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c Department of Statistics, East China Normal University, Shanghai, China

Abstract. This paper develops the method for pricing bivariate contin-
gent claims under General Autoregressive Conditionally Heteroskedastic
(GARCH) process. In order to provide a general framework being able
to accommodate skewness, leptokurtosis, fat tails as well as the time
varying volatility that are often found in financial data, generalized hy-
perbolic (GH) distribution is used for innovations. As the association
between the underlying assets may vary over time, the dynamic copula
approach is considered. Therefore, the proposed method proves to play
an important role in pricing bivariate option. The approach is illustrated
for Chinese market with one type of better-of-two-markets claims: call
option on the better performer of Shanghai Stock Composite Index and
Shenzhen Stock Composite Index. Results show that the option prices
obtained by the GARCH-GH model with time-varying copula differ sub-
stantially from the prices implied by the GARCH-Gaussian dynamic cop-
ula model. Moreover, the empirical work displays the advantage of the
suggested method.
Keywords: call-on-max option; GARCH process; generalized hyper-
bolic (GH) distribution; normal inverse Gaussian (NIG) distribution;
copula; dynamic copula

JEL: C51 G12

1 Introduction

Following the great work of Black and Scholes (1973) and Merton
(1973), the option literature has been developed a lot. Over the
years, various generalizations of the Brownian motion framework
due to Black and Scholes (1973) have been used to model multivari-
ate option prices. Examples include Margrabe (1978), Stulz (1982),
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2

Johnson (1987), Reiner (1992), and Shimko (1994). In all these pa-
pers, correlation was used to measure the dependence between assets.
However, Embrechts et al. (2002) and Forbes and Rigobon (2002)
have pointed out that, correlation may cause some confusion and
misunderstanding. Indeed, it is a financial stylized fact that cor-
relations observed under ordinary market differ substantially from
correlations observed in hectic periods.

On the other hand, to take into account the heteroskedasticity
of assets returns, a lot of models have been put forward, such as
the constant-elasticity-of-variance model of Cox (1975), the jump-
diffusion model in Merton (1976), the compound-option model in
Geske (1979) and the displaced-diffusion model in Rubinstein (1983).
Opposed to the aforementioned models, a bivariate diffusion model
for pricing option on assets with stochastic volatilities was introduced
by Hull and White (1987). Unfortunately, the bivariate diffusion op-
tion model requires the conditions stronger than no arbitrage and it
faces the difficulty in empirical study that the variance rate is unob-
servable.

Through an equilibrium argument, Duan (1995) showed that op-
tions can be priced when the dynamics for the price of the under-
lying asset follows a GARCH process. This GARCH option pricing
model has so far experimented some empirical successes in Heynen
et al. (1994), Duan (1996) and Heston and Nandi (2000). In order to
extend the risk neutralization developed in Rubinstein (1976) and
Brennan (1979), Duan (1999) developed the GARCH option pricing
model by providing a relatively easy transformation to risk-neutral
distributions.

Now the distribution of the error term in GARCH process at-
tracts a lot of attention. In Engle (1982) the normal distribution is
used but alternative distributions such as the t distribution or the
GED distribution have been considered to capture the excess kurto-
sis and fat tail. Unfortunately, as explained in Duan (1999), using t
distribution to model continuously compounded asset returns is in-
appropriate, since the moment generating function of t distribution
with any finite degree of freedom does not exist, and because of the
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3

symmetry of the GED distribution, a more flexible appropriate dis-
tribution is called for.

In Jensen and Lunde (2001), it was found that the normal in-
verse Gaussian (NIG) models, the special case of generalized hyper-
bolic (GH) distribution, are able to outperform some of the most
praised GARCH models when considering daily U.S. stock return
data. In particular, a big gain is found in modelling the skewness
of equity returns as in Eberlein and Keller (1995) and Eberlein and
Prause (2002). It is concluded that allowing conditional skewness
leads to more accurate predictions of conditional variance and ex-
cess return. Moreover, GH distribution has the moment generating
function, which gains an advantage over the t distribution.

As multivariate options are regarded as excellent tool for hedg-
ing the risk in today’s finance, a more appropriate measure for de-
pendence structure is required, here we concentrate on the copula.
Copulas are functions that join or “couple” multivariate distribution
functions to their one-dimensional marginal distribution functions,
Joe (1997) and Nelsen (1999). It has been known since the work of
Sklar (1959) that any multivariate continuous distribution function
can be uniquely factored into its marginals and a copula. In a word,
copula has proven to be an interesting tool to take into account all
the dependence structure and even to capture the nonlinear depen-
dence of data set.

