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Abstract

We consider a complete financial market with primitive assets and
derivatives on these primitive assets. Nevertheless, the derivative as-
sets are non-redundant in the market, in the sense that the market
is complete, only with their existence. In such a framework, we de-
rive an equilibrium restriction on the admissible prices of derivative
assets. The equilibrium condition imposes a well-ordering principle
restricting the set of probability measures that qualify as candidate
equivalent martingale measures. This restriction is preference free and
applies whenever the utility functions belong to the general class of
Von-Neumann Morgenstern functions. We provide numerical exam-
ples that show the applicability of the restriction for the computation
of option prices.
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1 Introduction

It is well-known that, in a complete financial market, there exists a rep-
resentative agent. His existence is convenient for the determination of the
Arrow-Debreu prices at the equilibrium, since they can be linked to the gra-
dient of his utility function taken at his optimal wealth (equal to the total
wealth of the economy). Note that the total wealth does not depend on the
prices of the purely financial assets (i.e. assets with a total supply equal to
zero). Then, it is possible to find links between the Arrow-Debreu prices and
the prices of the primitive assets.

More precisely, we assume in this paper that there exists a unique primi-
tive asset interpreted as a stock. We show that, for a fixed state of the world,
the Arrow-Debreu prices associated with the possible successor states are de-
creasing with the expected dividends of this asset. Furthermore, if at each
date, the stock returns do not depend on its price, the Arrow-Debreu prices
are then decreasing with the stock price. In fact, this result can be easily
extended to the general case, where there exist more than one non-purely
financial asset; in that case, the Arrow-Debreu prices are decreasing with the
total wealth. From a practical point of view, this approach can be partic-
ularly useful for index options, the market index being taken as a proxy of
the total wealth. Our result constrains the risk-neutral probabilities, and as
shown numerically, the intervals of admissible prices for the purely financial
assets are greatly reduced in comparison with the unconstrained case.

Some papers in the literature suggest constraints on risk-neutral proba-
bilities - or equivalently, on state-price deflators. For instance, Cochrane and
Saa-Requejo (1997) impose upper bounds on the volatility of the state-price
deflators. They motivate their restrictions by assuming that any trader will
accept any portfolio with a Sharpe Ratio greater than a given constant (for
instance, 1.0). In order to obtain the target value on the Sharpe Ratio, they
argue that the common value on the markets of the Sharpe Ratio is equal to
0.5. This approach restricts the attitude of the agents towards risk . Even if
this method can be easily implemented - as Sharpe Ratios are observable on
the markets - the restrictions seem to be quite arbitrary from a theoretical
point of view. In the following, we do not restrict the risk-aversion of the
agents, since we deal with very general Von Neumann-Morgenstern utility
functions. Ait-Sahalia and Lo (1998) propose a nonparametric estimation
of the state-price deflators. Using the market information, they estimate an
option-pricing formula, then differentiate twice this estimator with respect
to the strike of the option. Under suitable regularity conditions, this last
quantity converges to a state-price deflator.

Another direction in the literature investigates the hedging problem and,



since perfect hedging is no more possible in incomplete markets, tries to
find the nearest (in some sense) payoff to the considered one among all the
possible strategies. This approach is investigated for different criteria by,
among others, Bertsimas, Kogan and Lo (1997) and Schweizer (1992, 1995).
Nevertheless, when there are frictions on the markets or when the markets
are incomplete, it is well known that the hedging problem and the optimal
consumption-investment problem can no more be separated. In this paper,
we work directly on equilibrium allocations and on equilibrium prices. We
do not separate the two problems and we do not specify an analytical form
for the risk criterium. We only need to assume that each agent maximizes
the expected value of his utility function, the specification of this function is
useless.

Our approach is not similar to that of Black and Scholes (1973) where
the market is complete without the redundant derivative assets. Indeed,
we assume the market is complete only in the presence of these derivative
assets. Our approach differs also from the fictitious completion proposed
by Karatzas, Lehoczky, Shreve and Xu (1991). Indeed, our result does not
depend on a particular choice for the utility functions of the agents. In our
approach, the dividend process of the primitive asset is given exogenously.
Then our results can be seen as the derivatives prices compatible with partial
equilibrium conditions.

