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Non-stationarity and meta-distribution

Guégan D. ∗

March 28, 2008

Abstract

In this paper we deal with the problem of non-stationarity encoun-

tered in a lot of data sets, mainly in financial and economics domains,

coming from the presence of multiple seasonnalities, jumps, volatil-

ity, distorsion, aggregation, etc. Existence of non-stationarity involves

spurious behaviors in estimated statistics as soon as we work with

finite samples. We illustrate this fact using Markov switching pro-

cesses, Stopbreak models and SETAR processes. Thus, working with

a theoretical framework based on the existence of an invariant mea-

sure for a whole sample is not satisfactory. Empirically alternative

strategies have been developed introducing dynamics inside modelling

mainly through the parameter with the use of rolling windows. A spe-

cific framework has not yet been proposed to study such non-invariant

data sets. The question is difficult. Here, we address a discussion

on this topic proposing the concept of meta-distribution which can be

used to improve risk management strategies or forecasts.

Keywords : Non-Stationarity - Switching processes - SETAR pro-

cesses - Jumps - Forecast - Risk management - Copula - Probability

Distribution Function.

JEL classification: C32, C51, G12

1 Introduction

The strict stationarity assumption, or ergodicity, is the basis for a general
asymptotic theory for stochastic non-linear processes and their identification,

∗Paris School of Economics, CES-MSE, University Paris 1 Panthéon-Sorbonne, 106
boulevard de l’hopital, 75013, Paris, France, e-mail : dominique.guegan@univ-paris1.fr
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estimation and forecasting procedures. It guarantees that the increase of the
sample size leads to more and more information which permits to an asymp-
totic theory to make sense. Generally speaking, stationarity is thought to
be verified by the process that we study, for all t ∈ R or t ∈ Z, or by the
whole sample data set when we work empirically. Thus stationarity means
"‘global"’ stationarity.

Nevertheless, it has been pointed out, from a long time, some evidence of
non-stationarity inside data sets, when we observe the process over long pe-
riods of time. This problem has been discussed for instance through the
problem of forecasting, Brooks (1997). Structural models have then been
built to include adjustment mechanisms to improve the forecastings. All
these works try to stay inside a stationary framework developping non-linear
models including ARCH models, Engle (1982), GARCH models, (Bollerslev
(1986), RCA models, Nicholls and Quinn (1982) and so on.

To circumvent this problem, Dalhaus (1997) used a rescaled technique to
define the notion of local stationarity in order to avoid the problem of global
non-stationarity. He develops, in that context, an asymptotic theory, mainly
applied for linear models or close form models. Another strategy has been
developed by various authors creating local approximations of non-stationary
models by the way of local stationary models, using time-varying state-space
representations, Subba Rao (2005) or wavelets representations, Fryzlewiczi,
Van Bellegem, Von Sachz (2003). The local covariance representation for
these local approximations have also been investigated, Stephan and Skan-
der (2002).

Here our purpose is different. We develop a framework permitting to work
in a stationary setting including the structural non-stationarities. We as-
sume that a process (Xt)t is characterized by changes inside the k-order
moments all along the information set (corresponding in practice to the ob-
served trajectory). This corresponds to structural changes in financial time
series causing the time series over long intervals to deviate significantly from
stationarity. This means that we assume that non-global stationarity is ver-
ified for the sample. Then, it is plausible that by relaxing the assumptions
of stationarity in an adequate way, we may obtain better fit and then robust
forecasts and management theory for instance. Doing that, we will see that
we can get new insight to approximate the unknown distribution function for
complex non-stationary process.

Avoiding to use the whole sample, source of non-stationarity, we define a
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new way to analyse and model this information set dividing it in subsamples
on which stationarity is achieved. In this paper, our objectives are twofold.
First, we show that the non-stationarities observed on the empirical moments
pollute the theoretical properties of the statistics defined inside a "‘global"’
stationary framework, and thus a new framework needs to be developed.
Second we propose a new way to study finite sample data sets in presence of
k-order non-stationarity.