Copulas have also been introduced to price bivariate options as
shown in Rosenberg (1999), Cherubini and Luciano (2002). In these
papers, all the appropriate preliminary copulas are supposed to re-
main static during the considered time period. However, most of data
sets often cover a reasonably long time period and economic factors
induce changes in dependence structure. Thus the basic properties
of financial products change in different periods (the stable period
and the crisis period). Therefore, to price the bivariate option in a
robust way, a dynamic copula approach should be adopted.

In the present paper, a new dynamic approach to price the bi-
variate option under GARCH-GH process using time-varying copula
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4

is proposed. Through fitting two GARCH-GH models on two un-
derlying assets, the return innovations are obtained. Observing that
the dependence structure for the two series of innovations changes
over time, we analyze the changes in copulas through moving win-
dows. Then a series of copulas are selected on different subsamples
according to AIC criterion (Akaike, 1974). Through this method, the
changes of the copula can be observed and the change trend displays
more and more clearly. Conditioning on the result of the moving
window process, the dynamic copula with time-varying parameter is
expressed similarly as in Dias and Embrechts (2003), Jondeau and
Rockinger (2004), Granger et al. (2006), and Guégan and Zhang
(2006) for instance. An innovating feature of the present paper is
investigating the dynamic evolution of the copula’s parameter as a
time-varying function of predetermined variables, which gives a con-
siderably dynamic expression to the changes of the copula and makes
the changes of parameters more tractable.

In the empirical study, call option on the better performer based on
two important Chinese equity index returns (Shanghai Stock Com-
posite Index and Shenzhen Stock Composite Index) is used to il-
lustrate the innovated method described previously. The Student
t copula is the best fitting copula and time-varying parameter is
considered. We provide the option prices implied by GARCH-NIG
model with time-varying copula and these prices are compared with
those obtained by GARCH-Gaussian model. It can be observed that
the prices implied by the GARCH-Gaussian are generally underes-
timated.

The remainder of this paper is organized as follows. In Section 2,
the basic framework of option pricing and the notations are intro-
duced. Section 3 introduce the new model for pricing bivariate option
based on GARCH-GH process with time-varying copula. In section
4, empirical study is described and results are provided. Section 5
concludes.
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2 Preliminaries and Related Work

We specify the framework for option pricing that we choose, then
we introduce the model with which we work and the innovation
distribution that we use.

2.1 Option valuation

This paper concentrates on European option on the better performer
of two assets, but the technique is sufficiently general to be applied
for other alternative multivariate options as well. The call option on
the better performer belongs to one type of better-of-two markets
and can be referred to as call-on-max option. The payoff of a unit
amount call-on-max option is

max{max(S1(T ), S2(T ))−K, 0},

where Si is the price at maturity T of the i-th asset (i = 1, 2), and
K is the strike price. In the following, Ri,t is used to denote the
return on i-th index (i = 1, 2) from time t − 1 to time t, and the
corresponding log-return is denoted as ri,t = log(Ri,t).

The fair value of the option is determined by taking the discounted
expected value of the option’s payoff under the risk-neutral distribu-
tion. As the call-on-max is typically traded over the counter, price
data are not available. Therefore, valuation models cannot be tested
empirically. However, comparing models with different assumptions
can be implemented.

The Black Scholes approach for option pricing assumes the effi-
ciency of the financial market and all the pricing theory developed
after their seminal work lies on the existence of the risk neutral mea-
sure. The measure verifies the martingale property for the theory of
contingent claim pricing. Recently, some works have proposed new
approaches for pricing, based on historical measure. These new works
are really interesting because they are close to the reality, see for in-
stance Barone-Adesi et al. (2004). Nevertheless, the present work
keeps a historical approach for pricing options using the risk-neutral
environment, providing a new strategy in the bivariate context.
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6

2.2 Generalized Hyperbolic (GH) distributions

In order to take into account specific stylized fact of the assets (skew-
ness and kurtosis mainly), we will work with the generalized hy-
perbolic (GH) distribution that we present briefly now, we refer to
Eberlein and Keller (1995) for more details.

The one dimensional generalized hyperbolic distribution admits
the following density function

fGH(x; λ, α, β, δ, µ) = κ(λ, α, β, δ)τ (λ−1/2)Kλ−1/2(ατ) exp(β(x− µ)),
(1)

where Kλ is the modified Bessel function of the third kind and

κ(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ−1/2δλKλ(δ

√
α2 − β2)

,

τ =
√

δ2 + (x− µ)2,

and x ∈ R.

The parameters λ, α, β, δ, µ ∈ R are interpreted as follows: µ ∈ R
is the location parameter and δ > 0 is the scale parameter. The
parameter 0 ≤ |β| < α describes the skewness and α > 0 gives
the kurtosis. Particularly, if β = 0, the distribution is symmetric,
and if α → ∞, the Gaussian distribution is obtained in the limit.
The parameter λ ∈ R characterizes certain subclasses of the distri-
bution and considerably influences the size of the probability mass
contained in the tails of the distribution. If the random variable x is
characterized by a generalized hyperbolic distribution, we denote it
x ∼ GH(λ, α, β, δ, µ).

