duality matters ? for a very simple reason. When one can show that two sets of objects are

two dual posets, then one can automatically transfer any result on one of these posets to the

other.  We will begin by recalling the notion of dual posets and the notion of Galois connection,
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2
a useful tool to obtain dual posets. Then we will present two significant dualities obtained

through a Galois connection: the “extension/intention” duality associated to a binary relation

and the duality between implicational systems and closure systems. The first one is applied to

an example in social choice theory. The second one generalizes the well known duality between

posets and T0-topologies (or distributive lattices). We will finally present a duality between

path-independent choice functions and anti-exchange closure operators. Some other uses of

order duality are mentionned in the conclusion.

N.B. Unless explicitly stated, all the sets considered in this paper are finite.

2. Order Duality and Galois Connection

A partially ordered set (or poset) P = (X, 
�

P ) is a set X equipped with a reflexive, transitive and

antisymmetric binary relation 
�

P. Often, we shall only denote such a poset by (P, 
�

) or simply

by P. Moreover, we write x �  P  or F  �  P  rather than x �  X  or F  �  X .

The dual of the poset P = (X, 
�
 ) is the poset Pd = (X, � ), where x �  y  if and only if  y 

�
 x.

A map f from a poset P = (X, 
�

P ) to a poset Q = (Y, 
�

Q) is isotone (respectively antitone) if

x 
�

P y implies f(x) 
�

Q f(y) (respectively x 
�

P y  implies f(x) � Q f(y)).

Two posets P and Q are isomorphic if there exists an isomorphism beetwen them, i.e. a bijective

map f from P to Q which is isotone as well as its inverse f–1 (equivalently, a bijective map f from

P to Q atisfying x 
�

P y if and only if f(x) 
�

Q f(y)).

Definition 1

Two posets P and Q are dual if there exists a dual isomorphism beetwen them, i.e. a bijective

map f from P to Q satisfying x 
�

P y if and only if f(x) � Q f(y).

Observe that the posets P = (X, 
�

 ) and Pd = (X, � ) are dual since the identity map is a dual

isomorphism between them, and that P and Q are dual if and only if there exists an

isomorphism between P and Qd.

Many interesting dual posets can be obtained through a Galois connection between two posets,

a notion that we define below, after recalling the notions of closure operator and closure system.
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3
Definition 2

A closure operator � on a poset P is a map from P to itself which is isotone, extensive  and

idempotent (x �  �  (x) = � 2(x)). The fixed points of � are called the closed elements of P.

A closure sytem C on a poset P is a subset C  of P such that for each x in P, the set {y �  C : x �
y} has a least element denoted by � C(x).

It is well known that the set of all closure operators and the set of all closure systems defined on

a poset are in a one-to-one correspondence (by the two inverse bijective maps associating to a

closure operator the set of its fixed points and to a closure system the application x �  

 

 

 

� C(x)).

Definition 3

A Galois connection between two posets P and Q is an ordered pair (f,g) of maps
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satisfying the following condition:

for all x � P and y � Q,        x �  g(y) if and only if y �  f(x).

An equivalent definition uses the composite maps fog denoted by fg(fg(x) = f(g(x))) and gof

denoted by gf: (f,g) is a Galois connection if and only if the maps f and g are antitone, and the

maps fg and gf are extensive.

Now one can state the easily proved but significant result:

Theorem 4

Let (f,g) be a Galois connection between two posets P and Q. Then

1) gf is a closure operator on P and fg is a closure operator on Q ;

2) the two closure systems gf(P) on P and fg(Q) on Q are two dual posets.

One can add that g(Q) = gf(P), f(P) = fg(Q) and that the two inverse dual isomorphims between

gf(P) and fg(Q) are given by the restrictions of f and g to the two posets g(Q) and f(P).

A special case of this result occurs when P and Q are two lattices. Recall that a meet-semilattice

(respectively a join-semilattice) is a poset where any two elements x and y have a meet x� y, i.e. a
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4
greatest lower bound (respectively a join, i.e. a lowest upper bound x	 y) and that a lattice (L, 
 )
is both a meet-semilattice and a join-semilattice. Then one has:

Theorem 5

Let (f,g) be a Galois connection between two lattices L and L'. Then

1) gf is a closure operator on L and fg is a closure operator on L',

2) the two closure systems gf(L) and fg(L') are two dual lattices.