As the non-stationarity affects nearly all the moments of a time series when
it is present, we first studied the impact of the non-stationarity on a non-
linear transformation of the observed data set (Yt)t considering (Y δ

t )t, for any
δ ∈ R+, looking at its sample autocovariance function (ACF). We exhibit the
strange behavior of this ACF in presence of non stationarity and illustrate it
through several modellings. Then, in order to avoid mis-specification using
the sample ACF when we work with a practical point of view, we propose to
work with the distribution function. In case of non-stationarity, this one ap-
pears also non-adequate, and justifies the necessity to adopt a new strategy.
Thus, we focus on the building of sequence of invariant distribution functions
using the notion of homogeneity intervals introduced by Starica and Granger
(2005). This methodology will conduce us to propose the notion of meta-
distribution associated to a sample in presence of non-stationarity. This last
notion lies on both the use of copula and sequence of homogeneity intervals
characterized by invariant distribution functions.

Thanks to this new approach, we will see that we can propose new insight
for robust forecastings, risk management theory and solutions of complex
probabilistic problems.

The plan of the paper is the following. In Section two we recall the notion of
strict stationarity and we exhibit the specific behavior of the sample ACF for
a (Y δ

t )t process in presence of non-stationarity leading to the creation of spuri-
ous behaviors that we describe through three different modellings. In Section
three we specify an homogeneity test based on higher order cumulants and we
show how the copula concept is usefull in presence of non-stationarity. The
notion of meta-distribution is introduced. Some applications are proposed
for econometricians and risk managers. Section four concludes proposing new
extensions at this work.
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2 Empirical evidence

A stochastic process is a sequence of random variables (Yt)t defined on a
probability space (Ω,A, P ). Then, ∀t fixed Yt is a function Yt(.) on the
space Ω, and ∀ω ∈ Ω fix Y.(ω) is a function on Z. The functions (Y.(ω))ω∈Ω

defined on Z are realizations of the process (Yt)t. A second order stochastic
process (Yt)t is such that, ∀t, EY 2

t < ∞. For a second order stochastic
process, the mean µt = EYt exists ∀t and also the variance and the covariance.
The covariance γ(., .) of a second order stochastic process (Yt)t exists and is
defined by

∀h,∀t ∈ Z, cov(Yt, Yt+h) = γ(h, t) < ∞. (1)

A stochastic process is completely known as soon as we know its probability
distribution function. When several realizations of a process are available, the
theory of stochastic processes can be used to study this distribution function.
However, in most empirical problems, only a single realization is available.
Each observation in a time series is a realization of each random variable of
the process. Consequently, we have one realization of each random variable
and inference is not possible. We have to restrict the properties of the process
to carry out inference. To allow estimation, we need to restrict the process
to be strictly stationary, because we work mainly with non-linear models.

Definition 2.1 A stochastic process (Yt)t is strictly stationary if the joint

distribution of Yt1 , Yt2 , · · · , Ytp is identical to that of Yt1+h, Yt2+h, · · · , Ytp+h,

for all h, where p is an arbitrary positive integer and t1, t2, · · · , tp is a collec-

tion of k positive integers.

Strict stationarity means intuitively that the graphs over two equal-length
time intervals of a realization of a time series should exhibit similar statistical
characteristics. It means also that (Yt1 , · · · , Ytp) and (Yt1+h, · · · , Ytp+h) have
the same joint distribution for all positive integers h and p, and thus all
the same k-order moments. Therefore, strict stationarity requires that the
distribution of Yt1 , Yt2 , · · · , Ytp is invariant under time shifts. In that case,
we speak of global stationarity.

2.1 Description of data sets

Even if we work always in a global stationary framework, a lot of non station-
arities are observed on real data sets. In this Section, we specify some of the
non-stationarities which affect the major financial and economic data sets.
These questions are the base of a lot of problems concerning the modelling of
real data sets. Indeed, structural behaviors like volatility, jumps, explosions
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and seasonality provoke non-stationarity. Now specific transformations on
the data sets like concatenation, aggregation or distortion are also at the
origin of non-stationarity.

