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Comparison of experts in the
non-additive case

Lefort Jean-Philippe∗

Résumé

Le modèle de comparaison d’experts proposés par E. Lehrer (”Comparison of ex-
perts JME 98”) est adapté dans un contexte d’incertain non modélisable par l’espérance
d’utilité. Nous examinons ce que deviennent les résultats de Lehrer dans ce nouveau
contexte. Contrairement à l’espérance d’utilité, il y a plusieurs manières de définir les
stratégies qui permettent de comparer les experts, nous en proposons quelques une qui
assurent une valeur positive à l’information.

Mots clés: Préférences non additives, experts.

Abstract

We adapt the model of comparisons of experts initiated by Lehrer (”Comparison of
experts JME 98”) to a context of uncertainty which cannot be modelised by expected
utility. We examine the robustness of Lehrer results in this new context. Unlike expected
utility, there exist several ways to define the strategies allowing to compare the experts,
we propose some of them which guarantee a positive value of information.
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Comparison of experts in the non-additive
case

Jean-Philippe Lefort
Cermsem Université de Paris 1

lefort1@caramail.com

1 Introduction

For a few years, using non-additive theories to represent uncertainty has been
the matter of a growing interest. In economic theory, more and more issues
which include uncertainty, so far modeled by probability measures, have been
revisited with non-additive models.
In this paper we extend the work of Ehud Lehrer "Comparison of experts"

[12] in a non-additive framework. More precisely, we adopt exactly the model
of Lehrer, but instead of probability measures (i.e. additive functionals), we
consider Knightian uncertainty represented by non-additive functionals.
As in Lehrer, a decision maker facing uncertainty is informed about some

event containing the real state of nature. Based on this information, a ratio-
nal decision maker selects a strategy which maximises his functional (if such
a strategy exists, which we suppose).
In case where the real functional is unknown to the decision maker, he may

resort to the advice of an expert. An expert suggests a certain functional,
say I 0, as the real one. If the decision maker takes the advice of the expert,
he chooses a policy which maximises his expected utility. It may happen
that more than one expert is available. We compare expert I and expert
II holding two functionals I 0 and I 00 respectively. Expert I claims that he
is more knowledgeable than expert II in the following sense: whatever the
utility function and the action set are, it is always better, with respect to the
real functional I, to choose the optimal policy according to I 0 rather than
according to I 00.
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Our mathematical result is similar but generally not quite the same as
Lehrer where expert I is better than expert II if and only if I 0 is a convex
combination of I and I 00: roughly speaking when I 0 is smaller than I it must
be a convex combination of I and I 00 and when it is greater it is also a convex
combination but the two coefficients of convexity, one for greater and one for
smaller, may be different.
A popular non-additive functional is the Choquet integral (see Schmeidler

89 [15]) which defines an integral according to a capacity v instead of a
probability measure m. We pay special attention to what becomes our result
in this special case where the non-additive functionals are Choquet integrals.
It turns out that expert I can be more knowledgeable than expert II but v0

is not a convex combination of v and v00.
We look for situations in which "more knowledgeable" means "convex

combination": that is the case for capacities which are distortions of a given
probability as for Yaari’s model (see Yaari 87 [18]).
As for measures, the following situation may happen: to foster the advice

of expert II might be better than to foster the one of expert I, although v0 is
closer, in a geometric sense, to v than v00. Lehrer refers to this phenomenon
as "doing the right thing for the wrong reason". Not as for measures even
for non-atomic capacities, being closer, as defined by Lehrer (see theorem 2
in Lehrer [12]), does not guarantee v0 to be a convex combination of v and
v00.
In the last part we deal with updating the preferences: the decision maker

updates his functional according to the atom of the partition which he knows
to have occured. We suggest three methods which are all equivalent to the
maximisation of expectation in the additive case with the Bayes rule. Let
us recall that updating in the non-additive case has been a major topic in
non-additive measure theory (see e.g. Gilboa and Schmeidler 93 [9], Grant,
Eichberger and Kelsey [4] or Wang [17] for Choquet integral, Hanany and
Klibanoff [10] for maximin expected utility, Maccheroni, Marinacci and Rus-
tichini [14] or Lehrer [13] in a very general framework).
We propose a first method, taking into account updating, in which the

D.M associates to each atom of the partition an optimal action for the func-
tional updated according to that atom. Then we define "more knowledge-
able" such as the expert I’s optimal action, for each atom of each partition,
is always better than the one of expert II according to the real functional
updated according to the atom. That is equivalent, for each atom of each
partition, to : the updated functionals satisfy the same condition as described
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above for maximisation of expectation. With probability and Bayesian up-
dating when the unconditional functionals satisfy that condition, so do the
updated functionals. It is no more true in the non-additive case with most
of the known updating rules. However there is an exception : f -bayesianism
of Gilboa and Schmeidler 93 [9] provided one uses the same f for all the
functionals.
That method (comparing each atom) does not provide a "global" value

which could be considered as a value of information ; we propose a unique
expression to maximise, for which "more knowledgeable" is equivalent to the
method described above where we consider each atom.
However that expression does not necessarily give a positive value of infor-

mation, so we look for an updating rule for which maximising each updated
functional gives the same strategy as the one given by the maximisation of
the functional without updating. Thus it does guarantee a positive value of
information. We show that it is possible with f -bayesianism provided the
"good" f is selected.