Generally we will use in applications the parameters ᾱ = αδ and
β̄ = βδ corresponding to the scale and location invariant parameters.
Then, the density function of the generalized hyperbolic distribution
expressed in terms of the invariant parameters becomes:

fGH(x; λ, ᾱ, β̄, δ, µ) = κ(λ, ᾱ, β̄, δ)χ(λ−1/2)Kλ−1/2(ᾱχ) exp(β̄(
x− µ

δ
)),

(2)
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7

where

κ(λ, ᾱ, β̄, δ) =
(ᾱ2 − β̄2)λ/2

√
2πᾱλ−1/2δλKλ(

√
ᾱ2 − β̄2)

,

χ =

√
1 + (

x− µ

δ
)2,

and x ∈ R. In that case, GH(λ, ᾱ, β̄, δ, µ) is a location-scale distri-
bution family, and we have

x ∼ GH(λ, ᾱ, β̄, δ, µ) ⇔ x− µ

δ
∼ GH(λ, ᾱ, β̄, 1, 0). (3)

In the following, we will use the relationship in Equation (3).

A special case of the GH distribution is the Normal Inverse Gaus-
sian (NIG) distribution obtained by assuming that λ = −1/2 in
Equation (1). The density function of the NIG distribution expressed
in terms of the invariant parameters ᾱ = δα and β̄ = δβ is equal to:

fNIG(x; ᾱ, β̄, δ, µ) =
ᾱ

πδ
exp[

√
ᾱ2 − β̄2+β̄(

x− µ

δ
)]

K1(ᾱ
√

1 + (x−µ
δ

)2)
√

1 + (x−µ
δ

)2

,

(4)
where x, µ ∈ R, δ > 0 and 0 < |β̄| < ᾱ. If the random variable
x has a NIG distribution, we denote it as x ∼ NIG(ᾱ, β̄, δ, µ). In
the application, we will use this particular case of the generalized
hyperbolic distribution.

2.3 GARCH process transformation

Here we are interested in pricing options, thus we need to derive
the joint risk-neutral return process from the objective bivariate dis-
tribution. Instead of deriving the bivariate risk-neutral distribution
directly, the proposed way is to transform each of the marginal pro-
cess separately. First of all, we assume that the one-period log-return
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8

for every index, under probability measure P , follows a GARCH pro-
cess, that is, for i = 1, 2:

ri,t = mi,t +
√

hi,tεi,t,
hi,t = αi,0 +

∑q
j=1 αi,jε

2
i,t−j +

∑p
j=1 βi,jhi,t−j,

εi,t|ϕi,t−1 ∼ D(0, 1) under measure P.

(5)

where the conditional mean mi,t is any predictable process, measur-
able with respect to the information set ϕi,t−1 of all information up to
and including time t−1. Under historical measure P , εi,t follows some
distribution D, whose distribution function is denoted as FD, with
zero mean and variance 1. Other restrictions are p ≥ 0, q ≥ 0; αi,0 >
0; αi,j ≥ 0(j = 1, . . . , q); βj ≥ 0(j = 1, . . . , p). To ensure covariance
stationarity of the GARCH (p, q) process,

∑q
j=1 αi,j +

∑p
j=1 βj is as-

sumed to be less than 1.

In order to develop the GARCH option pricing model and finally
obtain the risk-neutral price, Duan (1999) has generalized the con-
ventional risk-neutral valuation relationship to accommodate het-
eroskedasticity of the asset return process with non Gaussian inno-
vations by a probability measure Q being risk-neutral in some sense.
The generalized principle is described below.

Assumption 1 The equilibrium pricing measure Q, defined over the
interval [tl, tu] is said to satisfy the generalized locally risk-neutral
valuation relationship if, for ∀t such that tl ≤ t ≤ tu−1, the following
conditions are all satisfied:

1. the measure Q is mutually absolutely continuous with respect to
the objective measure P ;

2. there exists a predictable process λi,t such that Φ−1[FD(εi,t)]+λi,t,
conditionally on ϕi,t−1, is a standard normal random variable with
respect to the measure Q;

3. EQ(Ri,t|ϕi,t−1) = exp(rt),

where rt denotes the one period risk free interest rate at time t, and
Φ(·) denotes the standard normal distribution function.

