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1 Introduction

Over the last few years, Margaret Slade has contributed to some major improvments in the

field of industrial economics. The important question of location and spatial interaction in

economic decision is one of her central interests. Her paper, prepared for a presentation at

the “Conférence de l’ADRES” in Paris, presents the ways and the methods she developed

with her coauthors to incorporate the influence of space location in regression model. The

new attention to specifying, estimating and testing for the presence of spatial interaction they

have taken, concerns the use of semiparametric methods to allow less restrictions on the form

of the spatial dependence. The paper is clearly written, without technical developments and

the discussion of potential applications is very convincing on the significant role that the

location can take in economic decisions.

In the standard linear model, there are two ways to incorporate spatial dependence:

in the covariance matrix of the error term and/or in the parametric portion of the model

as additional regressors. In this comment, I would like to explore different utilizations

of semiparametric methods to treat the problem of location effect in regression model and

compare them with the methods used by Margaret Slade and her coauthors. These different

utilizations suggest that location effects could be incorporated in regression model at a low

cost, with an easy estimation of the model and a simple interpretation of the estimators.

In section 2, I consider the specification of the dependence in the error term and propose to

use semiparametric methods in order to obtain efficient estimators. In section 3, I consider

the specification of the dependence as additional regressors and I show that the spatial

dependent model can be closely linked to the semiparametric partial linear model.
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2 Specification of spatially dependent model

If we consider that location can have significant consequences on economic decisions, such

effects should be incorporated in the regression model. This can be done by incorporating

some measures of neighborhood quality as regressors. If some indexes can correctly measure

the location effects and are included as additional regressors in the model, or if the spatial

dependence is correctly specified as an additional regressor in the form of a spatially lagged

dependent variable, the error term is a white noise. However, neighborhood boundaries can

be difficult to define and neighborhood quality can be difficult to measure. Thus, if the

location effect cannot be completely specified in the parametric portion of the model, as

additional regressors, the error term is dependent. Let us consider the linear model

y = Xβ + u, with E(u|X) = 0 E(uu⊤|X) = Ω (1)

where the covariance matrix of the error term Ω is a non-diagonal matrix. If we have some

information on the form of the dependence and if we can obtain a consistent estimator of

Ω, we can use the Generalised Least Squares, or GLS, estimation method to obtain the best

linear unbiased estimator for β. However, if we do not have enough information on the form

of the dependence to estimate Ω consistently, the efficient GLS method cannot be used. It

is then possible to use the OLS estimator of β, which is still consistent, with a covariance

matrix estimator robust to heteroskedastic and dependent error term of unknown form. This

last estimator is an extension of the robust estimator proposed in Newey and West (1987)

to the case of spatial dependence, called spatial Newey-West estimator hereafter.

2.1 Spatial dependence in regressors and error term

Margaret Slade makes use of a model with a specification of the spatial dependence both

in the regressors and in the error term. For instance, in section 3, she uses models that can

be rewritten as

yi = Xiβ +
∑

j

λij zj + ui, ui =
∑

j

ρij uj + εi (2)

where Xi is a row vector of k regressors, zj is the dependent variable yj or another variable,

by convention a location is never a neighbor of itself, λii = ρii = 0, and εi is a white noise.

In the estimation method (section 3) and in the application on “measuring technological

spillovers” (section 5), the use of a semiparametric estimation of λij and a spatial Newey-

West estimator is recommended. The specification of the spatial dependence at the same

time in the regressors, through parameters λij, and in the error term, through parameters

ρij, suggests that the specification as additional regressors does not catch completely the

spatial dependence and some of this dependence is still in the error term.

Confronted with the problem of spatial dependence, in practice, I would be tempted to

adopt one of the following approaches:
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1. if the spatial dependence can be correctly specified in the parametric portion of the

model (through additional regressors), the error term is assumed to be independent

2. if the spatial dependence cannot be correctly specified in the regressors, the error term

can be dependent and a spatial Newey-West estimator is used without any specification

of the dependance in the regressors.

The use of a double specification of the spatial dependence, in the parametric portion of

the model and in the error term, could be useful if the spatially-dependent term included as

additional regressor is of primary interest. Otherwise, if the main interest concerns the fitted

values of the model and thus, a valid and reliable estimator of β, a single specification in the

error term can be used. It would be useful to give more evidence on the usefulness of the

specification of the spatial dependence as additional regressors, when a spatial Newey-West

estimator is used at the same time.

It is important to note that the Newey-West estimator should be used cautiously, because

tests based on this estimator can be unreliable in finite sample. Andrews (1991) shows that

this estimator can perform quite poorly in certain contexts. It follows that the use of the

Newey-West estimator in practice requires very large sample size to be reliable.