2 Model

Let Ω be the set of states of nature, Σ be the σ−algebra of events on Ω.
Following Aumann (74) [1], the information is modeled by a partition P i.e.
a finite set of pairwise disjoint elements of Σ, the union of which is Ω. P
denotes the set of partitions of Ω with respect to Σ. If ω occurs, the D.M.
knows the atom of the partition P that contains ω. He cannot distinguish
two different states in the same atom of the partition P. Let C denote an
atom of P. Let A be a set of actions. We assume there is a bounded utility
u : A×Ω→ R. A strategy is an element of S = {s : Ω→ A}.
If the D.M. has the information P , his strategy would be measurable with re-
spect to P . The P -measurable strategies are called P -strategies and denoted
as a set by SP . (P,A, u) is called an information structure for (Ω,Σ).

Example 1 Ω = {R,Y,B}, Σ = P(Ω), A = {a, b}
The utility is given in the following table:

u a b
R 0 1
Y 2 1
B 1 2

The information is the following partition: P = {R} ∪ {Y,B}.

3

ha
ls

hs
-0

01
30

45
1,

 v
er

si
on

 1
 - 

12
 F

eb
 2

00
7



So the D.M. has to choose among the strategies
SP = {a, b, a/{R} + b/{Y,B}, b/{R} + a/{Y,B}}

F = {X : Ω → R} is the set of functions measurable with respect to Σ
from Ω to R.
For C ∈ Σ and X ∈ F , X/C denotes the restriction of X to C.
Let E ∈ Σ, E∗ denotes the indicator function of E (∀ω ∈ Ω, E∗(ω) = 1 if
ω ∈ E and 0 else).
Instead of using Savage model of expected utility computed with a probabil-
ity measure as Lehrer [12] did, we consider that the uncertainty is modeled
by a functional I from F to R. That functional is unknown to the decision
maker. Note that to define a functional is equivalent to define a preference
relation ¹ on F with X ¹ Y ⇔ I(X) ≤ I(Y ).
A well-known example, that we use, is the model of Schmeidler [15] which
uses a capacity v instead of a measure m and the Choquet integral as func-
tional.

3 Maximising the expectation

3.1 Generalities

This first method deals only with the unconditional preferences. We call it
MK, for More Knowledgeable. When the D.M. gets a functional J , he selects
a strategy sP that maximises the expectation according to J :
sP = arg max

sP∈SP
J(u(sP (ω), ω)).

Expert I sells a functional I 0 that leads to a strategy s0P .
Expert II sells a functional I 00 that leads to a strategy s00P .
The functional J will be used to denote any functional (i.e. I as well as I 0

or I 00).

Definition 1 Expert I is more knowledgeable than expert II if for all (P, u,A),
I(u(s0P (ω), ω)) ≥ I(u(s00P (ω), ω)) i.e. s

0
P is always better than s00P according to

the real functional I for any information structure.

Proposition 1 The following assertions are equivalent:
(i) Expert I is more knowledgeable than expert II.
(ii) ∀X ∈ F ,∀Y ∈ F, I 0(X) ≥ I 0(Y ) and I 00(X) ≤ I 00(Y )⇒ I(X) ≥ I(Y ).
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Proof. Let us assume (i).
Let X ∈ F , Y ∈ F such that I 0(X) ≥ I 0(Y ) and I 00(X) ≤ I 00(Y ).
We can consider any partition, e.g. the coarsest, P = {Ω}.
Like in Gilboa and Lehrer, A = {X,Y }, u(X,ω) = X(ω)
and u(Y, ω) = Y (ω). We get s0P = X and s00P = Y. So from (i) we have
I(X) ≥ I(Y ).
Let us assume now (ii).
For any information structure (P,A, u), X(ω) = u (s0P (ω), ω)
and Y (ω) = u (s00P (ω), ω). (ii) implies I(X) ≥ I(Y ).
So expert I is more knowledgeable than expert II.

Remark 1 When there are several optimal strategies, we do not precise how
one is selected. We will see in the proof of proposition 2 why we do not
consider it as a problem.

Remark 2 Proposition 1 is a kind of restatement of the model in terms of
preferences. When, for two acts expert I and expert II disagree, the true
functional must rank those two acts in the same order as expert I. The true
functional represents preferences unknown to the D.M., the experts give to
him functionals that represent preferences allowing to guess that unknown
preference.

Now we make assumptions on the functionals which will hold all along
this paper.
We consider constant additive and positively homogenous functionals:
∀X ∈ F , ∀λ ∈ R+, J(λX) = λJ(X),∀c ∈ R, J(X + c) = J(X) + c.
We have therefore:

Proposition 2 The following assertions are equivalent:
(i) Expert I is more knowledgeable than expert II.

(iii) ∃α ∈ [0, 1],∃β ∈ [0, 1], ∀X ∈ F , I(X) ≤ I 0(X)⇒
I 0(X) = αI(X) + (1− α)I 00(X)
and I(X) ≥ I 0(X)⇒ I 0(X) = βI(X) + (1− β)I 00(X).

Remark 3 We will write I 0(X) = αI(X)+ (1−α)I 00(X) strictly if we don’t
have I 0(X) = I(X) = I 00(X).
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Proof. Let assume (iii).
Let X ∈ F , Y ∈ F such that I 0(X) ≥ I 0(Y ) and I 00(X) ≤ I 00(Y ) (1)
Let us prove I(X) ≥ I(Y ).
1) Let us assume I 0(X) ≥ I(X) (i.e. I 0(X) = αI(X) + (1− α)I 00(X)).
1st case: I 0(Y ) ≥ I(Y ) (i.e. I 0(Y ) = αI(Y ) + (1− α)I 00(Y )).
Either α 6= 0 and

I(X) =
1

α
I 0(X)− 1− α

α
I 00(X) ≥ 1

α
I 0(Y )− 1− α

α
I 00(Y ) = I(Y )

so I(X) ≥ I(Y ).