One can add that the lattice gf(L) (respectively fg(L')) is a meet-subsemilattice of L (respectively

of L') and that its least element is f(1L) (respectively g(1L')).

This result can be in particular applied when L = (2E, � ) (respectively L' = (2F, � )) is the

Boolean lattice of all the subsets of a set E (respectively of a set F) ordered by set inclusion. We

begin by recalling what becomes the definition of a closure system in the case of the lattice L =

(2E, � ). Note that we say that such a closure system is defined on E although it is in fact a

subset of 2E.

Definition 6

A closure system on E ( is a family C  of subsets of E satisfying the  two following conditions:

1) E � C,

2) C1,C2 � C  
 C1� C2 � C.

Then, (C, � ) is a lattice whose the meet operation �  is the set intersection, whereas the join

operation � is given by C1� C2 = � { C � C : C1� C2 � C � .

Remarks

1) The ("abstract") notion of Galois connection (or connexion) is due to Öre (Öre,1944).

The term Galois connection refers to the existence of such a connection (between subfields and

subgroups) in the Galois theory of equations. Before Öre, Birkhoff (1940) has considered the

("concrete") Galois connection associated to a binary relation and defined in the next section (in

fact Öre showed that any Galois connection can be obtained as such a Galois connection).

ha
ls

hs
-0

02
02

32
6,

 v
er

si
on

 1
 - 

9 
Ja

n 
20

08



5
2) Proofs of Theorems 4 and 5 can be found in, for example, Barbut and Monjardet (1970)

and Szasz (1963).

3. The Galois Connection associated with a Binary Relation and the

Extension/Intention Duality

When R is a binary relation between the two sets E and F, we say that the triple (E, F, R) is a

bigraph. The following theorem, due to Birkhoff, is an example of an easily proven but

fundamental result.

Theorem 7

Let (E, F, R) be a bigraph. One defines a Galois connection (f,g) between the lattices (2E, � ) and

(2F, � ) by setting for X � E  and Y � F

f(X) = {y � F : xRy  for every x � X}    ;    g(Y) ={x � E : xRy  for every y � Y}.

Let (X,Y) be such that X � E (respectively Y � F) is a closed set in the associated closure

system gf(2E) on E (respectively fg(2F) on F) and such that X = g(Y) (and Y = f(X)). Then, it

follows from Theorem 7 that

1) for all x � X, y � Y, xRy,

2) for all x  � X, there exists y � Y such that xRcy (i.e. (x,y) � R),

3) for all y � Y, there exists x � X such that xRcy.

These facts induce the below definition:

Definition 8

Let (E, F, R) be a bigraph. The ordered pair (X,Y), where X = g(Y) and Y = f(X) are two

corresponding closed sets in the Galois connection associated with the bigraph is called a

concept of (E, F, R). X is called the extension  (or the extent) of the concept  (X,Y) and Y is called

its intention  (or its intent).

Indeed, when E is a set of objects, F a set of attributes and R the relation "the object x has the

attribute y", a concept is a set of objects and a set of attributes such that these objects are the

only ones satisfying all these attributes and these attributes are the only ones satisfied by all
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6
these objects. So, it is not inadequate to use the traditional terms used in logic of extension and

intention.

Ordered by set-inclusion the two sets of extensions and intentions are two posets. It results

from the properties of a Galois connection between two lattices (Theorem 5) that one has the

following result:

Corollary 9

Let (E, F, R) be a bigraph. The two posets of extensions and intentions associated with the

Galois connection induced by this bigraph are two dual lattices.