All these features imply that the property of global stationarity fails. Indeed,
existence of volatility imposes that the variance depends on time. This latter
one is generally modelled using time varying function. In presence of season-
ality the covariance depends on time producing evidence of non stationarity.
Existence of jumps produces several regimes inside data sets. These different
regimes can characterize the level of the data or its volatility. Changes in
mean or in variance affect the properties of the distribution function chara-
terizing the underlying process. Indeed, this distribution function cannot
be invariant under time-shifts and thus a global stationarity cannot be as-
sumed. Distorsion effects correspond to explosions that one cannot remove
from any transformation. This behavior can also be viewed as a structural
effect. Existence of explosions means that some higher order moments of the
distribution function do not exist. Concatenated data sets used to produce
specific behavior cannot have the same probability distribution function on
the whole period as soon as it is a juxtaposition of several data sets. Ag-
gregation of independent or weakly dependent random variables is a source
of specific features. All these behaviors provoke the non existence of higher
order moments or erractic behaviors of the sample ACF.

Until now, a lot of authors tried to take into account these non-stationarities
through models. The simple one consists to take the square (or any transfor-
mation) of the data to model the conditional variance, Engle (1982), Nelson
(1990), Ding and Granger (1993). Now, whatever the chosen methodology,
the main tool to study the data sets remains the use of the sample auto-
correlation function. Or the sample ACF computed from (Y δ

t )t, δ ∈ R+,
presents inappropriate behaviors under non stationarity. We exhibit below
the asymptotic behavior of the sample autocorrelation function in that con-
text and illustrate it through some modellings.

2.2 Asymptotic behavior of the ACF of the (Y δ
t )t process

We focus on the behavior of the sample autocovariance function of a specific
data set. We assume that we observe a sample size T , Y = (Y1, Y2, · · · , YT )
from which we build Y δ = (Y δ

1 , Y δ
2 , · · · , Y δ

T ), δ ∈ R+, and we divide it
in r subsamples consisting each of distinct stationary processes with finite
k-order moments, k ∈ N . We denote pj ∈ R+, j = 1, · · · r such that
p1 + p2 + · · · + pr = 1. Here pj is the proportion of observations from the
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jth subsample in the full sample. If we define now qj = p1 + p2 + · · · + pj,
j = 1, · · · r, thus the whole sample is written as the reunion of r subsamples
Y δ = ((Y δ

1 )(1), · · · , (Y δ
Tq1

)(1), (Y δ
Tq1+1)

(2), · · · , (Y δ
Tqr−1+1)

(r), · · · , (Y δ
T )(r)).

The sample auto-covariance funtion for the series (Y δ
t )t is equal to

γ̃Y δ(h) =
1

T

T−h
∑

t=1

(Y δ
t − Y δ

T )(Y δ
t+h − Y δ

T ), (2)

where Y δ
T is the sample mean of the process (Y δ

t )t.

Proposition 2.2 Let be r subsamples
(

(Y δ
1 )(i), · · · , (Y δ

Tqi
)(i)
)

, i = 1, · · · , r

and δ ∈ R+, coming from the sample (Y δ
t )t, each subsample corresponding to

a strict stationary distinct process with finite k-order moments, whose sample

covariance is equal to γ̃(Y δ)(i)(h). Under these previous conditions the sample

autocorrelation function γ̃Y δ of the sample (Y δ
t )t is such that:

γ̃Y δ(h) →
r
∑

i=1

piγ̃(Y δ)(i)(h) +
∑

1≤i≤j≤r

pipj[E(Y δ)(i) −E(Y δ)(j)]2, h → ∞. (3)

The proof is postponed at the end of the article in an Annex.

Under the property of strict stationary, the ACF of each process has an
exponential decay. Thus, the sample (Y δ

t )t has its sample ACF γ̃Y δ(h) that
decays quickly for the first lags and then approach positive constants given by
∑

1≤i≤j≤r pipj(E[(Y δ
t )(i)]−E[(Y δ

t )(j)])2. Thus, in presence of non-stationarity,
this last term explains the existence of persistence observed on the sample
ACF when we compute it using the whole sample (Y δ

t )t. When δ = 1, this
proposition permits to explain how shifts in the means could provoke a slow
decay of the autocorrelation function - which can be associated to a long
memory behavior - and the same behavior is observed for the variance as
soon as we modelled it using Y δ

t , for any δ. We refer to Guégan (2005) for a
review on the long memory concepts. We illustrate now these previous facts
using different modellings.