Or α = 0 and I 0(X) = I 00(X), I 0(Y ) = I 00(Y ),
so from (1) I 0(X) = I 00(X) = I 0(Y ) = I 00(Y ).
Actually in this case we can say expert I has the same forecast than expert
II, so we can say that expert I is more kowledgeable (as the "more" is not
strict).
2nd case: I 0(Y ) ≤ I 00(Y ) (i.e. I 0(Y ) = βI(Y ) + (1− β)I 00(Y )).
We have I 00(Y ) ≤ I 0(Y ) ≤ I(Y ) and I(X) ≤ I 0(X) ≤ I 00(X).
As I 0(X) ≥ I 0(Y ) we have I 00(Y ) ≤ I 0(Y ) ≤ I 0(X) ≤ I 00(X).
So I 00(Y ) ≤ I 00(X). And so I 00(Y ) = I 0(Y ) = I 0(X) = I 00(X).
We are exactly in the situation as above and we can always say expert I is
more knowledgeable.

2) Now, let us assume I 0(X) ≤ I(X) (i.e. I 0(X) = βI(X) + (1− β)I 00(X)).
1st case: I 0(Y ) ≤ I(Y ).
We are in the same case as above and so we have I(X) ≥ I(Y ).
2nd case: I 0(Y ) ≥ I(Y ) (i.e. I 0(Y ) = αI(Y ) + (1− α)I 00(Y )).
We have I(Y ) ≤ I 0(Y ) ≤ I 00(Y ) , I 00(X) ≤ I 0(X) < I(X).
I 0(X) ≥ I 0(Y ) so I(Y ) ≤ I 0(Y ) ≤ I 0(X) < I(X).
So I(Y ) ≤ I(X).
In any case we verify (ii).

To prove the converse, let us suppose (iii), the contrary of (iii).
1) Either ∃Z ∈ F ,∃α /∈ [0, 1] such that I 0(Z) = αI(Z) + (1− α)I 00(Z).
2) Or ∃W ∈ F ,∃Z ∈ F ,∃α ∈ [0, 1] ,∃β ∈ [0, 1] such that I(Z) ≤ I 0(Z)⇐⇒
I(W ) ≤ I 0(W ) and I 0(Z) = αI(Z) + (1− α)I 00(Z) and
I 0(W ) = βI(W ) + (1− β)I 00(W ).

To prove (ii), let us construct X ∈ F and Y ∈ F such that
I 0(X) > I 0(Y ), I 00(X) > I 00(Y ) and I(X) < I(Y ).

6
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1st case: ∃Z ∈ F I 0(Z) /∈ [I(Z), I 00(Z)].
Let us suppose I 0(Z), I(Z) and I 00(Z) follow this ranking:
I 0(Z) < I(Z) ≤ I 00(Z).
Let f an affine function such that f(I 0(Z)) < 0; f(I(Z)) > 0 and
f(I 00(Z)) > 0 with f(x) = ax+ b.
Let X = Z and Y = (1 + a)Z + b.
We obtain the desired inequalities: I 0(X) > I 0(Y ), I 00(X) > I 00(Y ) and
I(X) < I(Y ).
According to the ranking of I 0(Z), I(Z) and I 00(Z) with the same method
we can obtain X and Y as desired.
We obtain (ii).
2nd case: w.l.o.g. β < α.
a) If I(z) ≤ I 0(z) ≤ I 00(z) and so I(w) ≤ I 0(w) ≤ I 00(w)

Let X =
z − I(z)

I 00(z)− I(z)

Y1 =
w − I(w)

I 00(w)− I(w)
.

Note that we have necessarily I(z) < I 00(z) and I(w) < I 00(w)
By straightforward computations:
I(X) = 0, I 00(X) = 1 and I 0(X) = 1− α
I(Y1) = 0, I 00(Y1) = 1 and I 0(Y1) = 1− α.
Y = Y1 + ε with 0 < ε < β − α.
b) If I 00(z) ≤ I 0(z) ≤ I(z), we make a similar reasoning.
Therefore we have the desired X and Y and so (iii) implies (ii).

3.2 The additive case

If all the functionals are additive and positive (J(X + Y ) = J(X) + J(Y )
for all X and Y and X ≥ 0 =⇒ J(X) ≥ 0 so J(X) =

R
Ω
Xdm with m

probability measure), we are in Lehrer’s framework.
Thanks to proposition 2 we obtain an other proof of Lehrer’s theorem 1

(i)⇐⇒m0 ∈ [m,m00] wherem0 ∈ [m,m00] means ∃α ∈ [0, 1], ∀E ∈
Σ,m0(E) = αm(E) + (1− α)m00(E).

Proof. As we have (i)⇐⇒ (iii) we just have to prove that if I(X) =
R
Xdm

with m probability measure defined in (iii), α = β.
Let E ∈ Σ, let us assume m(E) ≤ m0(E)
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then m0(E) = αm(E) + (1− α)m00(E).
As m(Ec) +m(E) and m0(Ec) +m0(E) = 1 then m(Ec) ≥ m0(Ec).
So m0(Ec) = βm(Ec) + (1− β)m00(Ec)
1 = m0(Ω) = m0(E) +m0(Ec)
1 = αm(E) + βm(Ec) + (1− α)m00(E) + (1− β)m00(Ec)
1 = αm(E) + βm(Ec) + 1− αm00(E)− βm00(Ec)
0 = α (m(E)−m00(E)) + β(m(Ec)−m00(Ec))
0 = (α− β)(m(E)−m00(E))
If α 6= β we obtain m(E) = m00(E) and so m(E) = m0(E) = m00(E).