2.2 Efficient estimators

The OLS parameter estimator with a spatial Newey-West covariance matrix estimator per-

mits asymptotically correct inference on β in the presence of heteroskedasticity and spatial

dependence of unknown form. This estimator is robust, but not efficient. The most efficient

estimator would be obtained with the GLS estimation method, which is not feasible if we

cannot obtain a consistent estimator of the covariance matrix of the error term Ω. The recent

development of semiparametric methods could help us to obtain a consistent estimate of Ω

and thus, to use the GLS estimation rather than the robust estimation (Newey-West).

Let us consider the model (1) with spatially dependent error term

u = Ru + ǫ, ǫ ∼ IID (0, σ2I) (3)

where R is a n × n matrix with typical component {ρij}. Thus, we have

(I −R) u = ǫ, and u = (I −R)−1ǫ. (4)

where I is a n × n identity matrix. The covariance matrix of the error term u is

Ω = Var(u) = E(uu⊤) = σ2[(I −R)⊤(I −R)]−1 (5)

If consistent estimators of σ2 and R can be obtained with semiparametric methods, the

efficient GLS estimation method can be used to estimate the model (1). It would be inter-

esting to investigate the use of semiparametric methods in this way, to obtain an estimator
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of β valid in the presence of spatial dependence of unknown form and efficient. This could

substantially improve numerical results.

3 Spatially dependent model vs. partial linear model

In this section, I consider that the spatial dependence is correctly specified as an additional

regressor in the form of a spatially lagged variable, that is, a spatial dependent model with

i.i.d. error term. I show that this model is closely linked to a standard semiparametric

model: the partial linear model. At first, I consider a simple spatial dependent model,

without regressors, in the geographic context. Therefore, I study a model with regressors.

Finally, I investigate the spatial model with regressors, in a product-characteristic context.

3.1 Nonparametric model

Let us consider the spatial dependent model in a geographic context,

yi =
∑

j

λij yj + ǫi, ǫi ∼ IID (0, σ2). (6)

Margaret Slade and her coauthors develop a nonparametric estimation of the parameters

λij. They assume that the weights are defined by a common function of the distance between

the two spatial locations of i and j:

∑

j

λij yj =
∑

j

g(dij) yj (7)

where the distance function d is a metric chosen by the practitioner, as for instance the

Euclidian distance. To make the estimation possible, the weights λij must satisfy some

condition: “the influence of other locations must decay as the distance between locations

increases” (section 3).

Let us compare the spatial dependent model to the following nonparametric model,

yi = f(z1i, z2i) + εi, εi ∼ IID (0, σ2) (8)

where z1i and z2i define the location of i as geographic coordinates (latitude, longitude). A

nonparametric estimator of the regression function f at the point (z1i, z2i) can be written as

a weighted sum of the dependent variable:

f̂(z1i, z2i) =
∑

j

wj(z1i, z2i) yj, (9)

where the weighting function wj(z1i, z2i) assigns higher weights to observations close to

(z1i, z2i), for more details see for instance Pagan and Ullah (1999, chapter 3). Many different
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weighting function are candidates. Kernel estimation defines the weights with a probability

function, commonly known as kernels, and a bandwidth parameter. The kernel function

expresses the shape of the weights and the bandwidth parameter controls the magnitude.

As a result, a large value of the bandwidth assigns greater weight to observations far from

(z1i, z2i).

It is clear that the spatial dependent model (6) and the nonparametric model (8) are

closely linked: both fitted values are written as a weighted sum of the dependent variable,

with decreasing weights as the distance location increases.

3.2 Partial linear model

It is not difficult to extend the same argument to a spatial model with regressors,

yi = Xiβ +
∑

j

λij yj + ǫi, ǫi ∼ IID (0, σ2) (10)

It leads us to consider the semiparametric partial linear model

yi = Xiβ + f(z1i, z2i) + εi, εi ∼ IID (0, σ2) (11)

Robinson (1988) influential paper shows that β can be estimated consistently, at a rate of

convergence similar to a parametric rate. This model can be rewrite

yi − E(yi|z1i, z2i) = [Xi − E(Xi|z1i, z2i)] β + ε (12)

Robinson proposes to estimate h1i = E(yi|z1i, z2i) and h2i = E(Xi|z1i, z2i) with nonparamet-

ric kernel estimators, and shows that the OLS estimator of the model

(yi − ĥ1i) = [Xi − ĥ2i] β + ε (13)

is a
√

n-consistent estimator of β, often called the “double residual” estimator. A consistent

estimator of f is given by a nonparametric estimation of yi − Xiβ̂ on (z1i, z2i),

f̂(z1i, z2i) =
∑

j

wj(z1i, z2i) [yj − Xjβ̂], (14)

Estimation of β and f requires 4 steps:

1. ĥ1i is the residual from the nonparametric estimation of yi on (z1i, z2i)

2. ĥ2i is the residual from the nonparametric estimation of Xi on (z1i, z2i)

3. β̂ is the OLS parameter estimator of (yi − ĥ1i) on (Xi − ĥ2i)

4. f̂ is the fitted values from the nonparametric estimation of (yi − Xiβ̂) on (z1i, z2i)
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Interpretation of the estimators of β and f is straightforward. In (14), we can decompose

the equation in two components by developing the right term. If Xi and z1i, z2i are not

independent and if we can write Xi = h(z1i, z2i) + ηi, the function h measures the influence

of the location on the regressors Xi and ηi is the part of the regressors not explained by the

location. A nonparametric estimator of h is given by ĥ(z1i, z2i) =
∑

j
wj(z1i, z2i)Xj. This

last term is the second component of the right term in equation (14), up to scale factors.