Then, if one defines an “order of generality” between two concepts (X,Y) and (X’,Y’) by:

(X,Y) �  (X’,Y’) if X � X’and Y � Y’

(i.e. if the extension of the first concept is smaller and its intention bigger), one gets that the sets

of concepts (ordered by this order) is a lattice isomorphic to the lattice of extensions and dually

isomorphic to the lattice of intentions. This lattice called the Galois (or the concept) lattice of

the bigraph (E, F, R) has many applications for instance in data analysis, formal concept analysis

and knowledge representation theory (see for instance Barbut and Monjardet, 1970, Ganter and

Wille, 1999, Valtchev, 1999 or Valtchev & al, 2000).

In section 5, we will present two examples of a Galois connection associated with a bigraph,

occuring in social choice theory and game theory.

Remark

According to Barbut's result (Barbut, 1965) any lattice L can be represented as the Galois lattice

of a bigraph (see Barbut and Monjardet, 1970).

4.The Duality between Implicational Systems and Closure Systems

We consider now a fundamental duality arising from a Galois connection between binary

relations between subsets of a set and families of subsets of this set. In fact, it is a generalization

of the well-known duality between posets and T0-topologies (or distributive lattices), arising

from a Galois connection between binary relations on a set and families of subsets of this set.

We first begin by giving a name to a binary relation between subsets of a set.
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7
Definition 10

An implicational system � on a set S is a binary relation on 2S:

��� 2S� 2S.

(X,Y) � � will be denoted by X � Y (� ), and one says that (X,Y) is an implication  and that X

implies Y (w.r.t. � ).
One defines a � -closed set  by:

C � S  is a � -closed setif for every X � S, [X � C  and X � Y (� �  ! [Y � C].

We set f(� ) = C"   = { � -closed setsC}.

Let now C be a set system on S (i.e. a family of subsets of S). One defines an implicational

system on S, denoted by # C , by :

X � Y ($ C) if Y � C for every C �  C such that X %  C.

We set g(C) = # C.

Then we have the following result due to Doignon and Koppen (1989) and Muller (1989) (see

also Doignon and Falmagne, 1999).

Theorem 11

Let (22S& 2S, % ) and (22S, % ), be the Boolean lattices of all implicational systems and of all set

systems on S. The ordered pair (f,g), with f(� ) = C"  and g(C) = # C, is a Galois connection

between these two lattices.

The implicational systems closed for the associated closure operator gf on 2S� 2S are the so-

called full implicational systems, defined below:

Definition 12

A full implicational system is an implicational system $ satisfying the three following

properties : for all X, Y, Z  � S,

1) X ' Y ! X � Y (# )
2) X � Y (# ) ( Y � Z (# )  ! X � Z (# )
3) X � Y (# ) ( Z � T (# )  ! X) Z � Y) T (# ).
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8
On the other hand, it is easy to check that the set systems closed for the associated closure

operator fg on 2S are the closure sytems on S. So, it results from the properties of a Galois

connection that:

Corollary 13

The poset of all full implicational systems on S and the poset of all closure systems on S are

two dual lattices.

Remarks

1) In early works of Tarski (for instance Tarski, 1930, see also Martin and Pollard's book,

1996) the consequence relation of a logical deductive system is defined as a closure operator on

an infinite set S satisfying a “finitary” axiom. Other logicians (like Hertz,1929, Scott, 1974)

defined it as a binary relation between sets and, later, a one-to-one correspondence between

Scott's “informations systems” and “algebraic * -structures” has been displayed (see Davey

and Priestley, 1990). In the finite case, this correspondence becomes exactly the one-to-one

correspondence between full implicational systems and closure systems. This last one has been

first shown by Armstrong (1974), who, in the context of relational data bases, called a full

implicational system a full family of functional dependencies.

2) Particular cases of the above duality are the well-known dualities between preorders and

topologies, and between partial orders and T0-topologies (or distributive lattices). See for

instance, Barbut and Monjardet, 1970, or Davey and Priestley, 1990. This duality between

preorders and topologies plays important roles in many situations, for instance in the study of

the structure of the (distributive) lattices of stable marriages (see Gusfield and Irving's book,

1989).