Remark 4 The theorem 1 of Lehrer [12] can be infered from proposition 1
and Farkas lemma with n = 2. One can consider the proposition 2 as a kind
of Farkas lemma with n = 2 for non-additive functionals.

3.3 The Choquet case

We suppose that all the functionals are comonotonic additive and monotone
i.e. for all X and Y comonotonic J(X + Y ) = J(X) + J(Y ) and X ≥ Y ⇒
J(X) ≥ J(Y ) so J(X) =

R
Ω
Xdv with v Choquet capacity (see Schmeidler

[15] or, for an axiomatization in this framework, Chateauneuf [2]).
We have then,

Proposition 3 The following assertions are equivalent:
(i) Expert I is more knowledgeable than expert II.

(iv) Either ∃α ∈ [0, 1], v0 = αv + (1− α)v00

or ∃(α, β) ∈ [0, 1]2, α 6= β such that for all chain C of Σ
∀C ∈ C, v0(C) ≥ v(C) and v0(C) = αv(C) + (1− α)v00(C)
or ∀C ∈ C, v0(C) ≤ v(C) and v0(C) = βv(C) + (1− β)v00(C)

(v) ∃(α, β) ∈ [0, 1]2 ∀E ∈ Σ we have
v0(E) ≥ v(E) ⇒ v0(E) = αv(E) + (1− α)v00(E)
and v0(E) ≤ v(E) ⇒ v0(E) = βv(E) + (1− β)v00(E)
And if α 6= β ∀A ∈ Σ, B ∈ Σ such that v0(A) = αv(A) + (1 − α)v00(A) and
v0(B) = βv(B) + (1− β)v00(B), we have ∀F ∈ Σ, F ⊂ A ∩B or A ∪B ⊂ F,
v(F ) = v0(F ) = v00(F ).

Proof. Let us assume (iv)
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Let X ∈ F finite ranged X =
nP
i=1

aiA
∗
i , a1 ≤ ... ≤ an

I(X) = a1v(Ω) +
n−1X
i=1

(ai+1 − ai)v(Ai+1 ∪ ... ∪An)

=
nX
i=1

xiv(Ci) Ci is a chain

Thank to (iv) we get (iii) in that case.
If X is not finite ranged, there exists (Xn) finite ranged such that:
I(Xn)→ I(X), I 0(Xn)→ I 0(X) and I 00(Xn)→ I 00(X)
(see Denneberg 97 [3]).
Therefore we obtain (iii).
Let us assume (iii).
Let E ∈ Σ with X = E∗ we get the first part of (v):
v0(E) ≥ v(E) ⇒ v0(E) = αv(E) + (1− α)v00(E)
and v0(E) ≤ v(E) ⇒ v0(E) = βv(E) + (1− β)v00(E)

Let us assume α 6= β.
Let A ∈ Σ, B ∈ Σ with v0(A) ≥ v(A) and v0(B) ≤ v(B).
Let F ⊂ A ∩B, F ∈ Σ.
Let us assume v(F ) 6= v0(F ) and without loss of generality v(F ) < v0(F ).
Then v0(F ) = αv(F ) + (1− α)v00(F ).
Let X = B∗ + tF ∗, t ∈ R∗+.
I(X) = v(B) + tv(F ).
We can choose t such that X does not respect (iii):
I 0(X) = βv(B) + αtv(F ) + (1− β)v00(B) + (1− αtv00(F ))
What we write
I 0(X) = xI(X) + (1− x)I 00(X)

x =
β (v(B)− v00(B)) + αt(v(F )− v00(F ))

v(B)− v00(B) + t(v(F )− v00(F ))
As v(F ) 6= v00(F ) (else v0(F ) = αv(F )+ (1−α)v00(F ) implies v(F ) = v0(F )),
x is a non-constant real function of t.
So we can choose t to have x 6= α and x 6= β
So we have I(X) = I 0(X)
We have I 0(X) = αI(X) + (1− α)I 00(X)
and I 0(X) = βI(X) + (1− β)I 00(X) α 6= β
which imply I 0(X) = I(X) = I 00(X). So we get (v).
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Let us assume (v).
If α = β we get (iv): v0 = αv + (1− α)v00.
If α 6= β let C be a chain.
Let us assume there exists c ∈ C without v0(c) = v(c) = v00(c).
W.l.o.g. v0(c) = αv(c) + (1− α)v00(c)
then ∀B ∈ Σ such that B ⊂ C or C ⊂ B we cannot have
v0(B) = βv(B) + (1− β)v00(B) without v0(B) = v(B) = v00(B)
because it would not respect (v).
So we get (iv).
In proposition 3 (iv) means that expert I is more knowledgeable than

expert II if and only if v0 ∈ [v, v00] or there are two coefficients of convexity,
according to wether v is greater or smaller than v0 and on any chain v0 is
always smaller or greater than v; (v) means that if α 6= β, for two elements
of Σ, one combination with α and the other with β, the three capacities must
agree for all the sets contained in their intersection or containing their union.

The example below illustrates that expert I may be more knowledgeable
than II and v0 /∈ [v, v00].

Example 2 R Y B RY RB Y B Ω
v 0.1 0.2 0.3 0.4 0.5 0.6 1
v0 0.2 0.3 0.15 0.6 0.5 0.6 1
v00 0.3 0.4 0.1 0.8 0.5 0.6 1

v, v0 and v00 are convex capacities and verify (iv) without being convex com-
binations.