Assuming that the Assumption 1 holds, the asset return process
which follows a GARCH model under measure P can be character-
ized by a simple risk-neutral dynamic GARCH model described in
the following theorem:

ha
ls

hs
-0

01
88

24
8,

 v
er

si
on

 1
 - 

16
 N

ov
 2

00
7



9

Theorem 1. Under the pricing measure Q defined by Assumption
1, the one-period log-return ri,t, i = 1, 2, follows the model:

ri,t = mi,t +
√

hi,tεi,t,
hi,t = αi,0 +

∑q
j=1 αi,jε

2
i,t−j +

∑p
j=1 βi,jhi,t−j,

εi,t = F−1
D [Φ(Zi,t − λi,t)],

(6)

where Zi,t, conditional on ϕi,t−1, is a Q-standard normal random
variable. Moreover, λi,s is the solution to

EQ[exp(mi,s +
√

hi,sF
−1
D [Φ(Zi,s − λi,s)])|ϕi,s−1] = exp(rs). (7)

It can be easily seen that when the distribution of the innovations
is a Normal distribution, the innovations εi,t become Zi,t − λi,t, that
means, the innovations just translate a quantity λi,t.

Theorem 1 implies that the log-return ri,t follows a process close
to a GARCH (p, q) under the risk-neutral measure. It provides a
relatively easy transformation to generalize local risk-neutral distri-
butions that is skewed and leptokurtic. According to this theorem,
the terminal asset price is derived in the following corollary with the
same notation:

Corollary 1. Under the Assumption 1, the terminal price Si,T for
the i-th (i = 1, 2) asset is equal to:

Si,T = Si,t exp{
T∑

s=t+1

[mi,s +
√

hi,sF
−1
D [Φ(Zi,s − λi,s)]]}, (8)

where hi,s, Zi,s and λi,s are given in Equation (6).

Considering the importance of the martingale property for the
theory of contingent claim pricing, it is necessary to note that the
discount asset price process e−rttSi,T is a Q-martingale. Therefore,
under the GARCH specification, the call-on-max option, with exer-
cise price K at maturity T , has the time-t value given by

COMt = e−
PT

s=t+1 rsEQ[max{max(S1,T , S2,T )−K, 0}]. (9)

This equation provides the faire value for call-on-max option. Now
we are interested to get the multivariate distribution for this bivari-
ate option.
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2.4 An interesting tool: copula

In the present paper, the dependence structure of the log-return for
the underlying assets is based on copula theory. Some notations are
specified now.

Let X = (Xn)n∈Z = {(Xi1, Xi2, . . . , Xid) : i = 1, 2, . . . , n} be a
d-dimension random sample of n multivariate observations from the
unknown multivariate distribution function F (x1, x2, . . . , xd) with
continuous marginal distributions F1, F2, . . . , Fd. The characteriza-
tion theorem of Sklar (1959) implies that there exists a unique copula
Cθ such that

F (x1, x2, . . . , xd) = Cθ(F1(x1), F2(x2), · · · , Fd(xd))

for all x1, x2, . . . , xd ∈ R. Conversely, for any marginal distributions
F1, F2, . . . , Fd and any copula function Cθ, it is said that the function
Cθ(F1(x1), F2(x2), . . . , Fd(xd)) is a multivariate distribution function
with given marginal distributions F1, F2, . . . , Fd. This theorem pro-
vides the theoretical foundation for the widespread use of the cop-
ula approach in generating multivariate distributions from univariate
distributions, Joe (1997) and Nelsen (1999).

In order to adjust a copula Cθ on a set of process, we will use
maximum likelihood method and AIC criterion (Akaike, 1974). This
means that we will adjust the copula on the innovations of the re-
turns, to assure independence, without losing the dependence spec-
ification. We specify now the approach that we follow here.

3 Methodology: option pricing under
GARCH-GH process with dynamic copula

In the proposed scheme for valuating the bivariate option, the ob-
jective bivariate distribution of the log-returns (r1,t, r2,t) is specified
conditionally on ϕt−1 = σ((r1,s, r2,s) : s ≤ t− 1), the information set
of all information up to and including time t− 1. In order to derive
the joint risk-neutral log-return process from this objective bivari-
ate conditional distribution in a convenient transformation way, it
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is proposed to transform each of the marginal process and the cop-
ula instead of deriving the bivariate risk-neutral distribution directly.

The objective marginals are specified by the model with GARCH-
GH process introduced as in Equation (5) with the consideration
that the distribution D is a GH distribution.

The system above is in principle self-contained. However, problems
may occur when it comes to actually implementing. In particular,
the requirement that λi,s is the solution to Equation (7) may be
extremely difficult to deal with. It is noted that there exists an one
to one correspondence between λi,s and the mean specification mi,s.
In particular, if mi,s is assumed to be measurable with respect to the
information set ϕi,t−1, Equation (7) may be rewritten as

mi,s = rs − ln EQ[exp(
√

hi,sF
−1
D [Φ(Zi,s − λi,s)])|ϕi,s−1]. (10)

Therefore, Equation (8) is displayed as

Si,T = Si,t exp{∑T
s=t+1[rs − ln EQ[exp(

√
hi,sF

−1
D [Φ(Zi,s − λi,s)])|ϕi,s−1]

+
√

hi,sF
−1
D [Φ(Zi,s − λi,s)]]}.