Let be a two states Markov switching process (Yt)t:

Yt = µst
+ εt. (4)

The process (st)t is a Markov chain which permits to switch from one state
to another one with respect to the transition matrix P , whose elements are
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the fixed probabilities pij defined by pij = P [st = i|st−1 = j], i, j = 1, 2,
0 ≤ pij ≤ 1 and

∑2
i,j=1 pij = 1. The process (εt)t is a strong white noise,

independent to (st)t. The process (Yt)t switches from level µ1 to level µ2 with
respect to the Markov chain. This model has been studied by Andel (1993).
The theoretical behavior of the autocorrelation function of such a model, un-
der stationarity conditions, is similar to the one of an ARMA(1,1) process:
its autocorrelation function decreases with an exponential rate towards zero
for large h. Nevertheless respecting the stationary conditions, it is possible to
exhibit sample ACFs which have a very slow decay. This effect is explained
in that case by the behavior of the second term of the relationship (3) which
stays always bounded. We exhibit in Figure 1 this kind of behaviors for some
models (4).
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Figure 1: Behaviors of the autocorrelation functions of some simulated se-
ries issued from model (4) with p11 = p22 = p. Left column: (µ1, µ2) =
(0.5,−0.5) and right column: (µ1, µ2) = (5,−5). Sample size T = 1000.

A StopBreak model permits also to switch from one state to another one. let
be the process (Yt)t defined by

Yt = µt + εt, (5)
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where
µt = (1 − αδt)µt−1 + δtηt, (6)

with α ∈ [0, 2]. (δt)t is a sequence of independant identically distributed
Bernouilli (λ) random variables and (εt)t and (ηt)t are two independent strong
white noises, Breidt and Hsu (2002). It is know that for fixed λ, this process
- which models switches with breaks - has short memory behavior. This one
is observed for long samples, but as soon as the jumps are rare relatively to
sample size, the short memory behavior does not appear so evident. Even if
the asymptotic theory describes a short memory behavior, a sample experi-
ment for a short sample size looks much like the corresponding characteristics
for long memory processes. This effect can be explained by the relationship
(3). Indeed, for different values of α and λ, the means µ1 and µ2 are different,
thus the second term of the relationship (3) is bounded and the sample ACF
of model (5)-(6) does not decrease towards zero. We provide in Figure 2 an
example of this behavior.

Figure 2: The trajectory and ACF of the model (5)-(6) with λ = 0.01 and α = 0.9,
T = 2000, σ2

ǫ
= σ2

η
= 1.

Consider now a SETAR process (Yt)t whose a simple representation is

Yt = µ1I(Yt−1 > 0) + µ2I(Yt−1 ≤ 0) + εt, (7)

where I(.) is the indicator function, (εt)t being a strong white noise. This
model permits to shift from the mean µ1 to the mean µ2 with respect to
the value taken by Yt−1. SETAR processes are known to be short memory,
Tong (1990). But it is also possible to exhibit sample ACFs which present
slow decay. This slow decay can also be explained by the second term of
the relationship (3), and also by the time spent in each state. We exhibit in
Figure 3 an experiment corresponding to this fact.
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Figure 3: Trajectory and ACF of the Threshold Auto-Regressive model defined by equa-
tion (7) with T = 2000, σ2

ǫ
= 0.2 and µ0 = −µ1 = −1.

Thus the use of the sample ACF creates confusion in the modelling of some
data sets in presence of non-stationarity. This last statistical tool appears
non sufficient to characterize the behavior of any data set in that context.
Thus, a new strategy needs to be developed as soon as the second order
properties fail to give correct information for modelling. Moreover, it ap-
pears important to use the characteristics of the higher order moments or of
the distribution function to solve this problem.

One way will be to test the invariance of the sample higher order moments
and of the empirical distribution function all along the whole sample. With
respect to the result of these tests, various strategies can be used. In presence
of non-stationarity, we can model dynamical parameters models, consider
models with a distribution function evolving in a dynamical way all along
the whole sample or we can consider a sequence of stationary models. This
means that we can define two strategies to study such a data set: the use of
an unique distribution function with dynamic parameters or a set of several
distribution functions invariant on each subsample.