In the next proposition we give assumptions that lead to "expert I is
more knowledgeable than II" if and only if v0 ∈ [v, v00]. That is to say capac-
ities behave like probability measures when they are distortions of the same
probability i.e. if the experts fulfil Yaari’s model.

Proposition 4 Let p be a non-atomic probability measure. v, v0 and v00 are
capacities following Yaari’s model i.e. v = f0 ◦ p, v0 = f1 ◦ p and v00 = f2 ◦ p
with f0, f1 and f2 increasing continuous functions from [0,1] onto [0,1] there-
fore (i)⇐⇒ v0 ∈ [v, v00].

Proof. We just have to prove (i)⇒ v0 ∈ [v, v00].
Let us suppose:

10
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∃A ∈ Σ, v0(A) = αv(A) + (1− α)v00(A) strictly.
∃B ∈ Σ, v0(B) = βv(B) + (1− β)v00(B) strictly.
W.l.o.g. p(B) ≤ p(A).
As p is non atomic, there exists C ⊂ A, p(C) = p(B).
(iv) implies v0(C) = αv(C) + (1− α)v00(C).
So f1(p(B)) = α f0(p(B)) + (1− α) f2(p(B)).
A contradiction with ∃B ∈ Σ, v0(B) = βv(B) + (1− β)v00(B) strictly.
Even with very "regular" capacities the proposition 4 does not hold any-

more:

Example 3 Let λ and µ be two different σ-additive measures, let v = λ and
v00 = µ.
Let us define v0 in the following way: if λ < µ then v0 = 0.3λ+0.7µ, if λ > µ
then v0 = 0.7λ+ 0.3µ and if λ = µ then v0 = λ.
Those three capacities are σ-continuous; they satisfy (ii) and v0 /∈ [v, v00].
Let us also notice that although the truth is a probability measure expert I
which proposes a capacity is more knowledgeable than expert II which proposes
a probability measure.
Moreover let us notice that those three capacities have the form: f(λ, µ).

Not as for measures, even for non-atomic capacities, being closer as de-
fined by Lehrer ( let us recall that definition: v0 is closer to v than v00 if ∀A ∈ Σ
either 0 ≤ v0(A)−v(A) ≤ v00(A)−v(A) Or 0 ≥ v0(A)−v(A) ≥ v00(A)−v(A))
does not garantee v0 to be a convex combination of v and v00 nor expert I to
be more knowledgeable than expert II.
Actually theorem 2 of Lehrer is no more true for capacities. Here is an ex-
ample with distortions of probabilities:
let us take v = f0 ◦ λ, v0 = f1 ◦ λ, v00 = f2 ◦ λ with
f0 : [0, 1]→ [0, 1], x 7−→ x2,
f1 : [0, 1]→ [0, 1], x 7−→ x3,
f2 : [0, 1]→ [0, 1], x 7−→ x4

and λ be the Lebesgue measure.
One obtains v, v0 and v00 as in theorem 2 of Lehrer but v0 is not a convex
combination of v and v00.
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4 Updating the preferences

We propose other ways for the D.M. to choose a strategy which take care of
updating the beliefs.

4.1 First approach: comparing each atom

We will call MK1 the first of the methods with updating that we describe.
When the D.M. knows that C ∈ P has occured, he updates his functional
J according to C and, eventually, to P ; then he obtains a functional JC,P
which defines a preference relation ¹C,P .
Then he chooses an action aC,P that maximises JC,P (u(aC,P , ω)).
Expert I sells a functional I 0 that leads to an action a0C,P ∀C ∈ Σ, ∀P ∈ P.
Expert II sells a functional I 00 that leads to an action a00C,P ∀C ∈ Σ,∀P ∈ P.
With that method, we compare the actions selected for each atom C ∈ P.
When the updating rule does not take into account the partition, we focus
on the σ-algebra Σ and no more on the partition of P.

Definition 2 Expert I isMK1-more knowledgeable than expert II iff ∀(P,C, u,A),
IC,P (u(a

0
C,P , ω)) ≥ IC,P (u(a

00
C,P , ω)) i.e. a0C,P is always better than a00C,P ac-

cording to the real functional updated according to C and P.

We consider constant additive positively homogenous functionals which,
when updated, remain constant additive and positively homogenous. We
have the following proposition which is an avatar of proposition 2.

Proposition 5 (i)’ Expert I is MK1-more knowledgeable than II.

(ii)’ ∀P ∈ P,∀C ∈ P,∀X ∈ F ,∀Y ∈ F , I 0C,P (X) ≥ I 0C,P (Y )
and I 00C,P (X) ≤ I 00C,P (Y )⇒ IC,P (X) ≥ IC,P (Y ).

(iii)’ ∀P ∈ P,∀C ∈ P, ∃α ∈ [0, 1], ∃β ∈ [0, 1] ∀X ∈ F
IC,P (X) ≤ I 0C,P (X) ⇒ I 0C,P (X) = αIC,P (X) + (1− α)I 00C,P (X)
IC,P (X) ≥ I 0C,P (X) ⇒ I 0C,P (X) = βIC,P (X) + (1− β)I 00C,P (X).

Proof. Let us assume (i).
Let X ∈ F , Y ∈ F such that I 0C,P (X) ≥ I 0C,P (Y ) and I 00C,P (X) ≤ I 00C,P (Y )
Like in Gilboa and Lehrer, let A = {X,Y }, u(X,ω) = X(ω)
and u(Y, ω) = Y (ω).
We get s0P = X and s00P = Y. So from (i) we have IC,P (X) ≥ IC,P (Y ).
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Let us assume now (ii).
For any information structure (P,C,A, u), let X(ω) = u

¡
s0C,P (ω), ω

¢
and Y (ω) = u

¡
s00C,P (ω), ω

¢
.

