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Uniform Payoff Security and Nash

Equilibrium in Metric Games ?

Paulo Klinger Monteiro

FGV-EPGE, Praia de Botafogo 190, sala 1103, 22250-900, RJ, Brazil

Frank H. Page Jr. 1

Department of Finance, University of Alabama, Tuscaloosa, AL 35487, USA

Abstract

We introduce a condition, uniform payoff security, for games with separable metric
strategy spaces and payoffs bounded and measurable in players’ strategies. We show
that if any such metric game G is uniformly payoff secure, then its mixed exten-
sion G is payoff secure. We also establish that if a uniformly payoff secure metric
game G has compact strategy spaces, and if its mixed extension G has reciprocally
upper semicontinuous payoffs, then G has a Nash equilibrium in mixed strategies.
We provide several economic examples of metric games satisfying uniform payoff
security.
JEL Classification: C72

Keywords: uniform payoff security, Nash equilibrium, discontinuous games, mixed
extension

1 Introduction

In his paper on Nash equilibrium in discontinuous games, Reny ([8]) intro-
duced the notion of better-reply security and showed that any game with
compact, convex strategy spaces and payoffs at least quasiconcave in each

? Monteiro acknowledges the financial support of CNPq-Brazil. Page acknowledges
the financial support and hospitality of CERMSEM, University of Paris I and finan-
cial support from the Department of Finance at the University of Alabama. Both
authors are especially grateful to two anonymous referees, and to W. Daher and
Luis Braido for many helpful comments.
1 Corresponding author: fpage@cba.ua.edu
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player’s strategy has a Nash equilibrium if, in addition, the game is better-
reply secure. 2 Moreover, Reny showed that better-reply security is implied
by two conditions, reciprocal upper semicontinuity and payoff security, both
of which are easily checked in applications. 3 Here, we show that if a game G
with separable metric strategy spaces and payoffs bounded and measurable in
players’ strategies (i.e., a metric game) satisfies uniform payoff security, then
its mixed extension G is payoff secure. 4 The payoff security of G neither im-
plies nor is implied by the payoff security of G. We present an example from
[3] of a payoff secure zero-sum game with a mixed extension that is not payoff
secure. Our result shows that if payoff security of G is strengthened to uniform
payoff security, then uniform payoff security of G does imply payoff security
of G. Uniform payoff security of G, is often times easy to check in applications
- whereas the same cannot be said for checking payoff security of the mixed
extension G.

An immediate corollary of our result is that if a compact metric game G
(i.e., a game G with compact metric strategy spaces and bounded measurable
payoffs) is uniformly payoff secure, then its mixed extension G has a Nash
equilibrium if, in addition, G is reciprocally upper semicontinuous. Another
immediate corollary is that if a compact metric game G is uniformly payoff
secure and upper semicontinuous, then its mixed extension G has a Nash
equilibrium. The example of [3] is reciprocally uppersemicontinuous and has
no Nash equilibrium in mixed strategies. In contrast uniformly payoff secure
zero-sum games have Nash equilibrium in mixed strategies.

2 Metric Games

A metric game,

G = (Xi, ui)
N
i=1 ,

consists of N players indexed by i, where each player has a separable metric
strategy space Xi and a bounded measurable payoff function

ui : X → R.

2 A game is said to be better-reply secure if for every nonequilibrium strategy,
x∗, and every payoff vector limit u∗, generated by strategies approaching x∗ some
player has a strategy yielding a payoff strictly above u∗i even if other players deviate
slightly from x∗.
3 Stated loosely, a game is reciprocally upper semicontinuous if, whenever some
player’s payoff jumps down, some other player’s payoff jumps up (see [4], [8] and
[9]). Reciprocal upper semicontinuity is implied by upper semicontinuity (but the
converse does not hold in general).
4 See Definition 2 below.
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Here X :=
∏N

i=1Xi. We shall denote by X−i the Cartesian product
∏

j 6=iXj.

The metric game G = (Xi, ui)
N
i=1 is upper semicontinuous if the payoff func-

tions ui(·) are upper semicontinuous on X.