3 A meta-distribution function

This Section concerns the discussion of several points of views in order to
take into account non-stationarity and, to detect and model local stationar-
ity. It is mainly a methodology discussion.

The first problem is to detect non-stationarities or to test them. In a first
insight, we can consider an extension of the approach proposed by Starica
and Granger (2005) using moments up to 2. Then, we will transform an
univariate study in a multivariate one using the copula tool to determine the
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invariant joint distribution function of the sample. In that latter case, we are
interesed to detect the copula which links the different invariant probability
distribution functions adjusted on each subsample.

First step: detection of homogeneity intervals. In a recent paper Starica and
Granger (2005) propose to test successively on different subsamples of a time
series (Yt)t the invariance of the spectral density. They propose a specific test
and their strategy is the following. They consider a subset (Ym1 , · · · , Ym2),
∀m1,m2 ∈ N , on which they apply their test and build confidence intervals.
Then, they consider another subset, for some p ∈ N , (Ym2+1, · · · , Ym2+p).
They apply again the test and verify if the value of the statistic belongs
to the confidence interval previously built or not. If it belongs to the con-
fidence interval, they continue with a new subset. If not, they consider
(Ym1 , · · · , Ym2+p) as an interval of homogeneity and analyse the next subset
(Ym2+p+1, · · · , Ym2+2p) and define new confidence intervals from their statitic.
At the end, they estimate a model on each homogeneity interval. They use
these intervals to forecast.

The approach proposed by Starica and Granger (2005) is based on the spec-
tral density which is built using the second order moments of a process. It is
possible to extend this method using empirical higher order moments. using
higher order moments is mainly justified by the fact that the moments up to
2 are non-stationary inside financial data sets. These higher order moments
are estimated on the whole sample and on subsamples as before. Then a
test based on these higher order moments or their cumulants can be built
permitting to obtain intervals of homogeneity, Fofana and Guégan (2007).
The spectral representation of the cumulants of order k, denoted ck are used
to build the test statistic. If we denote fck,Y the spectral density of cumu-
lants of order k for the process (Yt)t and Ick,Y,T , its estimate using a sample
(Y1, · · · , YT ), then we define the following statistic :

T̃ (T, Y ) = sup
λ∈[−π,π]

∣

∣

∣

∣

∣

∫

[−π,π]k−1

(

Ick,Y,T (z)

fck,Y

−
c̃k

ck

)

dz

∣

∣

∣

∣

∣

, (8)

where c̃k is an estimate of ck. The authors show that - under the null that
the cumulants of order k are invariant on the subsamples - the statistic (8)

converges in distribution to (2π)k−1

ck
B(
∑k−1

j=1 λj) where B(.) is the Brownian
bridge. Thanks to the knowledge of the critical values of this statistic, one
can build homogeneity intervals, using moving windows. This statistic per-
mits to use a more complete information from the data set in order to build
homogeneity intervals.
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Second step: the use of copula concept. When the homogeneity intervals
are determined, we can associate to each subsample an invariant distribution
function and compare it to the distribution function derived using the whole
sample. Thus, we define a sequence of invariant distribution functions all
along the sample. The principle is the following.

let be a process (Yt)t whose distribution function is FY and assume that we
observe Y1, · · · , YT , a sample size T . We are interested to know the joint dis-
tribution function FY = P [Y1 ≤ y1, · · · , YT ≤ yT ] for this set of information.
The knowledge of this distribution function will permit to do forecasting or
to propose a risk management strategy for the data sets under interest. Now
we assume that the process (Yt)t is non stationary, thus its distribution func-
tion FY is not invariant on the whole sample.

We provide an example of such a situation on figure 4. On this figure, we
have identified a sequence of homogeneity intervals characterized by changes
in mean or in variance. Looking at this example (figure 4), we observe that
it appears more appropriate to build, on each subsample, an adequate dis-
tribution function than to define directly a joint distribution function.
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Y
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Figure 4: Example of a sequence of invariant distribution functions

In order to find FY , we are going to determine on each homogeneity interval
an invariant distribution function. These distribution functions can belong
to the same class of distribution functions but with different parameters or

11

ha
ls

hs
-0

02
70

70
8,

 v
er

si
on

 1
 - 

7 
Ap

r 2
00

8



can belong to different classes of distribution functions. To find them, we
can use tests, as the Kolmogorov-Smirnov test, Q-Q plots or the χ2 test.