Pricing models have two important applications: the pricing of newly
introduced assets and the arbitrage from mispricing of the existing assets.
Our approach assumes that the market is at the equilibrium. Hence, it is
particularly relevant for the arbitrage or for the pricing of some existing assets
with misinformation on the prices. Last, this approach permits also to give
restrictions on the prices of newly introduced assets under a condition of non
modification of the stock price. Conversely, if the new asset is introduced
at a price which does not satisfy our restrictions then the equilibrium stock
price will be automatically modified as in Detemple and Selden (1991).

The paper is organized as follows: in section 1, we show the interest of
our methodology on a simple example. In section 2, we present the gen-
eral model. Section 3 is devoted to the proof of our main result. Section
4 investigates numerical examples in a quadrinomial framework. We com-
pute the intervals of admissible prices, obtained with the constrained and
classical unconstrained methods, for different options in various frameworks:
index options and options with stochastic volatilities, Furopean as well as
American. The results are very encouraging.



2 A Simple Example

Before introducing our model, let us consider the simplest example of in-
complete markets and let us explain the main ideas of the paper on this
example.

More precisely, consider a simple one-period model where the sample
space and the probability are

Q= {wlaw27w3}

P=(1/3,1/3,1/3)

First, there are two assets in the market:
a primitive asset whose prices are

p(0) = 25 at date 0
p(wi) = 20, p(w2) = 30 or p(ws) = 40 at date 1

and a risk-free asset defined by an interest rate r = 1—19.

It is straightforward that the feasible range of the Radon-Nykodym deriva-
tive of the martingale measures with respect to P is

% (Q(w1), Qws), Q(ws)) = % (0.368 + Q(ws), 0.632 — 20 (ws), Q(ws))

where

Q(ws) € [0,0.316]

If there is one unit of primitive asset and no other endowment in the
economy, the total wealth W is then equal to p.

Let us now assume that there is also a non-redundant derivative asset in
zero net supply. The market is then complete and there exists a representa-
tive agent in this economy with a utility function w.

At the equilibrium, the maximization program of this agent leads to the
following first-order conditions:

u'(20) W(30)
- uf(25)’Q(°"2) -

Q (Wl)
Since u is strictly-concave, we must have

Qw1) > Q(w2) > Q(ws).

After imposing these restrictions, we get the feasible range of the risk-neutral
probability
Q(ws3) € [0.088,0.2107]
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which is quite smaller than the range in the unrestricted case. Furthermore,
note that these smaller bounds have been obtained only under an assumption
on the existence of the derivative asset but without knowing anything on its
price process. Consequently, this approach permits to obtain bounds on the
price of the derivative asset, which are better than the usual arbitrage-free
bounds.

More precisely, if the derivative is a call option with a strike equal to 30,
we obtain [0.836,2.001] as bounds on its price at ¢ = 0 instead of [0, 3.002]
when using the classical no-arbitrage argument.

3 The Model

Taken as primitive are a complete probability space (€2, F, P) where Q) is a
finite set of events and a time horizon T'. Let F' = {F;},_, ., be a filtration
modelling the information structure. We denote by E [] the expectation
under P and by E;[.] the conditional expectation under P with respect to
Fi. A date t-node oy is an atom of F;. We denote by X; the set of all
date t-nodes and, for o, € ¥, f(01) = {0111 € X411;0141 C 0} can be
interpreted as the set of the immediate successors of the date t-node o,. For
t=0,..,T—1and g; € ¥, we define the transition probability of P between
dates t and t + 1 at the node o, as follows

Fpoo flo) — [0, 1]

Ot41 /> P(Ut+1 | O't)

We also define, for t =0, ..., T — 1, the F;; measurable random variable P,
by
Voii1 € By, P (0041) = P (044 | 04)

where oy is the unique element of ¥; such that oy1 € f (o).