If G is a metric game and Mi is the set of Borel probability measures on Xi,
1 ≤ i ≤ N we define

Ui (µ) =
∫

X
ui (x) dµ (x) , µ = (µ1, . . . , µN) ∈M :=

N∏
i=1

Mi

The set Mi is a separable metric space for the weak∗ convergence of mea-
sures. 5

The metric game,
Ḡ = (Ui,Mi)

N
i=1 ,

is the mixed extension of the game G.

3 Uniform Payoff security

Let G = (Xi, ui)
N
i=1 be a metric game.

Definition 1 (Payoff Security) The game G is payoff secure if for every x =
(xi, x−i) ∈ X and ε > 0 there is for each player i a strategy x̄i ∈ Xi and a
neighborhood N (x−i) ⊂ X−i of x−i such that

y ∈ N (x−i) ⇒ ui (x̄i, y) ≥ ui(xi, x−i)− ε.

Thus, a game G is payoff secure if starting at any strategy profile x =
(xi, x−i) ∈ X each player has a strategy x̄i ∈ Xi he can move to in order
to secure a payoff of ui (xi, x−i)−ε against deviations by other players in some
neighborhood of x−i ∈ X−i (i.e., for each strategy profile x = (xi, x−i) ∈ X
each player has a strategy x̄i ∈ Xi that provides security at that profile).

Definition 2 (Uniform Payoff Security) The game G is uniformly payoff se-
cure if for every xi ∈ Xi and every ε > 0 there is for each player i a strategy
x̄i ∈ Xi such that for every y ∈ X−i there exists a neighborhood N (y) of y
such that

z ∈ N (y) ⇒ ui (x̄i, z) ≥ ui (xi, y)− ε.

Thus, a game G is uniformly payoff secure if each player starting at any
strategy xi ∈ Xi has a strategy x̄i ∈ Xi he can move to in order to secure a

5 See [2] Theorem 14.12.
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payoff of ui (xi, y)−ε against deviations by other players in some neighborhood
of y ∈ X−i for all strategy profiles y ∈ X−i (i.e., for each player i and each
strategy xi ∈ Xi there is a strategy x̄i ∈ Xi that provides security for all y).

4 Examples

Let us give a few economic examples of uniformly payoff secure metric games.
We begin by considering a complete information, all-pay auction.

Example 1 (all-pay auction) There are N bidders, indexed by i ∈ I :=
{1, 2, . . . , N} , competing for a object with a known value equal to 1. The high-
est bidder wins and every bidder pays his bid. Ties are broken randomly with
equal probabilities. Thus, if bids are given by the N-tuple

b = (b1, b2, . . . , bN) ∈ [0, 1]N ,

the winning bid is given by

b∗ = maxj≤Nbj.

Let H = {i ∈ I : bi = b∗} denote the set of bidders whose bid equals the
winning bid, b∗. Bidder i’s payoff is then given by

ui(b) =


1
|H| − bi if bi = b∗;

−bi if bi < b∗,

where |H| is the number of bidders whose bid equals b∗. This sealed bid auction
game is uniformly payoff secure. To prove this suppose ε > 0 and b ∈ [0, 1]N .
There are 3 cases to consider:

a. bi = 0. In this case let b̄i := ε. Suppose first that b̄i 6= 0. Since ui(b) =
0 and the maximum that a bid loses is his payment, then for every b−i,
ui(b̄i, b

′
−i) ≥ −b̄i = −ε = ui(b) − ε. Now if b−i = 0 then ui(0) = 1

N
and

ui(b̄i, b
′
−i) = 1− ε for any b′−i in a ε neighborhood of 0.

b. 1 > bi > 0. Here increasing his bid to b̄i = bi+min{ε, 1−bi}, provides bidder
i with uniform security: Thus if b∗ ≤ bi we choose N (b) = {b′−i; maxj 6=i b

′
j <

b̄i}. If b∗ > bi,N (b) = {b′−i; maxj 6=i b
′
j > bi}.

c. 1 = bi. In this case, bidder i’s payoff is 0 or negative. Thus, if b̄i = 0 bidder
i’s payoff is secure in any neighborhood of b−i for any b−i.