Thus, we get a sequence of r stationary subsamples Y
(i)
1 , · · · , Y

(i)
Tqi

, i =
1, · · · , r, each characterized by an invariant distribution function FY (i) , i =
1, · · · , r. Using this sequence of invariant distribution functions, we can build
the distribution function characterizing the whole sample, using copulas. We
will call this probability distribution function, the meta-distribution func-
tion associated to the whole sample. In order to build it, we briefly recall
the notion of copulas in a two dimensional setting and we will extend it to a
r dimensional setting.

Consider a general random vector Z = (X,Y )
′

, where ′ denotes the trans-
pose, and assume that it has a joint distribution function F (x, y) = P[X ≤
x, Y ≤ y] and that each random variable X and Y has a continuous marginal
distribution function respectively denoted FX and FY . It has been shown by
Sklar (1959) that every 2-dimensional distribution function F with margins
FX and FY can be written as F (x, y) = C(FX(x), FY (y)) for an unique (be-
cause the marginals are continuous) function C that is known as the copula
of F (this result is also true in the r-dimensional setting). Generally a copula
will depend almost on one parameter, then we denote it Cα and we have the
following relationship:

F (x, y) = Cα

(

FX(x), FY (y)
)

. (9)

Here, the copula Cα is a bivariate distribution function with uniform marginals
and it has the important property that it does not change under strictly in-
creasing transformations of the random variables X and Y . Moreover, it
makes sense to interpret Cα as the dependence structure of the vector Z.

Practically, to get the joint distribution function F of the random vector
Z = (X,Y )

′

given the marginal distribution functions FX and FY of X and
Y respectively, we have to choose a copula that we apply to these margins.
There exists different families of copulas: the elliptical one, the archimedean
one, the meta-copulas, Joe (1997) and Cherubini and Luciano (2004).

We have presented the method to adjust a copula in case of two processes.
We can extend dynamically the adjustment for a sequence of r processes
with invariant distribution functions FY (i) , i = 1, · · · , r. Thus, we will work
step by step working with two subsamples at each step. This will permit to
detect if the copula that we look after is the same all along the samples, or
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if it is the same but with different parameters or, if it changes with respect
of the subsamples. In order to achieve this process, we can use nested tests,
Guégan and Zhang (2006) for applications.

Through the nested tests, we analyze the changes. If we admit that only
the copula parameters change, we can apply the change-point analysis as in
Dias and Embrechts (2004) to decide the change time. Moreover, consider-
ing that change-point tests have less power in case of “small" changes, we
can assume that the parameters change according to a time-varying func-
tion of predetermined variables and test it. More tractably, we can decide
the best copula on subsamples using the moving window, and then observe
the changes. We apply this method on the r homogeneity subsamples and
determine an unique dynamic copula Cαt

linking the sequences of invariant
distribution functions FY (i) , i = 1, · · · , r. This copula will characterize the
joint distribution function FY of the sample. It will provide an analytical
expression of the joint distribution function. This distribution function will
characterize the non-stationarity of the whole sample by the fact that it is
built via a sequence of invariant distribution functions which can be all dif-
ferent or belonging to the same class with various parameters. This copula
can be also characterized by sequence of parameters αt evolving in time. It
is in that sense that we call it a meta-distribution function. Thus, we have
the following representation :

F (Y
(1)
t , · · · , Y

(r)
t ) = Cαt

(F (Y
(1)
t ), · · · , F (Y

(r)
t )), (10)

where Y
(i)
t represent the observations in each i subsample, i = 1, · · · , r, fol-

lowing the notation of the Subsection 2.2.

This new method permits now to propose new developments concerning sev-
eral problems pointed in the introduction.