Furthermore, the first component,
∑

j
wj(z1i, z2i) yj, is the influence of the location on the

dependent variable. This makes clear that the estimator of f measures the direct influence

of the location on yi and the indirect influence of the location on Xi. In addition, it can be

shown that β̂ measures the direct influence of Xi on yi: if we replace Xi by h(z1i, z2i) + ηi

in (11) and if we calculate equation (12) again, the two functions f and h are removed. In

other words, the influence of the location on yi and Xi is removed when we compute an

estimator of β. For more details, among others, see Yatchew (2003).

Finally, in the partial linear model, the estimator of β measures the direct influence of the

regressors Xi on the dependent variable yi and the estimator of f measures the influence of

the location (z1i, z2i) on the model. The influence of the location includes at the same time

a direct influence on the dependent variable yi and an indirect influence on the regressors

Xi. It follows that β̂ is an estimator robust to the influence, of any form, of the location on

the model.

In addition, we can see that the direct influence of the location on the dependent variable,

that is, the first component in equation (14), is similar to the spatial dependent term in

model (10). This makes clear that the spatial dependent model and the partial linear model

are closely connected. Note that the partial linear model includes a measure of the influence

of the location on the regressors, not the spatial dependent model. Therefore, it would be

interesting to study further the link between these two models and to compare them based

on some empirical results.

3.3 Product-Characteristic context

The previous developments are concerned with location in a geographic context. They can

be applied to the spatial dependence in a product-characteristic context. Let us consider the

model used by Margaret Slade in section 3.2, but with i.i.d. error terms, that is,

yi = Xi β +
∑

j

λij pj + ǫi, ǫi ∼ IID (0, σ2) (15)

where ǫi is a white noise and λij is a function of measures of distance in product-characteristic

space defined by a row-vector of k variables Zi. This spatially dependent model in prices

assigns higher weights to observations that are close to i in the product-characteristic space.
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For comparison purpose, let us consider the model

yi = Xi β + γ pi + ǫi, where pi = m(Zi) + qi, (16)

where qi is the portion of pi not explained by Zi. A nonparametric estimator of m is given by

m̂(Zi) =
∑

j
wj(Zi) pj, where the weighting function assigns higher weight to observations

close to i in the product-characteristic space, that is, with characteristics Zj similar to Zi.

It is clear that this last estimator is very similar to the spatially dependent regressor in (15).

It leads us to consider the following partial linear model,

yi = Xi β + γ pi + m(Zi) + ǫi, ǫi ∼ IID (0, σ2). (17)

This model includes at the same time the two equations defined in (16) and we have

m̂(Zi) =
∑

j

wj(Zi) [yj − Xj β̂ − γ̂ pj] (18)

With the same argument as in the geographic context, we can see that the estimator of γ

measures the direct influence of the price on the dependent variable and m(Zi) measures the

influence of the product-characteristic location Zi on the price and on the other variables of

the model.

There is some limitations to the use of the model (17) in practice, because a nonparametric

estimation of the function m would be unreliable with more than three variables in Zi, unless

a huge sample is available. This problem is known as the curse of dimensionality. However,

an usual way to reduce the number of dimensions in the nonparametric portion of the model

is to use only discrete and continuous variables in the unknown function m. Indeed, dummy

variables would cause only scale effects and would not affect the curvature of the function if

they were included in m. Thus, the presence of dummy variables in the product-characteristic

space will not be included in the nonparametric part of the model but as regressors in the

parametric part of the model. This contributes to reduce the curse of dimensionality.

Once more, we can see that the spatial dependent model and the partial linear model

are closely linked and it would be interesting to compare numerical empirical results based

on these two models.

4 Conclusion

In this comment, I have explored the use of semiparametric methods to incorporate the

effects of spatial location in regression model, in a different way that the methods devel-

opped by Margaret Slade and her coauthors. On the one hand, if our interest is mainly

concerned by the estimation of a model, robust to the influence of the location, we have

seen that semiparametric methods could be used to obtain efficient estimators. On the other

hand, if our main interest is to measure the influence of the location, we have seen that the
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spatial dependent model is closely connected to the partial linear model. I have presented

some similarities between the spatial dependent model and the partial linear model, further

developments should study their differences.
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