(11)
Moreover, if λi,s is assumed to be constant as λi, the Equation (6)

simplifies to the case where λi is the unit risk premium. Therefore
for technical reason, we will assume that λi,s = λi for all s in the
empirical study, generalization will be discussed in another paper.

Furthermore, the objective copula and risk-neutral copula are as-
sumed to be the same:

Proposition 1. The objective copula describing the dependence be-
tween the two assets’ log-returns in Equation (5) under the objective
background and the risk-neutral copula for the dependence of the log-
returns in Equation (6) under the risk-neutral environment are the
same, if λi,s = λi for all s.

Under Proposition 1, the objective joint log-return process can be
transformed easily into its risk-neutral counterpart. In a word, the
transformation from Equation (5) to Equation (6), in conjunction
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with the assumption that the objective and local risk-neutral con-
ditional copulas remain the same, allows a particularly convenient
pricing method for bivariate options.

After specifying the objective marginals according to Equation
(5), the joint distribution of the indexes will be described by fixing
the conditional copula. With the aim of choosing the best fitting
copula, AIC criterion is used.

Since most of data often cover a reasonably long time period, the
economic factors induce some changes in the dependence structure.
Therefore, a dynamic copula approach is adopted. After determining
the change type of the copula as introduced in Dias and Embrechts
(2003), Guégan and Zhang (2006) and Guégan and Cyril (2007),
the corresponding dynamic copula approach is applied. Here we are
mainly interested in the case that copula parameters change with
static copula family.

Considering firstly the period as a whole, one copula is chosen to
best fit the log-return innovations after the GARCH filter defined in
Equation (5). As the dependence structure of the underlying assets
is treated dynamically, with moving window, the best copulas are
chosen according to AIC criterion. Assuming that the results of the
series of best copulas on subsamples show that the copula family re-
mains changeless while the copula parameters change, the innovating
method is to define a time-varying parameter function permitting to
take into account kinds of correlations inside the parameters.

Thus with the standardized innovations (ε1,t, ε2,t) of the log-return
GARCH model, the dynamic copula C is assumed to have the time
dependent parameter vector θt = (θ1,t, θ1,t, . . . , θm,t), such that

θl,t = θ0 +

g∑
i=1

ηi

2∏
j=1

εj,t−1 +
s∑

k=1

ζkθl,t−k (12)

for l = 1, 2, . . . , m and ηi(i = 1, 2, . . . , g), ζk(k = 1, 2, . . . , s) are
scalar model parameters. Equation (12) defines a dynamic structure
motivated by GARCH process for the dependence parameters. Other
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specification can be considered and this will be done in another pa-
per.

To estimate the parameters in Equation (12), the maximum like-
lihood method is needed. Recalling that the standardized innova-
tions are assumed to be distributed conditionally as the generalized
hyperbolic distribution (GH), the bivariate conditional distribution
function is such that

F (ε1,t, ε2,t; θt) = C(GH1(ε1,t), GH2(ε2,t); θt),

where C is the copula function, GHi (i = 1, 2) is the GH distribution
function.

The corresponding conditional density function is then

f(ε1,t, ε2,t; θt) = c(GH1(ε1,t), GH2(ε2,t); θt)
2∏

i=1

ghi(εi,t),

where the copula density c is given by

c(u1, u2; θ) =
∂2C(u1, u2; θ)

∂u1∂u2

,

with (u1, u2) ∈ [0, 1]2 and ghi i = 1, 2 represents the generalized hy-
perbolic distribution density.

The conditional log-likelihood function can be finally evaluated as

n∑

t=b+1

(log c(GH1(ε1,t), GH2(ε2,t); θt) +
2∑

i=1

log ghi(εi,t)) (13)

where b = max(p, r).

Numerical maximization of Equation (13) gives the maximum like-
lihood estimates of the model. However, the optimization of the like-
lihood function with several parameters is numerically difficult and
time consuming. It is more tractable to estimate firstly the marginal
model parameters and then the dependence model parameters using
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the estimates from the first step. In order to do so, the two marginal
likelihood functions

n∑
t=p+1

log ghi(εi,t) for i = 1, 2, . . . , d,

are independently maximized. From here the marginal parameters
estimates are obtained and then are plugged in Equation (13). So
the final function to maximize becomes

n∑

t=b+1

(log c(GH1(ε1,t), GH2(ε2,t); θt)). (14)

From this dependence estimates, θ̂t are obtained and the model is
fitted.

Specifically, for one-parameter copulas, the time-varying parame-
ter function can be presented directly for this alone parameter; but
for multi-parameter copulas, the complexity of estimating param-
eters results in the choice of the one most important parameter,
letting the other static.