1. Concerning forecasting in presence of non-stationarity: we can use the
linking copula Cαt

to get a suitable forecast for the process (Yt)t. As-
suming the knowledge of the whole information set IT = σ(Yt, t < T ):
we compute ECαt

[Yt+h|IT ]. We can also decide to do forecast using, as
an information set, one or several subsamples defined as homogeneity
intervals. For instance if we consider the last homogeneity interval, we
will compute EF

Y (r)
[Yt+h|Ir], where Ir is the information set generated

by the random variables (Y
(r)
Tqr−1+1, · · · , Y

(r)
T ) and FY (r) , the margin as-

sociated to this subset. If we use two homogeneity intervals, we will
compute the expectation under the copula linking the two margins
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corresponding to each subsample and the information set will be the
reunion of the two subsamples.

2. Concerning the risk management strategy and the computation of the
measures of risks associated to a portfolio which contains financial as-
sets which are non stationary, we adjust - on each asset - the corre-
sponding margins and then we compute Cαt

linking these margins and
associated to the portfolio. We use it to compute risk measures for the
portfolio, like the VaR or the expected shortfall, Caillault and Guégan,
(2005).

3. This new methodology gives also a way to find the distribution func-
tion of specific models. For instance, this approach can be used to
compute the distribution function of any Markov switching model. In
that latter case the joint distribution function is non known. On each
state, we can estimate a margin and use the meta-distribution based
on these margins as an approximation of the true distribution function.
For instance, if we consider the model introduced in (4), the probabil-
ity distribution function of (Yt)t is unknown. Now, assuming that we
observe (Y1, · · · , YT ) a sample set size T , when we are in the state 1, we
can estimate the distribution function associated to this state, denoted
F1 and the same for the state 2, F2. Those distribution functions can
also be computed theoretically if we assume known the distribution
function D(., .) of the noise (εt)t. Under regular conditions, we know
that a way to approach the joint distribution function is to consider
a mixing of these two previous distribution functions computing it as
F (Y1, Y2) = π11F1(Y1) + π22F2(Y2), where π11 is the probability for Yt

to be in the state 1 and π22, its probability to be in the state 2. Y1

will represent the observations of the sample on the state 1 and Y2 the
observations in the state 2. We can also define the joint distribution
function in the following way F (Y1, Y2) = Cα(F1(Y1), F2(Y2)), where
Cα will be the copula associated to the two margins F1 and F2. This
approach avoids independence conditions between (εt)t and (st)t, the
knowledge of D(., .), and the estimation of the probabilities πl, l = 1, 2,
which is not an easy task.

4 Concluding remarks

In this paper, we discuss deeply the influence of presence of non-stationarity
inside data sets on specific statistics, for which a lack of robustness is ob-
served.
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To detect existence of local or global stationarity on data sets, we have pro-
posed a new test based on the empirical moments up to 2. Then we introduce
the concept of meta-distribution to characterize the joint distribution func-
tion of a non-stationary sample. We observe that with this approach, some
current open problems find an interesting solution. It concerns forecasting,
risk management strategy and the obtention of the probability distribution
function of non-stationary non-linear models. Now some extensions can also
be proposed from this work.

• The use of the change point theory to verify the date at which we get the
homogeneity intervals. This could be a nice task. Indeed, most of the
works concerning the change point theory concern detection of breaks
in mean or in volatility. These works have to be reexamined taking
into account the fact that breaks can provoke spurious long memory.
Indeed, in that latter case, using the covariance matrix is a problem in
the sense that we cannot observe change point in it.

• The time spend in each state when breaks are observed. This random
variable appears very important in order to characterize the existence
of states. In a lot of papers, empirical evidence has been discussed. It
will be interesting to know exactly (or to know how to estimate) the
distribution function of this time spend in each state.

• The discussion of models taking into account sharp switches and time
varying parameters. A theory has to be developed to answer to a lot of
questions coming from practitioners. If the model proposed by Hyung
and Franses (2005) appears interesting in that context, because it nests
several related models by imposing certain parameter restrictions (AR,
ARFI, STOPBREAK, models for instance, etc..), more identification
theory concerning this model need to be done to understand how it can
permit to give some answer to the problematic developed in this paper.
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5 Annex: Proof of the proposition 2.2

We develop the right hand side of the relationship (2):

γ̃Y δ(h) =
1

T

T−h
∑

t=1

Y δ
t Y δ

t+h −
Y δ

T

T

T−h
∑

t=1

(Y δ
t + Y δ

t+h) +
1

T

T−h
∑

t=1

Y 2δ
T .