There is one nonstorable consumption good produced by one firm. At
each date, the supply d; of this good is the production of the firm. This
production is distributed as dividends to shareholders owning the firm. There
is one equity claim which is tradable at date ¢, perfectly divisible and with an
ex-dividend price p; in terms of consumption good. After the date T, the firm
becomes obsolete and is valued at zero. A quantity # of this claim insures to
its owner a quantity 6d; of the perishable good at date t. Throughout the
paper, the total supply of the firm is normalized to one.

In addition to the equity claim described above, there are m + 1 purely
financial assets. By definition, their total supply is always zero. Moreover, for
i =0, ...,m, the i purely financial asset is tradable at each date with a price
q¢ in terms of consumption good. Those assets do not provide dividends.
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The processes (p; +d;),_,  and ((qz) 0 m) are assumed to be
ARG ARG t:07'..7T

positive and F-adapted. Furthermore, we assume that the 0 purely financial

asset is risk-free, i.e. the process (R;) o defined for all ¢, ¢ =0,...,T — 1

t=1,..., )

1 _ q? . ..
by pril o anticipated.

There are N consumers. The n'* consumer has an intertemporal utility
function which associates the utility level U™ (.) with any F-adapted con-
sumption process C' = (Cy),_,  as follows :

> ur (G, t)]

where ™ maps R™ x {0, ...,7} in R. We will require the following properties
on u" :

U (C)=E

Assumption 1 for all n, u"(.,t) is a continuously differentiable increasing
and strictly concave function. Moreover, we impose the following con-
dition:
fort=0,...,7, u"(z;t) — —oc.

z—0t

For any stopping time 7 < T, we define also the auxiliary utility level:

Uy ((Ct)tzT,...,T) = E; XT:“n (Ct,t)
t=

A trading strategy S is a vector

{<Ot>t0,_..,T; O)r,r (@)= (01 g ), }

where:
o Vit t=0,..T, C;is F; measurable;
eVt t=1,...,T, 0, and oy are F; ; measurable;

We interpret 6, (resp. ) as the quantity of the equity claim (resp. of the
i purely financial asset) owned at date ¢ and inherited from date ¢ — 1 by an
agent following strategy S. In particular, o is the quantity of cash (including
the interests) from date t—1 to date ¢, through the intermediary of the market
interest rate. Furthermore, 5 and g are the initial quantities of assets owned
by the agent. We take, by convention, o/ = 0741 = Rpiq = 0.
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The market schedule is: first, the firm produces and then distributes
the dividends among the shareholders; second, consumption, new portfolios
and new prices take place. Prices come from the equilibrium conditions,
as defined in Assumption 2 below. We denote by «; - ¢; the inner product
between a; and ¢;. The budget constraint at dates t =0, ..., T is:

Co+0pi+our =0, (pe+d) +ap-qp =W, (1)

where W; is interpreted as the wealth at date ¢ before consumption. It is a
F; measurable random variable.

An admissible strategy is a trading strategy S satisfying the budget con-
straint (1) and the consumption constraint C; > 0 for all £ between 0 and 7.
We denote by A the (convex) set of the admissible strategies.

Throughout the paper, we assume that there exists an equilibrium, i.e.:

Assumption 2 Given the utility functions and the initial endowments of
the agents, there exists a vector:

(sl, SV () ((qg)izowm)tZOMT>

such that S™ is the strategy of agent n and solves

sup U" (C)

SecA

where the budget constraints defining the set A are computed with the
price processes (p; +d;),_,  , and ((qz)i:O,...,m) o

Furthermore, these strategies satisfy the market clearing conditions :
VS = {(dt)tzo,...,:r§ (Dyer7s (O)tzl,...,T}’ i.e. at each date and in
every state of the world, the total consumption is equal to the dividends,

the total demand in the primitive asset is equal to 1 (the total supply)
and the total demand in each purely financial asset is equal to zero.

We also assume that the financial market is complete. Formally:

Assumption 3 For any F-adapted process z, there exist (0;),_, , and
(at),_o 7 such that:

o Vt, 1 <t<T, 0, and o, are F;_; measurable; 6y and o are constant.

o Vt, 0 <t <T, O, (p+dy) + - q — Orpapy — uqr - @ = ¢, with the
convention 07,1 = a1 = 0.