3) There exists significant results on the bases of full implicational systems (or of closure

operators), i.e. on the minimal sets of implications allowing to recover all the implications of the

system (or, equivalently, all the closed sets). In particular, the existence of a canonical basis has

been shown by Maier, 1983, and Guigues and Duquenne, 1986 (see also Caspard and

Monjardet, 2003, where this result is presented in the context of the study of the lattice of all

closure systems).
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9
5.The Duality between Profiles of Preferences and Simple Games

We consider here the aggregation preference problem. There is a set A of alternatives, a set N of

n voters and one assumes that the preference of a voter on the alternatives is given by a linear

order (l.e. a complete partial order) L belonging to the set   of all linear orders on A. P = N

denotes the set of all possible profiles +  = (L1,...,Ln) of preferences of voters. In order to define

a class of aggregation rules, we recall the notion of (monotonic) simple game.

Definition 14

A simple game on N is a (non-empty) set of subsets of N satisfying:

 [T ,   and T -  U] .  [U ,  ].

We denote by G the set of all simple games on N.

Now one can associate with any simple game a preference aggregation function, i.e. a map from

the set P of profiles of linear orders to the set of “collective” preference relations:

Definition 15

The preference aggregation function fassociated with the simple game  is given by:

for every +  ,  P, f  (+ ) = R (+ ), where

for all x,y , A,  [xR (+ )y ]  /   [{ i ,  N : xLiy} ,  ].

Thus, x is collectively preferred to y according to the preference aggregation function f  if and

only if the set of voters preferring x to y in the profile +   belongs to the simple game . Then

R (+ ) is a complete and antisymmetric  relation (a so-called tournament), but since it is not non

necessarily transitive, it is not necessarily a linear order.

Now we consider the binary relation between profiles and simple games which describes the

“good” case where the collective preference relation is transitive, i.e. is a linear order.

Definition 16

 Let P be the set of all profiles of linear orders and G the set of all simple games. One defines a

binary relation R between P and G  by :

+  R /  R  (+ ) ,  .
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10
Thus, one can apply the results of section 3 on the Galois connection associated to a binary

relation defined between two sets. So, there is a Galois connection (f,g) between the lattices (2P,
0

) and (2G, 
0

) and two dual lattices of closed sets on P and G. The least elements of these two

lattices, i.e. the closed sets f(2P) and g(2G) are characterized in the below result (Monjardet,

1978).

Theorem 17

Let (f,g) be the Galois connection associated to the binary relation R defined between the

Boolean lattices (2P, 
0

) of all sets of preference profiles and (2G, 
0

) of all sets of simple

games. The least element of the lattice gf(2P) of closed sets on P is the set of profiles without

cyclical subprofile (like, for instance xyz, yzx and zxy), and the least element of the lattice fg(2G)

of closed sets on G is the set of ultrafilters on N, i.e. the set of simple games i = {T 1  N : i

2  T}, i  2  N.

This characterization result shows the duality between Guilbaud's Arrovian theorem (1952, see

also Monjardet, 2004) and Sen’s possibility theorem (1966) for profiles of linear orders: the

only preference aggregation rules defined by simple games providing a transitive collective

preference for all profiles of linear orders are the dictatorial rules, and the only profiles for

which all such rules provide always a linear order are the “value-restricted”profiles. (One will

find other results on this duality in Monjardet, 1978).

Remark

Preference aggregation functions associated with simple games are a particular case of

preference aggregation functions associated with effectivity functions, i.e. maps (satisfying some

mild conditions) from the set of all subsets of the set N to the set of all set systems on the set S.

(in the case of simple games the image of a subset of N is either the empty set or the set of all

non-empty subsets of S). But such a map is the same than a binary relation between 2N and 2S

and so one can consider the Galois connection and the Galois lattice associated to this relation.

It is exactly what is made by Vannucci in several papers (1999,2002,2003) where he studies this

Galois lattice and uses it to get new “structural” representations and desirabilty relations for

effectivity functions.
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6.The duality between convex geometries and path-independent choice operators

We consider now a significant duality between a class of closure operators and a class of choice

operators which is not induced by a a Galois connection.

Definition 18

A closure operator 3  on S is an antiexchange closure operator if it satisfies the following two

properties:

- 3 (Ø) = Ø,

- x,y 4 3 (X), x 5  y and y 6 3 (X + x) imply x 4 3 (X + y).