(ii) implies IC,P (X) ≥ IC,P (Y ).
So expert I is more knowledgeable than expert II.
That proposition is an adpation of propositions 1 and 2 for MK1. Its

proof is just an adaption in this new framework.

Now we consider that all the functionals are additive, therefore represented
by probability measures, updated with the Bayes rule (which means we do
not care about the partition in the updating rule).
In the proposition below we prove this method is an extension of Lehrer [12]
because MK and MK1 are equivalent in the additive case.

Proposition 6 For an additive Bayesian functional, being more knowldge-
able for MK or MK1 is equivalent.

Proof. Expert I (whith probability m0) is MK0-more knowledgeable than
expert II (with probability m00). The true functional is computed with the
probability m.
Let m0 = αm+ (1− α)m00.
Let us prove m0

C = αCmC + (1− αC)m
00
C .

∀E ∈ Σ m0
C(E) = xmC(E) + (1− x)m00

C(E) with

x =
m0

C(E)−m00
C(E)

mC(E)−m00
C(E)

=

m0(E)m00(C)−m00(E)m0(C)
m0(C)m00(C)

m(E)m00(E)−m(C)m00(E)
m(C)m00(C)

x =
[m0(E)m00(C)−m00(E)m0(C)]m(C)

[m(E)m00(C)−m(C)m00(E)]m0(C)

x =
[(αm(E) + (1− α)m00(E))m00(C)−m00(E)(αm(C) + (1− α)m00(C))]m(C)

[m(E)m00(C)−m(C)m00(E)]m0(C)

x =
[αm(E)m00(C)− αm00(E)m(C)]m(C)

[m(E)m00(C)−m(C)m00(E)]m0(C)

x =
αm(C)

m0(C)
=

αm(C)

[αm(C)− (1− α)m00(C)]
= αC ∈ [0, 1].

Thanks to the proposition 5 one can deduce expert I is MK-more knowl-
edgeable than expert II.
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Moreover the strategy sp optimal for MK is formed with the aC,P optimal
for MK1 by additivity of the functionals:

max
sP∈SP

J(u(sP (ω), ω)) = max
sP∈SP

Z
u(sP (ω), ω)dp

=
X
C∈P

max
a∈A

Z
C

u(a, ω)dp =
X
C∈P

max
a∈A

JC(u(a, ω))

According to proposition 5, in order to be coherent for our problem, if an
expert is more knowledgeable with the initial functionals, it is always true
for the updated functionals as it is for additive functionals with Bayes rule.
It means the updating rule, when the updated functionals are also constant
additive, positively homogenous and positive, should satisfy this condition:
∃α ∈ [0, 1],∃β ∈ [0, 1], ∀X ∈ F I(X) ≤ I 0(X) ⇒
I 0(X) = αI(X) + (1− α)I 00(X)
and I(X) ≥ I 0(X) ⇒ I 0(X) = βI(X) + (1− β)I 00(X)
implies
∀P ∈ P,∀C ∈ P, ∃αC,P ∈ [0, 1],∃βC,P ∈ [0, 1], ∀X ∈ F
IC,P (X) ≤ I 0C,P (X) ⇒ I 0C,P (X) = αC,P IC,P (X) + (1− αC,P )I

00
C,P (X)

IC,P (X) ≥ I 0C,P (X) ⇒ I 0C,P (X) = βC,P IC,P (X) + (1− βC,P )I
00
C,P (X).

Among the many ways to update non-additive functionals, most of them
do not fulfil that condition.

Example 4 Full Bayesian updating (see Jaffray [11])
All the functionals are Choquet integrals computed according to convex capac-
ities. They are updated with the Full Bayesian rule JC(X) = min

m∈C(v)

R
C
XdmC

where C(v) = {m; m is a probability measure such that m(Ω) = v(Ω) and
for all A in Σ,m(A) ≥ v(A)}
and mC denotes m, updated according to the Bayes rule.We can consider
capacities satisfying (iv), when updated according to the Full Bayesian rule,
they are very unlikely to still satisfy (iv).
Let us consider the capacities of example 1. First we compute all the extreme
points of the core of those capacities:

m1 m2 m3 m4 m5 m6

R 0.1 0.1 0.4 0.2 0.2 0.4
Y 0.3 0.5 0.2 0.2 0.5 0.3
B 0.6 0.4 0.4 0.6 0.3 0.3
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m0
1 m0

2 m0
3 m0

4 m0
5 m0

6

R 0.2 0.2 0.3 0.4 0.35 0.4
Y 0.4 0.5 0.3 0.3 5 0.45
B 0.4 0.3 0.4 0.3 0.15 0.15

m00
1 m00

2 m00
3 m00

4 m00
5 m00

6

R 0.3 0.3 0.4 0.4 0.4 0.4
Y 0.5 0.5 0.4 0.4 0.5 0.5
B 0.2 0.2 0.2 0.2 0.1 0.1

Let us suppose {R,Y } has occured then the updated extremal measures of
the core are:

m1{R,Y } m2{R,Y } m3{R,Y } m4{R,Y } m5{R,Y } m6{R,Y }
R 1/4 1/6 2/3 1/2 2/7 4/7
Y 3/4 5/6 1/3 1/2 5/7 3/7

m0
1{R,Y } m0

2{R,Y } m0
3{R,Y } m0

4{R,Y } m0
5{R,Y } m0

6{R,Y }
R 1/3 2/7 1/2 4/7 7/17 8/17
Y 2/3 5/7 1/2 3/7 10/17 9/17

m00
1{R,Y } m00

2{R,Y } m00
3{R,Y } m00

4{R,Y } m00
5{R,Y } m00

6{R,Y }
R 3/8 3/8 1/2 1/2 4/9 4/9
Y 5/8 5/8 1/2 1/2 5/9 5/9

Then the capacities updated according to the Full Bayesian rule are:

v{R,Y } v0{R,Y } v00{R,Y }
R 1/4 1/2 3/8
Y 1/3 1/2 1/2

v{R,Y }, v
0
{R,Y } and v

00
{R,Y } do not fulfil condition (iv).