Note that, in opposition to the Black and Scholes (1973) model, the finan-
cial assets may be non-redundant. We investigate the case where the price
processes of the derivatives are not known because of a lack of information on
the market. We prove in the rest of the paper that there exist constraints on
the unobserved prices coming from the equilibrium analysis and independent
of the agents’ preferences.

4 The Main Result

In this section, we restrict the set of martingale probabilities used for the
pricing of the financial assets. This result will be applied to specific underlying
prices’ dynamics and standard option prices in the next section.

We first give some useful definitions:

Definition 1 The discounted cum-dividends price processes of the underly-
ing asset and of the it financial asset are defined as follows:

(Pio, 7= ( H (14+R;)™" + Zd H (1+ Rk)_1>

grony

(ai)t:O,...,T - (qi H (1+ Rj)_1>

=1 =

goory

Definition 2 We define the set P as the set of probability measures Q) equiv-
alent to the true probability P that transform the discounted process (I_)t)t:O,...,T
into a martingale.

Note that at the equilibrium there is no-arbitrage opportunities and the set
P is then non-empty (see e.g. Duffie (1993), Theorem p.29).

Definition 3 We define the set P* as the set of probability measures QQ € P
such that:
Vt=0,.,T—1, Yo, € 5, ¥V (0141,00,1) € f(00)°,

Qat (0t+1) i QO’t (U;H-l)
PUt (Ut+1) Pat (0-24_1)

In other words, the set P* is the set of probability measures in P such
that, for every date ¢, the transition probabilities between a date t—node and
its successors at date t 4+ 1 are in reverse order than the dividends at date
t+1.

Our main result is:

) (deg1 (0441) — diy (074)) <0



Theorem 4 Assume that there exists an equilibrium and that the financial
market is complete. Then, under Assumption 1, we get: for any financial
assett=1,...,m,

¢ € | inf B [7] Sup, E° [g;] (2)
This theorem claims that we only have to consider a subset of the martin-
gale measures set, namely the well-ordered ones, in order to price derivative
assets. In the following, we will refer to this result as the ”well-ordering prin-
ciple”. Intuitively, the underlying asset is in positive quantity in the economy,
therefore it is held in a positive quantity by at least one risk-averse agent.
Thus, the price of this asset has to be lower than its expected discounted
value under the true probability, the difference being the risk-premium. It is
easy to see that this is the case when the risk-neutral probability takes higher
values when the underlying asset is cheaper. The converse is not obvious but
holds as we shall see in the proof below.
Proof. Since the market is complete, there exists a representative agent (see
e.g. Duffie (1993) Proposition p.26). More precisely, (Duffie (1993), Corollary
2 p.27), there exists u satisfying Assumption 1 and mapping R™ x {0, ..., T’}
in R, such that the utility level of the representative agent for an F'—adapted
consumption process C' = (Ct),_, 18

> u(Cyt)

By definition of the representative agent, his optimal consumption process
is equal, at each date, to the total consumption of the market, i.e. C* =
(dt)t:O,...,T’ and his optimal portfolio is, at each date, the market portfolio,
ie. foralt=0,..,7T,0; =1and af = 0. We consider now the following
auxiliary programs defined by backward induction:

UC)=E

Ve (W) =u(W;T)
and, forall t,¢=0,....,T — 1,
‘/t (W) = max u (Ct, t) -+ Et[‘/lf+1((W — Ct) (1 + Rt+1)
C120,0¢11,0041
01 (Pev1 + disr — (14 Rev1) pe)
+ 21 ai+1(qi+1 — (1 + Riy1) q,?))]

1=

For all ¢ between 0 and T, V; maps R* in the space of the F; measurable
variables. In other words, V; (W) is the best the agent can do at date ¢ with
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the wealth W. We first prove that, for all ¢, ¢t = 0, ..., T, the function V; (.) is
increasing, concave and differentiable at the optimal value W;*. These results
are established by backward induction.