It is easy to check that the set of all antiexchange closure operators on S, ordered by the point-

wise order between maps, is a meet-semilattice (without greatest element).

An antiexchange closure operator 3 P is associated with any poset P = (X, 7  ). It associates to

any subset A of P, the set of all elements below or equal to an element of A ; formally 3 P(A) =

{ y 6 S : there exists x 6 A with y 7 x}. We call such an antiexchange closure operator an order

closure operator, and in particular, we call it a linear order closure operator when P is linearly

ordered. The closed sets of an order closure operator 3 P are the order ideals (called also down

sets) of P, i.e. the subsets X of P such that y 6 X and x < y imply x 6 S.

Definition 19

A choice operator 8  on a set S is a map associating to any subset A of S a non empty subset

8 (A) contained in A. A choice operator is path independent if it satisfies the following property:

for all A, B subsets of S

8 (A 9 B) = 8 ( 8 (A) 9 8 (B)).

It is easy to check that the set of all path-independent choice operators on S, ordered by the

pointwise order between maps, is a join-semilattice (without lowest element).

A path-independent choice operator 8 P is associated with any poset P = (X, 7  ). It is obtained

by associating to any subset A of P the set of its maximal elements. Formally, 8 P(A) = {x6 A :

there does not exist exists y 6 A with x<y}. We call such a path-independent choice operator an

order choice operator, and in particular, a linear order choice operator, if P is linearly ordered.

ha
ls

hs
-0

02
02

32
6,

 v
er

si
on

 1
 - 

9 
Ja

n 
20

08



12
The chosen sets by an order choice operator : P are the antichains of P, i.e. the subsets of P

which do not contain two elements x and y with x<y.

It is easy to understand that the obvious one-to-one correspondence between order ideals and

antichains of a poset induce a one to one correspondence between  order closure operators and

order choice operators. But this is a particular case of  a general result (Monjardet and

Raderanirina, 2001):

Theorem 20

The join-semilattice of all the path-independent choice operators on a set S is dual of the meet-

semilattice of all the antiexchange closure operators on S.

Then, we have for instance the consequence that the representation result of any antiexchange

closure operator as a meet of linear closure operators obtained by Edelman and Saks (1988, see

also Matalon, 1965, P.96) is the same (under the duality) that the representation result of any

path-independent choice operator as a join of linear choice operators obtained by Aizerman and

Malishevski (1981). Moreover the use of the duality allows to get interesting precisions on the

way to get such representations (see Monjardet and Raderanirina, 2001).

.

Remarks

1) The notion of path-independent choice operator introduced in Plott, 1973, have been

previously studied by Afriat (1967). Aizerman and Malishevski’s representation result quoted

just above amounts to say that choices by such an operator can be obtained by the so-called

“extremal choice“ mechanism, where the agent collects the best choices obtained under

different -linearly ordered- criteria (see Aizerman and Aleskerov, 1995).

2) The fact that there exists a one-to-one correspondence between antiexchange closure

operators and path-independent choice operators has been independently obtained by Koshevoy

(1999) and Johnson and Dean (2001). It would be interesting to find a Galois connection

inducing this correspondence.

3) The closure systems corresponding to the antiexchange closure operators are called the

convex geometries and are characterized by two properties: the empty set Ø is closed, and for

every closed set C (;  S) there exists x < C such that C = { x} is closed. Since the poset of all
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13
convex geometries on S (ordered by set inclusion) is dual of the meet-semilattice of all the

antiexchange closure operators on S, it is a join-semilattice isomorphic to the join-semilattice of

all path-independent choice operators on S.

7. Conclusion

As said in our introduction order duality matters since as soon as two sets of objects are shown

be two dual posets, then any result on one of these posets can be tranferred to the other. We still

illustrate this point by a last (rather trivial) duality: the meet-semilattice of all asymmetric binary

relations on a set S is dual of the join-semilattice of all complete relations on S (by the map R >
Rcd = {(x,y) : (y,x) ? R}). Then to work, for instance in social choice, with asymmetric prefences

is totally equivalent to work with complete preferences, a fact that is not universally well

understood.
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