Remark 1 It is easy to check that the example above has no pure strategy
equilibria (e.g., see Baye, Kovenock, and de Vries [1] for a detailed treatment
of complete information, all-pay auctions). It is also easy to check that the
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sum of bidders’ payoffs is continuous. Thus, the all-pay auction game above is
reciprocally upper semicontinuous.

We now present an auction example with incomplete information.

Example 2 (sealed-bid, first-price auction) Consider two bidders com-
peting for an object in a sealed-bid, first-price auction. Letting x denote bid-
der 1’s valuation and y bidder 2’s valuation, suppose the joint distribution of
(x, y) ∈ [0, 1]2 is given by

f (x, y) =
θ + 1

2

(
xθ + yθ

)
for θ > −1.

Note that this density is not affiliated (this density is taken from example 2
in Monteiro and Moreira (2005)). Letting bidder 1’s and bidder 2’s strategy
spaces be given by

X1 = X2 = C[0, 1] := {b(·) : [0, 1] → R+ , b(·) is continuous} ,

payoffs are then given by

u1 (b1, b2) =
∫
[0,1] (x− b1 (x))

(
E

[
I[b2(y)<b1(x)]|x

]
+

E[I[b2(y)=b1(x)]|x]
2

)
f1 (x) dx

and

u2 (b1, b2) =
∫
[0,1] (y − b2 (y))

(
E

[
I[b1(x)<b2(y)]|y

]
+

E[I[b2(y)=b1(x)]|y]
2

)
f2 (y) dy,

where f1 (x) =
∫
[0,1] f (x, y) dy and f2 (y) =

∫
[0,1] f (x, y) dx are the marginal

densities. Here,

E
[
I[b2(y)<b1(x)]|x

]
+
E

[
I[b2(y)=b1(x)]|x

]
2

is bidder 1’s conditional probability of winning or tying given that his valuation
is x (similar remarks apply to the corresponding expression for bidder 2). For
example, written out explicitly, given bidder 1’s conditional density

h(y | x) =
f(x, y)

f1 (x)
=

(θ + 1)(xθ + yθ)

(θ + 1)xθ + 1
,

E
[
I[b2(y)<b1(x)]|x

]
=

∫
[0,1]

I[b2(y)<b1(x)](x, y)h(y | x)dy,

is bidder 1’s condition probability of winning given valuation x. Here,

I[b2(y)<b1(x)](x, y) =

 1 if b2(y) < b1 (x)

0 otherwise.
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A Nash equilibrium for this auction game G = (Xi, ui)
2
i=1 is a pair of bidding

functions (b1 (·) , b2 (·)) ∈ X1 ×X2. Equipped with the sup metric given by

d (b′, b′′) = sup
0≤x≤1

|b′ (x)− b′′ (x)| ,

this metric game is uniformly payoff secure. 6

Remark 2 The auction game above is neither upper semicontinuous nor re-
ciprocally upper semicontinuous. However, given uniform payoff security, it is
possible to show that this auction game is better reply secure.

The next example is taken from Carbonell-Nicolau and Ok (2005).

Example 3 (electoral competition) Carbonell-Nicolau and Ok consider a
zero-sum, two-party voting game in which each party - whose objective is to
maximize the net plurality - proposes a tax function from a given set of admis-
sible tax functions (that raise an exogenously given amount of revenue) and
voters vote selfishly for the tax function that taxes them less. The population
of voters have incomes x ∈ [0, 1] distributed according to a continuous and
strictly increasing function F : [0, 1] → [0, 1]. The income distribution F is
right-skewed, that is,

F−1
(

1

2

)
< mF :=

∫ 1

0
xdF (x) .

A tax function t(·) ∈ T is a continuous function t : [0, 1] → [0, 1] such that
t(x) ≤ x, t is increasing, and x − t(x) is increasing. A tax function t(·) ∈ T
is admissible if ∫ 1

0
t(x)dF (x) ≥ r,

where r is the exogenously given required revenue. Letting T(F,r) denote the set
of admissible tax functions, T(F,r) is a compact subset of the metric space C[0, 1]
of continuous functions defined on [0, 1] equipped with the sup metric (see
Lemma 2 in Carbonell-Nicolau and Ok (2005)). If t and τ are tax functions
offered by party 1 and party 2 respectively, the share of individuals that strictly
prefer party 1’s tax proposal t over party 2’s tax proposal τ is given by

ω (t, τ) =
∫
[t<τ ]

dF = Pr (t < τ) .