Benefiting from the identification assumption for the objective and
local risk-neutral conditional copulas, pairs of standard normal ran-
dom variables Zi,t (i = 1, 2) in the transformed GARCH-GH model
in Equation (6) can be drawn from the dynamic copula acting as
the estimated conditional risk-neutral measure of association. This
procedure is accomplished with the aid of Monte Carlo simulations.
These generated random variables are then applied to obtain the
transformed innovations as shown in Equation (6). Eventually, ac-
cording to Corollary 1, the payoffs implied by these innovations are
averaged and discounted at the risk-free rate, and the fair value of
the call-on-max option can be expressed as in Equation (11).
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4 Empirical work

4.1 Models for each data set

For the empirical work, the valuation scheme for the bivariate option
under GARCH-GH model with dynamic copula outlined in Section
3 is applied to call-on-max option on the Shanghai Stock Composite
Index and the Shenzhen Stock Composite Index. The sample con-
tains 1857 daily observations from 4 January 2000 to 29 May 2007.
The log-returns of Shanghai Stock Composite Index and Shenzhen
Stock Composite Index are shown in Figure 1, it is noted that the
outliers typically occur simultaneously and almost in the same di-
rection.

In this empirical work, we restrict the GH distribution to the NIG
distribution that is more tractable and has a lot of nice features
such as it is closed under convolution. The NIG fitting results are
shown in Figure 2 and Table 1. The fitted NIG distributions are
asymmetric. But simulation provides skewness parameter β̄ close to
0 and location parameter µ nearly equal to 0, thus in order to make
the GARCH-NIG fitting more tractable, an assigned symmetric NIG
distribution with 0 location is refitted and the results are shown in
Figure 3, Figure 4 and Table 2.

The parameter estimates for the GARCH (1,1) with symmetric
NIG innovation models (see Equation (5)) for the underlying assets
log-returns are listed in Table 3, and in order to compare, the re-
sults for GARCH-Gaussian model are also provided. From the AIC
and BIC values of the two types of model, GARCH-NIG models ap-
pear better for both Shanghai Stock Composite Index and Shenzhen
Stock Composite Index.

4.2 Dynamic copula method

Here, we consider the bivariate vector composed with the two assets.
Several kinds of copulas are considered to describe the dependence
structure between these assets on the whole period, including Gaus-
sian, Frank, Gumbel, Clayton, Student t copulas (Joe, 1997). All the
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copulas mentioned above are fitted to the support set of the stan-
dardized innovation pairs from GARCH-NIG and GARCH-Gaussian
models respectively. The fitting results are listed in Table 4. AIC
criterion is used to choose the best fitting copula. From the models
fitted to the standardized innovations for Shanghai and Shenzhen
stock composite indexes, the one which has the smallest AIC value
is the Student t copula both for GARCH-NIG and GARCH-Gaussian
models. Therefore, Student t copula is considered as the best fitting
copula in case of static dependence for both models.

Using moving window allows to observe the change trend in a
direct way, and makes the dynamics specification more reasonable
corresponding to the real setting. Therefore, the whole sample is di-
vided into subsamples separated by the moving window. 16 windows
in which each consists of 300 observations are moved by 100 obser-
vations. Along with the moving of the window, series of best fitting
copulas on different subsamples are decided by AIC criterion. The re-
sults for the best fitting copulas on all subsamples for GARCH-NIG
and GARCH-Gaussian model are shown in Table 5. Results listed in
Table 5 show that on almost all subsamples, Student t copula turns
out to be the best fitting copula for the GARCH-NIG model. So
it is rather reasonable to assume that for the GARCH-NIG model,
the copula family remains static as Student t, while the parameter
changes along the time. As far as the GARCH-Gaussian model is
concerned, the copula changes a lot. For the 2nd, 3rd and 5th win-
dows, although the Gaussian copula seems as the best fitting, the
Student t copula offers the very close AIC value (with the difference
not bigger than 2). And for the 7th, 8th, 9th, 10th, 11th windows, the
Frank copula provides the best fitting, and the Student t copula is
the secondly best fitting. Thus we still assume that the copula fam-
ily is static as the Student t but the parameters vary. In addition,
it can be observed that the correlation does not change a lot for
both GARCH-NIG and GARCH-Gaussian models while the degree
of freedom varies obviously for both of the two models. Therefore, it
seems reasonable to assume that the degree of freedom varies along
time while the correlation remains static.
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The time-varying function for the degree of freedom of the Student
t copula is put forward as:

νt = l−1(s0 + s1ε1,t−1ε2,t−1 + s1l(νt−1)), (15)

where s0, s1, s2 are real parameters and l(·) is a function defined by

l(ν) = log(
1

ν − 2
),

to ensure that the degree of freedom is not smaller than 2.

The corresponding estimate results for the dynamic copula pa-
rameter described in Equation (15) are listed in Table 6.