Suppose that Vi, satisfies the properties. Immediately, V; is increasing
and concave. Moreover, for all W > 0,

Vi (W) > u(CF, t)+E; [Vigr (W — CF) (14 Rey1) + pegr + diyr — (14 Reyr) py)]

and the equality holds for W = W}*. The function in the second term of the
previous inequality is concave and differentiable with respect to W at W/
since V1 is differentiable at the optimal value

Wi = Wr = CF) (1+ Reyr) + (Pegr +dieyr — (1 + Reya) pe) -

Therefore, according to Benveniste and Scheinkman (1979) (see also Stokey
and Lucas (1989), p84), V; is differentiable at W;* and:

Vi) = w(CFt) + Br [V (W) (3)
VIOWE) = (L4 Re) B [V (W) (4)

This ends the proof of the differentiability.

The optimal strategy at any date ¢t = 0, ...,T for the representative agent
achieves the maximum of the auxiliary program associated with W = W} =
07 (pe + di)+a;-q since the budget constraints can be eliminated by replacing
o, as follows:

1 - i i
CV?H = ? [Wt — C; — O1ps — Z%H%I
t

=1
1 S i i

= o W1 — i1 (Pg1 + dis1) — Z Q1441
t+1 =1

For all date t, the differentiability of V; implies that we have (first order
conditions of the maximization program with respect to Cy, 6,1 and ay):

W (C5.0) = (L4 Rup) By [V, (Wi1)] =0 (5)

E; [(thrl +dipr — (L+ Rer) pr) Vi (Wtil)} =0

and for alli =1,...,m,
Ey {(%H — (14 Ris1) QZ) Vt,+1 (I/V:-&-l)i| =0
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For all date t, equations (4) and (5) lead to:
u' (CF,t) =V (W)
Therefore, the first order conditions can be rewritten

1

pe= mEtQ (P41 + diy1)] (6)

and for all i = 1,...,m,

) 1 .
i~ g9y 7
4y (1 +Rt+1) t [QtJrl] ( )

where E{ [.] stands for the conditional expectation under a new probability
(@ defined by the following density of the transition probabilities between
dates t and ¢ + 1 with respect to P at node oy :

(W 0) .
B Vi (Wey)] o ®

_ A+ Re) v (G, ()t +1)
- u (Cgk, t) PUt () (9)

Qo ()

Equations (6) and (7) prove that the discounted processes (p,),_, , and
(@%) o are martingales under the probability ¢). Moreover, given a node
oy, the optimal wealth of the representative agent at any successor 0,1 of oy
is

Wi (0141) = (P + diy1) (0441)

and his optimal consumption is

Ct*+1 (Ut+1) = dy1q (0t+1)

Notice that the function V;,; in (8) depends on the node oy; (because of
the backward induction), contrary to the function w (..t +1). As u(.,t) is
always concave, the density of probability is decreasing with the consumption
according to (9). As ¢ is always strictly positive, we obtain that Q € P*
and Result (2) immediately holds. B

Therefore, if we do not know the price at date 0 of a given financial
asset g5, the interval of admissible prices is given by the infimum and the
supremum over P*, instead of P.

Before the computational results, we extend the Theorem to the cases
where there are American derivatives, where there are more than one stock
and where the agents have stochastic endowments.
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5 Extensions

5.1 American derivatives.

When American derivatives are allowed, we need to adapt Theorem 4, since
the exercise time of an American derivative is not fixed anymore. Let us
consider an exercise policy for the asset 7o assumed to be American, asso-
ciated to a stopping time 7 bounded by 7. Then, the payoff of the asset
at the exercise is ¢”. Adapting the proof of Theorem 4, it is easily checked
that there exists @ € P* such that ¢’ (1) = E [g°°] (the probability @ is
defined by the optimization program of the representative agent). An opti-
mal exercise policy must be such that the associated stopping time achieves
max, <7 g (7). Then, the following is proved:

Corollary 5 Assume that the il asset is an American asset. Its price must
lie in the interval:

a5 g e )