Let

A =
1

T

T−h
∑

t=1

Y δ
t Y δ

t+h

and

B = −
Y δ

T

T

T−h
∑

t=1

(Y δ
t + Y δ

t+h) +
1

T

T−h
∑

t=1

Y 2δ
T .
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Thus γ̃Y δ(h) = A + B. First, we compute A.

A =
1

T

r
∑

i=1

Tqi−h
∑

t=Tqi−1+1

(Y δ
t )(i)(Y δ

t+h)
(i)

+
1

T

r
∑

i=1

[

Tqi+1−h
∑

t=Tqi−h+1

(Y δ
t )(i)(Y δ

t+h)
(i) + · · · +

Tqr−h
∑

t=Tqr−1−h+1

(Y δ
t )(i)Y

(r)
t+h].

Now, we know that cov((Y δ
t )(i), (Y δ

t )(j)) = 0 for all i 6= j by building, thus

A =
1

T

r
∑

i=1

Tqi−h
∑

t=Tqi−1+1

(Y δ
t )(i)(Y δ

t+h)
(i) + O(1).

We develop the term of the right hand of the previous relationship. Thus we
get

1

T

r
∑

i=1

Tqi−h
∑

t=Tqi−1+1

(Y δ
t )(i)(Y δ

t+h)
(i) =

r
∑

i=1

pi

1

Tpi

T qi−h
∑

t=Tqi−1+1

(Y δ
t )(i)(Y δ

t+h)
(i)

+
r
∑

i=1

piE[(Y δ
t )(i)]2 −

r
∑

i=1

piE[(Y δ
t )(i)]2.

Thus

1

T

r
∑

i=1

Tqi−h
∑

t=Tqi−1+1

(Y δ
t )(i)(Y δ

t+h)
(i) =

r
∑

i=1

piE[(Y δ
0 )(i)(Y δ

h )(i)]−
r
∑

i=1

piE[(Y δ
t )(i)]2+

r
∑

i=1

piE[(Y δ
t )(i)]2

=
r
∑

i=1

(piγ(Y δ)(i)(h) + E[(Y δ
t )(i)]2).

Thus, A →
∑r

i=1 piγ(Y δ)(i)(h) +
∑r

i=1 piE[(Y δ
t )(i)]2, in probability.

Now we compute B. Using the same remark as before, B can be simplified
and we get:

B = −Y 2δ
T + O(1).

Or

−Y 2δ
T = −(

r
∑

i=1

piE[(Y δt)(i)])2 = −
r
∑

i=1

r
∑

j=1

pipjE[(Y δ
t )(i)]E[(Y δ

t )(j)]
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= −
r
∑

i=1

(piE[(Y δ
t )(i)])2 − 2

∑

1≤i≤j≤r

pipjE[(Y δ
t )(i)]E[(Y δ

t )(j)].

Moreover pi = p2
i + pi

∑r

j 6=i,j=1 pj. Thus

−(Y δ)2
T = −

r
∑

i=1

pi(E[(Y δ
t )(i)])2 +

∑

1≤i≤j≤r

pipj(E[(Y δ
t )(i)] − E[(Y δ

t )(j)])2.

Then

B → −
r
∑

i=1

pi(E[(Y δ
t )(i)])2 +

∑

1≤i≤j≤r

pipj(E[(Y δ
t )(i)] − E[(Y δ

t )(j)])2.

Now, using expressions found for A and B we get:

A + B =
r
∑

i=1

piγY δ(i)(h) +
r
∑

i=1

piE[(Y δ
t )(i)]2 −

r
∑

i=1

pi(E[(Y δ
t )(i)])2

+
∑

1≤i≤j≤r

pipj(E[(Y δ
t )(i)] − E[(Y δ

t )(j)])2

=
r
∑

i=1

piγY δ(i)(h) +
∑

1≤i≤j≤r

pipj(E[(Y δ
t )(i)] − E[(Y δ

t )(j)])2.

Hence the proposition (2.2).
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