4.3 Pricing bivariate option

Standard normal random variables can then be generated from this
conditional Student t copula with time-varying parameter, and ac-
cording to two NIG margin distributions, log-return innovations can
be sampled to compute the price of the option. Considering that the
initial asset prices need to be close for the option to make sense,
it is assumed here that they are normalized to unity. The Monte
Carlo study is based on 100,000 replications, resulting in simulation
errors in the order of magnitude of 1 basis point for 1 month matu-
rity claims. Different maturities can be considered, and 1 month (20
trading days) are displayed here just devoting itself to illustrating
the approach. Moreover, the strike price is set at levels between 0.5
and 2.7. The risk-free rate is assumed to be 6% per annum. And
λi is considered as 5%, thus λ1 = λ2. Using the proposed dynamic
copula method with time-varying parameter, the option prices are
represented in Figure 5. Compared with the option prices implied
by the GARCH-Gaussian dynamic model in Figure 6, it can be ob-
served that the GARCH-Gaussian model generally underestimates
the price.
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5 Conclusion

In this paper, a systematic new approach for bivariate option pricing
under GARCH-GH model with dynamic copula has been introduced.
The introduction of GARCH-GH model on each asset permits to
take into account most of the stylized facts observed on the data
set. The risk neutral model permits to get an analytical expression
for the fair value of the call-on-max option. The bivariate option
pricing approach lies on Assumption 1 which permits to use the same
copula under historical and risk neutral measures. This work can be
extended almost in two ways. The first one concerns an extension of
the pricing modelling using BL-GARCH (Storti and Vitale, 2003).
Indeed this class of models permits to take into account explosion
and clusters as stylized facts. The second one concerns the weakness
of Assumption 1.
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Fig. 1. Log-returns for Shanghai Stock Composite Index and Shen-
zhen Stock Composite Index from 4 January 2000 to 29 May 2007
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Fig. 2. Asymmetric NIG fitting for log-returns of Shanghai Stock
Composite Index and Shenzhen Stock Composite Index
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Fig. 3. Symmetric NIG fitting for log-returns of Shanghai Stock
Composite Index and Shenzhen Stock Composite Index
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Fig. 4. Q-Q plots of symmetric NIG fitting for log-returns of Shang-
hai Stock Composite Index and Shenzhen Stock Composite Index
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Fig. 5. 1 month maturity call-on-max option prices as a function
of the strike using the method of dynamic Student t copula with
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Fig. 6. 1 month maturity call-on-max option prices as a function
of the strike from GARCH-NIG and GARCH-Gaussian models with
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Table 1. Estimates of asymmetric NIG fitting parameters for
marginal log-returns

Parameter Shanghai Index Shenzhen Index

ᾱ 4.460e-01 (4.407e-03) 5.364e-01 (6.396e-03)
β̄ 1.607e-04 (2.256e-07) 8.440e-04 (2.981e-07)
µ 4.428e-04 (1.160e-07) -1.171e-04 (1.719e-07)
σ 1.409e-02 (2.067e-07) 1.510e-02 (2.116e-07)

AIC -10972.56 -10649.73
BIC -10950.46 -10627.62

σ = δᾱ/
p

ᾱ2 − β̄2 is reparameterized as a dispersion parameter that can be seen as
the volatility. Figures in brackets are standard errors.
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Table 2. Estimates of symmetric NIG fitting parameters for
marginal log-returns

marginal Shanghai Index Shenzhen Index

ᾱ 4.536e-01 (4.539e-03) 5.275e-01 (6.117e-03)
β̄ 0.000 0.000
µ 0.000 0.000
σ 1.409e-02 (2.044e-07) 1.516e-02 (2.146e-07)

AIC -10971.40 -10649.37
BIC -10960.34 -10638.32

Figures in brackets are standard errors.
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Table 3. Estimates of GARCH-NIG and GARCH-Gaussian param-
eters for marginal log-returns

GARCH-NIG
Shanghai Index Shenzhen Index

m 6.065e-04 (1.952e-04) 7.260e-04 (2.300e-04)
ᾱ 8.103e-01 (2.807e-03) 7.959e-01 (5.837e-03)
α0 3.597e-05 (2.032e-01) 3.532e-05 (1.989e-01)
α1 2.758e-01 (3.865e-01) 3.015e-01 (5.477e-01)
β1 5.651e-01 (2.988e-01) 5.558e-01 (7.747e-01)

AIC -11037.14 -10708.29
BIC -11009.51 -10680.66

GARCH-Gaussian
Shanghai Index Shenzhen Index

m 3.833e-04 (2.419e-04) 3.761e-04 (2.882e-04)
α0 5.136e-06 (7.682e-07) 5.529e-06 (9.011e-07)
α1 8.115e-02 (4.726e-03) 8.721e-02 (5.496e-03)
β1 8.966e-01 (5.034e-03) 8.950e-01 (5.249e-03)