The next proposition presents a class of updating rules for which it is
sufficient that expert I is more knowledgeable for the unconditional functional
to guarantee it holds with the updated functionals: f -bayesianism updating
proposed by Gilboa-Schmeidler 93 [9].
∀P ∈ P,∀C ∈ P, ∃ f ∈ F which allows to define the preference relation
¹C,P as follows:
X ¹C,P Y ⇔ J(X/C + f/C) ≤ J(Y/C + f/C)
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In the next proposition let us notice that, knowing P ∈ P and C ∈ P, we
use the same f to update the three functionals even if f may depend on C
and P.

Proposition 7 If each functional is updated according to f-bayesanism and
if I 0, I and I 00 verify (iii) then they verify (ii)’.

Proof. If we suppose (ii)’ we have Y ≺0C,P X; X ≺00C,P Y and X ≺C,P Y
which means I 0(Y/C + f/C) < I 0(X/C + f/C); I

00(X/C + f/C) < I 00(Y/C + f/C)
and I(X/C + f/C) < I(Y/C + f/C).
That would be a violation of (ii) which is impossible thanks to proposition
2.
Let us recall the properties of f -bayesianism exposed by Gilboa and

Schmeidler [9]. A D.M. who updates according to the f -bayesianism knowing
E has occured, considers that f would have been chosen outside E, the event
he knows to have occured.
If a D.M. considers that the best value of the utility is attained outside the
event which has occured (i.e. in our problemM is attained for every ω /∈ E),
that D.M. is said to be pessimistic and that updating rule is the well-known
Dempster-Shaffer rule.
Similarly if a D.M.considers that the worst value of the utility is attained
outside of the event which has occured (i.e. in our problem 0 is attained for
every ω /∈ E), that D.M. is said to be optimistic and that updating rule is

similar to the Bayes rule
³
i.e.v/E(F ) =

v(F∩E)
v(E)

´
.

Besides, for the Choquet integral, we are sure that the updated functional is
still a Choquet integral if f has for only values the best and the worst.

4.2 Maximising one expression

For an additive functional J, it is sufficient to maximise J(u(sP (ω), ω)) to get
the strategy such that, for any atom of the partition, the action selected for
that atom maximise the functional updated according to that atom. Thus we
are allowed to define a value of information (as max

sP∈SP
J(u(sP (ω), ω))). With

the method proposed for MK1, it is no more possible because the strategy
formed with the actions that maximise JC,P (u(aC,P , ω)) does not maximise
J(u(sP (ω), ω)).
However the method defined below gives us a way to maximise only one
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expression and, if the functionals are monotone, it gives a definition of "more
knowledgeable" equivalent to the one of MK1. We will call that method
MK2, it is constructed as follows:
for P ∈ P,∀C ∈ P the D.M. chooses the aC,P that maximise
J(
P
C∗
JC,P (u(aC,P , ω))C

∗).

With that method we compute according to the unconditional functional the
P -measurable function which has for value on each atom the value computed
for that atom with the method MK1.

Definition 3 Expert I isMK2-more knowledgeable than expert II iff ∀(P, u,A),
I(
P
C∗
IC,P (u(a

0
C,P , ω))C

∗) ≥ I(
P
C∗
IC,P (u(a

00
C,P , ω))C

∗) i.e. the strategy indi-

cated by expert I is always better than the one of expert II according to the
real functional I for any information structure.

That definition is coherent since it coincides with the additive case.
Proof. We assume here that the the functional J is Bayesian additive. As
the same aC are optimal for MK and MK1, the strategies are the same for
MK andMK2. MK0 andMK2 lead to the same computations because for an
additive bayesian functional J we have J(u(sP , ω)) = J(

P
C∗
JC(u(aC , ω))C

∗).

J(JC(u(aC , ω))C
∗) =

Z
Ω

ÃX
C∗

Z
C

(u(aC , ω)dm)C
∗

!

=

Z
Ω

µXZ
C

(u(aC , ω)dm)C
∗
¶

=

Z
Ω

(u(sP , ω)dm = J(u(sP , ω))

ThereforeMK andMK2 are equivalent in the additive case. A functional
J is said to be monotone if and only if for all f and g in F , f(ω) ≥ g(ω) for
all ω in Ω implies J(f) ≥ J(g).When the real functional is monotone, which
is a very usual assumption, leading to a better strategy for any information
structure is equivalent with the method MK1 or the method MK2.

Proposition 8 If the "real" functional, I is monotone, MK1 more knowl-
edgeable is equivalent to MK2 more knowledgeable.
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Proof. If expert I is MK1 more knowledgeable than expert II, let us recall
that the strategy optimal for MK2 is formed with the optimal actions for
MK1.