If the objective of each party is to maximize the net plurality, then party 1’s
payoff function is given by

u1 (t, τ) = ω (t, τ)− ω (τ, t) ,

6 It is well-know that under the sup metric C[0, 1] is a complete metric space. It is
also separable (see [2] Lemma 3.85).
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while party 2’s payoff function is given by

u2 (t, τ) = −u1 (t, τ) = ω (τ, t)− ω (t, τ) .

The metric game G = (Xi, ui)
2
i=1, with X1 = X2 = T(F,r) and payoff functions

ui as defined above, is a compact metric game. In their proof of Lemma 3,
Carbonell-Nicolau and Ok show that for any t ∈ T(F,r) there exists a tax profile
tε ∈ T(F,r) such that for τ ∈ T(F,r) there is a neighborhood N (τ) of τ such that

f ∈ N (τ) ⇒ ω (tε, f)− ω (f, tε) > ω (t, τ)− ω (τ, t)− ε.

This is uniform payoff security. Thus, the zero-sum, compact metric game,
(T(F,r), u1, u2) of tax competition is uniformly payoff secure.

Our final example is taken from [7].

Example 4 (catalog games) Page and Monteiro (2003) consider a com-
mon agency contracting game in which firms compete for the business of an
agent of unknown type t ∈ T , where T is a Borel space. Types are distributed
according to a probability measure µ defined on B(T ), the Borel σ-field in T .
Suppose now that there are two firms, indexed by i or j = 1, 2, and that firms
compete simultaneously in prices and products (broadly defined). Let X be a
compact metric space representing the set of all products each firm can offer
and let D =

[
0, d̄

]
be the set of prices that can be charged. We will assume that

X contains an element 0 which denotes no contracting. We will also assume
that the agent can only contract with one firm or can choose to abstain from
contracting altogether. Let Xi be a closed subset of X and let

Ki := Xi ×D

be the feasible set of products and prices that firm i = 1, 2 can offer. In order
to allow for the possibility that the agent chooses to abstain from contracting
altogether, we will assume that there is a fictitious firm i = 0 with feasible set
products and prices given by 7

K0 := {(0, 0)}

Firms compete, by offering the agent a non-empty, closed subset Ci ⊂ Ki,
i = 0, 1, 2, of products and prices called a catalog. 8 Thus each firm’s strategy
space is given by Pf (Ki), the compact metric space of catalogs equipped with
the Hausdorff metric ([2], section 3.15). A type t agent who chooses (i, x, p),
(x, p) ∈ Ci has utility vt (i, x, p) = 0 if i = 0 and has utility vt (i, x, p) =
ut (i, x)−p if i = 1, 2. In [7] it is assumed that utility is measurable in type t and

7 Thus, the agent chooses to abstain from contracting by choosing to contract with
firm i = 0.
8 Fictitious firm i = 0, of course, can only offer catalog K0 = {(0, 0)} .
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continuous in contract choice (i, x, p). If firms offer catalog profile (C1, C2),
then the agent’s choice set is given by

Γ (C1, C2) = {(i, x, p) : (x, p) ∈ Ci, i ∈ {0, 1, 2}} ,

and the agent’s choice problem is given by

max {vt (i, x, p) ; (i, x, p) ∈ Γ (C1, C2)} .

Letting

v∗ (t, C1, C2) = max {vt (i, x, p) ; (i, x, p) ∈ Γ (C1, C2)} ,

and

Φ (t, C1, C2) = {(i, x, p) ∈ Γ (C1, C2) ; vt (i, x, p) = v∗ (t, C1, C2)} ,

the function v∗ (t, ·, ·) specifies a type t agent’s induced preferences over cat-
alogs, while the correspondence Φ (t, ·, ·) is the type t agent’s best response
mapping. 9 The jth firm’s profit function is given by

πj (i, x, p) = (p− cj (x)) Ij(i)

where the cost function cj (·) is bounded and lower semicontinuous and where

Ij(i) =

 1 if i = j

0 if i 6= j.