AIC -10793.11 -10518.3
BIC -10771 -10496.2

Figures in brackets are standard errors.
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Table 4. Copula Fitting Results

GARCH-NIG
Copula Parameter AIC value

Gaussian 9.191e-01 (4.205e-02) -3517.934
Gumbel 3.732 (7.285e-02) -3460.264
Clayton 3.905 (1.051e-01) -2915.304
Frank 14.070 (3.242e-01) -3255.558

Student t 9.221e-01 (3.914e-02); 3.675 (2.119) -3683.532

GARCH-Gaussian
Copula Parameter AIC value

Gaussian 9.314e-01 (4.402e-02) -3757.412
Gumbel 3.971 (7.845e-02) -3528.21
Clayton 4.081 (1.114e-01) -2728.87
Frank 16.593 (3.611e-01) -3591.436

Student t 9.349e-01 (5.095e-02); 5.807 (1.601) -3797.926

Figures in brackets are standard errors and for Student t copula, the first parameter is
the correlation, the second parameter is the degree of freedom.
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Table 5. Dynamic Copula Analysis using Moving Window

GARCH-NIG GARCH-Gaussian

ith Co Parameter Co Parameter

1 t 9.109e-1(1.032e-1); 2.444(1.302) Ga 9.308e-1(1.034e-1)
2 t 9.064e-1(9.990e-2); 3.084(9.590e-1) Ga 9.247e-1(1.036e-1)
3 t 9.308e-1(9.505e-2); 5.594(9.384e-1) Ga 9.381e-1(1.103e-1)

4 t
9.451e-1(1.157e-1)

3.903(1.017)
t

9.539e-1(6.831e-2)
14.784(2.675)

5 t 9.602e-1(2.804e-1); 7.919(4.215) Ga 9.646e-1(1.437e-1)

6 t
9.697e-1(1.142e-1)

6.826(3.352)
t

9.730e-1(1.164e-1)
15.262(5.337)

7 t 9.654e-1(1.442e-1); 8.098(3.385) Fr 25.157(1.293)
8 t 9.598e-1(9.931e-2); 6.005(2.104) Fr 22.866(1.193)
9 t 9.444e-1(2.117e-1); 7.087(3.630) Fr 18.971(1.003)
10 t 9.385e-1(1.594e-1); 7.675(2.000) Fr 18.115(9.655e-1)
11 t 9.419e-1(1.612e-1); 9.947(1.352) Fr 18.914(1.000)
12 Gu 4.450(2.167e-1) Gu 4.800(2.347e-1)
13 t 9.228e-1(1.533e-1); 5.682(2.388) Ga 9.371e-1(1.143e-1)
14 t 8.831e-1(2.594e-1); 3.574(10.030) Ga 9.062e-1(9.686e-2)

15 t
8.727e-1(7.247e-2)

3.300(8.206)
t

9.009e-1(1.092e-1)
5.012(3.371e-1)

16 t
8.493e-1(1.030e-1)

4.937(2.129)
t

8.765e-1(1.043e-1)
10.513(1.601)

Figures in brackets are standard errors. “Co” represents “Copula type”, the short

notes “t”, “Gu”, “Ga” and “Fr” represent respectively “Student t”, “Gumbel”,
“Gaussian” and “Frank” copulas. And for the Student t copula, the first parameter is
the correlation, the second parameter is the degree of freedom.
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Table 6. Parameter estimates for dynamic Student t copula with
time-varying parameter

GARCH-NIG GARCH-Gaussian

p 9.176e-01 (2.361e-02) 9.267e-01 (2.483e-02)
s0 4.384e-01 (1.497) 1.065 (5.452e-03)
s1 -6.055e-02 (7.407e-01) 1.676e-01 (1.190e-03)
s2 -9.414e-01 (4.165e-01) -6.971e-01 (3.289e-02)

Figures in brackets are standard errors and p represent the correlation estimate.
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Appendix 1. Proof of Proposition 1

Proof. It should be noted firstly that as presented in Duan (1999),
Φ−1[FD(εi,t)] is a standard normal random variable conditional on
ϕi,t−1 with respect to measure P . In fact, from the second condition
in Assumption 1, the Q-standard normal variable Zi,t (i = 1, 2) in
Equation (6) can be represented as Φ−1[FD(εi,t)] + λi,t. According
to the one-to-one relationship of the innovation and the standard
normal random variable described in Duan (1999), this means that
the risk-neutralization has an invariance property indicating that
the nature of the distribution for the transformed innovation re-
mains unchanged. In fact, the risk neutralization merely causes the
transformed innovation to undergo a shift in mean with the magni-
tude of λi determined by the third condition in Assumption 1. So
the dependence structure between the two underlying assets remains
unchanged after the transformation of the two marginals, that is, the
objective copula is the same as the risk-neutral one. 2
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