I(
P
C∗
IC,P (u(a

0
C,P , ω))C

∗) ≥ I(
P
C∗
IC,P (u(a

00
C,P , ω))C

∗) because I is monotone

and expert I is MK1 more knowledgeable than expert II
(so IC,P (u(a0C,P , ω)) ≥ IC,P (u(a

00
C,P , ω))).

Reciprocally let (P,A, u) be an information structure, a0C,P optimal for expert
I and a00C,P optimal for expert II.
Let us consider the following information structure (P,A, eu) witheu(ω) = u(ω) if ω ∈ C and 0 else.
"Expert I MK2 more knowledgeable than expert II" gives us
I(IC,P (u(a

0
C,P , ω))C

∗) ≥ I(IC,P (u(a
00
C,P , ω))C

∗)
so IC,P (u(a

0
C,P , ω)) ≥ IC,P (u(a

00
C,P , ω)) and we get the equivalence of MK1

and MK2 more knowledgeable.
A problem of positive value of information appears. A partition can lead

to a worse value than a coarser one with updating rules like Full Bayesian
rule or Dempster Shafer rule. However with the optimistic rule described by
Gilboa and Schmeidler [9], the monotonicity of the real functional guarantees
positive value of information. That rule is not very realistic since it means
the D.M. considers the worst would have occured outside the atom which
has occured. Searching for a more realistic updating rule is the point in the
next section.

4.3 Positive value of information

As the expression computed in MK2 does not guarantee a positive value of
information, we give up that method. We could look for a special updat-
ing rule that would make us sure that the strategy formed with the actions
that maximise JC,P (u(aC,P , ω)) maximises J(u(sP (ω), ω)). It means that the
strategy must be chosen in this way.
First the D.M. chooses an action aC,P that maximises JC,P (u(aC,P , ω)).
Considering the strategy sP formed with the aC,P ,∀C ∈ P, we get
J(u(sP (ω), ω)) = max

sP∈SP
J(u(sP (ω), ω)).

Of course we shall not obtain the last equality for any updating rule: for a
usual (i.e. Choquet and maximin expected utility) non-additive functional it
will not hold with the usual updating rules except the one we’ll put forward
in the following paragraph.
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First let us observe it holds in the additive case with the Bayes rule. Ac-
tually as observed at the end of the proof of proposition 6, "the strategy sp
optimal forMK is formed with the aC optimal forMK1 by additivity of the
functionals" so in the additive case that method is equivalent to the one for
MK. In the non-additive case we propose the following way to update.
We will use f -bayesianism with a f that satisfies:
∃tP ∈ SP , f(ω) = u(tP (ω), ω), tP/C = argmax

a∈A
J(u(a, ω)/C + f/C).

Such a f does always exist, we just have to take f(ω) = u(tP (ω), ω) with
tP = sP = arg max

sP∈SP
J(u(sP (ω), ω)).

That updating rule and that way to choose the strategy has two advantages:
it provides a positive value of information and as it leads to the same compu-
tation as for MK, it provides a framework in which MK can be considered
as a method taking care of the updating of the preferences. We call that rule
f -max-Bayes rule.
Using that rule can be justified by the interpretation of Gilboa and Schmei-
dler; they argue the f chosen represents what the D.M. supposes would have
happened outside C. In our problem the D.M. considers he would have max-
imised for each atom of the partition and so chooses the function f to update
according to f -bayesianism.
However that method does not satisfy condition (iii)’ because we update with
a different f for each functional so, even if the strategies chosen are the same,
we don’t have the equivalence of more knowledgeable for MK and MK1.
As in remark 2, we can restate that updating rule in a preference set-

up. We have got a set of act A ⊂ F with a worst and best element. The
functional J is updated according to the atom C of the partition P on the
following way (f -max-Bayes rule): ∀X ∈ A, JC,P (X) =

J(XÁC+fÁC)

J(C∗+fÁC)
with

f = argmax(J(
P

Ci∈P,Xi∈A
XiÁCi)) where the Ci are the atoms of the partition

P.
We define XP =

P
Ci∈P

XCi,PÁCi with XCi,P that maximises JCi,P (YiCi,P )

for all Yi ∈ A, we can define a value of information IV (P ) = J(XP ).
That value of information is positive since if a partition is finer than

another one then its value of information is greater than the one of the other
partition. Besides, as for an additive functional, XP =

P
Ci∈P

XCi,PÁCi with

XCi,P that maximises JCi,P (Yi) also maximises J(
P
Ci∈P

YiÁCi) for all Yi ∈ A.
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5 Concluding remarks

1) We could consider other ways to evaluate experts, which would not be
directly a comparison. Example given, with the notation of section 2 we
could define expert I (I 0) to aproach the real functional (I) at ε if

sP = arg max
sP∈SP

I(u(sP (ω), ω)), s
0
P = arg max

sP∈SP
I 0(u(sP (ω), ω)) and

| I(u(sP (ω), ω)) − I(u(s0P (ω), ω)) |≤ εM. Let us recall that M is the
maximal value of u.
2) Proposition 1 is a restatement of our problem as "guessing the prefer-

ences". Here the D.M. just rank functions from Ω to R, we could consider a
more general setting with preferences on acts, we would then need a utility
function to evaluate those acts according to a functional. However we think
our result would not be different.
3) Example 2 can also be used for maximin expected utility. As a Choquet

integral with a convex capacity is a minimum on a convex set of probabili-
ties, it shows that, with maximin, one can get "more knowledgeable" without
"convex combination". Besides a study of maximin expected utility would
require to give a representation of the set of probabilities on which the min-
imum is computed as a convex closure of extreme points. Those extreme
points are the ones for which the minimum is attained on a function. The
condition of "more knowledgeable" can then be expressed on those extreme
points.

Acknowledgement: I am indebted to Alain Chateauneuf for help and
guidance.
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