Letting

π∗j (t, C1, C2) := max {πj (i, x, p) : (i, x, p) ∈ Φ (t, C1, C2)} ,

firm j’s expected payoff under catalog profile (C1, C2) is given by

Πj (C1, C2) =
∫

T
π∗j (t, C1, C2) dµ (t) , j = 1, 2.

The catalog game, G = (Pf (Ki),Πi)
2
i=1, is an upper semicontinuous, compact

metric game. It is proved in Theorem 5, page 96 of [7] that this game is
uniformly payoff secure.

9 It is shown in [7] that the induced utility function is measurable in types and
continuous in catalog profiles, while the best response mapping is jointly measurable
in types and catalog profiles and upper semicontinuous in catalog profiles.
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5 Main Result

Before proving that a uniformly payoff secure game has a payoff secure mixed
extension we present an example 10 of a payoff secure game with a mixed
extension that is not payoff secure. And even more can be said: the mixed
extension does not have a Nash equilibrium.

Example 5 (Carmona(2005)) There are two players. The set of strategies
is Xi = [0, 1]. The game is zero-sum and the payoff of player 1 is

u (x, y) =



1 if y ∈ [0, x)

0 if y = x or y = x+ 1
2

−1 if x < y < x+ 1
2

1 if x+ 1
2
< y ≤ 1.

To show that the game is payoff secure note that since u (x, z) is continuous
for z 6= x and z 6= x + 1

2
it is automatically payoff secure in this region.

Suppose now that y = x. Just define x̄ = x + ε if x < 1, ε < 1 − x. If x = 1
the payoff is secure in any neighborhood of y. Suppose now that y = x+ 1

2
. In

this case to increase x is not a good idea. However if we decrease x everything
is fine. If x = 0 then choose x̄ = 1. An analogous reasoning shows that the
payoff is secure for player 2. We now show that the mixed extension is not
payoff secure. Let λ∗1 = δ0 and λ∗2 = 2

3
δ1 + 1

3
δ1/2. Thus u (λ∗) = 2

3
. Suppose

we could secure the payoff with λ̄1 and the neighborhood W 3 λ∗−i. Thus if
νn := 2

3
δ1 + 1

3
δ1/2−1/n → λ∗2 we have that νn ∈ W for n large enough. Thus

u
(
λ̄1, νn

)
≤ λ̄1 (0)

1

3
+λ̄1

(
(0,

1

2
]
)

1

3
+λ̄1

(
1

2

)
0+λ̄1

(
(
1

2
, 1

) −1

3
+λ̄1 (1)

1

3
<

2

3
.

We now proceed with the main result.

Theorem 1 If a game G is uniformly payoff secure, then its mixed extension
Ḡ is payoff secure.

Before going into the proof we need the following:

Lemma 1 Let Z be a topological space. If v : Z → R is bounded then there
exists a lower semicontinuous function φ : Z → R such that if v ≥ φ and if
v ≥ g and g is lower semicontinuous then φ ≥ g.

10 We thank W. Daher for bringing [3] to our attention
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Proof of Lemma 1: Let

L = {g : Z → R : v ≥ g and g is lower semicontinuous} .

This set is non-empty since the constant function inf v (Z) belongs to L. Now
if we define φ (z) = sup {g (z) ; g ∈ L} we have that φ is lower semicontinuous
since it is the pointwise supremum of lower semicontinuous functions ([2],
Lemma 2.38, page 42).

The function φ is called the lower semicontinuous hull of v. We now prove
theorem 1.

Proof of Theorem 1: Suppose λ∗ = (λ∗1, . . . , λ
∗
N) ∈ M is a vector of mixed

strategies. Suppose also that ε∗ > 0 is given. We have to find a mixed strategy
λ′i and a δ > 0 such that

d∗−i

(
λ−i, λ

∗
−i

)
< δ ⇒

∫
X
ui (xi, y) dλ

′
i (xi) dλ−i (y) ≥

∫
X
ui (x) dλ

∗ (x)− ε∗,

where d∗−i denotes the metric on M−i. To proceed, let ε = ε∗

2
. Since λ∗i is a

probability measure there exists a x̃i ∈ Xi such that∫
X−i

ui (x̃i, y) dλ
∗
−i (y) ≥

∫
X
ui (xi, y) dλ

∗
i (xi) dλ

∗
−i (y) = Ui(λ

∗). (1)

We now apply the uniform payoff security property to find for the given x̃i a
x̄i ∈ Xi such that for every y ∈ X−i there exists a neighborhood N (y) of y
such that

z ∈ N (y) ⇒ ui (x̄i, z) ≥ ui (x̃i, y)− ε. (2)

Let φ(·) be the lower semicontinuous hull of ui (x̄i, ·) . Since φ(·) is lower semi-
continuous,

∫
X−i

φ(y)dµ−i(y) is lower semicontinous in µ−i ([2], Theorem 14.5,
page 479). Thus there is a neighborhood N (λ∗−i) of λ∗−i such that for every
µ−i ∈ N (λ∗−i), ∫

X−i

φ(y)dµ−i(y) >
∫

X−i

φ(y)dλ∗−i(y)− ε.

Therefore,∫
X−i

ui (x̄i, y) dµ−i(y) ≥
∫

X−i

φ(y)dµ−i(y) >
∫

X−i

φ(y)dλ∗−i(y)− ε (3)

For each y ∈ X−i define the function

ψy : X−i → R

as follows:

ψy (z) =

ui (x̃i, y)− ε if z ∈ N (y)

inf ui(X) if z /∈ N (y).
(4)

10
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Thus, for all y ∈ X−i, ψ
y is lower semicontinuous with ui (x̄i, x) ≥ ψy (x) for

x ∈ X−i. Because φ is the lower semicontinous hull of ui (x̄i, ·), it is true that
for all x ∈ X−i

φ (x) ≥ sup
y
ψy (x) ≥ ψx (x) = ui (x̃i, x)− ε. (5)

Given (3) and (5) we have

∫
X−i

ui (x̄i, y) dµ−i(y) ≥
∫
X−i

φ(y)dµ−i(y) >
∫
X−i

φ(y)dλ∗−i(y)− ε

≥
∫
X−i

(ui (x̃i, y)− ε) dλ∗−i(y)− ε

=
∫
X−i

ui (x̃i, y) dλ
∗
−i(y)− 2ε

≥
∫
ui (x) dλ

∗ (x)− ε∗.


(6)

The last inequality in (6) follows from (1). Thus, the mixed extension Ḡ is
payoff secure.

Remark 3 The use of the lower semicontinuous hull together with the func-
tion ψy (·) defined in (4) allows us to greatly streamline the proof that for
metric games uniform payoff security implies payoff security of the mixed ex-
tension. In an earlier version of this paper we showed that for compact metric
games uniform payoff security implies payoff security of the mixed extension.
The proof of our earlier result was longer and relied on compactness and known
results about weak convergence of probability measures. Here, using the lower
semicontinuous hull and the function ψy (·) we obtain a more general result
with a much shorter proof. Reny ([8]) uses the lower semicontinuous hull of
the payoff function in his proof of Theorem 3.1(see p. 1036), and Carbonell-
Nicolau and Ok (2005) use the lower semicontinuous hull of the payoff function
in their proof of Lemma 3 (p. 23). 11

6 A Corollary on Existence

The following corollary is an immediate consequence of Theorem 1 above and
Corollary 5.2 in [8].

Corollary 1 Suppose that G = (Xi, ui)
N
i=1 is a compact metric game. If G is

uniformly payoff secure and G is reciprocally upper semicontinuous, then G
possesses a mixed strategy Nash equilibrium.

11 We thank the referees for drawing our attention to the paper by Carbonell-Nicolau
and Ok (2005), and for suggesting ways to shorten our proof.
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If G is upper semicontinuous, then G is also upper semicontinuous - and
therefore reciprocally upper semicontinuous. Thus, it follows from the Corol-
lary that if G is uniformly payoff secure and upper semicontinuous, then G
possesses a mixed strategy Nash equilibrium. The catalog game discussed in
example 4 is an example of an upper semicontinuous, compact metric game.
Thus, it follows from the Corollary above that catalog games possess mixed
strategy Nash equilibria (also see Theorems 4, 5, and 6 in [7]).
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