5.2 Multiple risky assets

Assume that there are M (> 1) risky assets, with a total supply (fj )j:l gy in

R, and a dividend process ((d{ )j:L 7 M)t:o e given exogenously. Assume

also that there is a risk-free rate between dates t and t + 1 equal to R;. As in

section two, we want to constrain the price processes ((qi) =1 m) of
v =0,..,T

m purely financial assets. We define the market global dividend process by:

M .
(Dt)tzo,...,T = (Z §7d§>
j=1

The analysis of the previous section, and in particular Theorem 4, amounts
to change P and P* as follows. We define P as the set of probability measures
(@ equivalent to the true probability P such that for any j = 1,..., M, the
discounted process (ﬁ{ ) =0T is martingale under the probability (), and P*
as the set of probability measures () € P such that:
Vt=0,..T—1, Vo, € %, V (atﬂ,agﬂ) ef (at)Q,

t=0,...,T

gt t Qat :5 ;
(gat ((zt-—:ll)) a Pat (((();:11))> (Dt+1 (O-H_l) o DH_I (O-H-l)) <0

12



The restriction on the risk-neutral probabilities is then linked to the market
global consumption only, even if we want to price a derivative on a single
asset. This property comes from the use of the representative agent method.
In fact, from a practical point of view, we can take the market index as a
proxy of the global wealth.

More precisely, we have to consider the probability measures that make
martingales all the price processes and satisfy the well-ordering principle with
respect to the index dividends. When some price processes are not observable
or when the index level is the only information available, we restrict our
attention to the partial conditions given by the available information.

We provide a numerical example of an index option in the last section.

5.3 Stochastic endowment

The existence of stochastic endowments can be treated as well if the market
global endowment process (Et)tzo,...,T is exogenously given. In that case, the
analysis is exactly the same as in the previous subsection, including the mar-
ket global endowment in the market global wealth and in the consumption
of the representative agent.

In order to make this point clear, let us consider a simple example with
two dates (t = 0, ¢ = 1) and three states of the world (w1, ws,ws). Suppose
that the terminal payoff of the primitive asset is

p(w1) =20; p (w2) = 30; p(ws) =40

whereas its price at date 0 is equal to 1. Assume that the risk-free rate is
equal to 0 and that the terminal endowment is

e(w1) =05 e(ws) =15; e(w3) =0.

The total wealth of the economy (which is equal to the total consumption)
is then
W (wy) =20; W (wg) = 45; W (ws) =40

and we have to take into consideration the probability measures (mq, w9, 73)
such that

m1p (w1) + mop (we) + m3p (w3) =1

and
Ty > Ty > Mo

instead of
Ty > Tg 2> T3.

13



In fact, the probability measure has to satisfy a well ordering principle with
respect to some permutation of the primitive asset dividends. If the stochastic
endowment is strongly correlated to the dividend process of the underlying
asset, we can expect that the introduction of the stochastic endowment will
be innocuous.

6 Computational Results in a Quadrinomial
Framework

In this section, we provide numerical examples in a quadrinomial framework.
It enables us to consider general models with options written on an index
and options with stochastic volatilities. We consider a n time-steps tree. It
is assumed, in all this section, that the distribution of the underlying asset’s
returns at each date is independent of the node. This means that there exists
an F-adapted stochastic process (ka /n) F0..m such that

po = 1
fork = 1,...n, Vo € Sir/n, Prrjm = Prtjn T OkT/n
Pk—1)1/n

we will assume that pyr,, takes its values in {uy, ug, u3, us} and that the stock
price at a given date is an increasing function of the dividend. If we assume
that the distribution of the asset prices is known exogenously, we can choose
(ka/n) L the underlying process. We consider then at each node the
transitions pyr/, — {p(k+1)T/n + d(k+1)T/n}- The period discount rate R is
assumed to be constant, and we denote by r the instantaneous discount rate

which satisfies:
et/ =14+ R

6.1 The general framework

We consider a date kT/n—node o with four successors o1, 09, 03, 04. The
underlying asset evolves as follows:

rT/n
rT/n

P+1)T/n T A 1y1/n) (01

) ) Prr/mur€
(Pe+1)7/n + Ao 1)7/0)

1T/n)

)

(01) =
P )~ o)~
(04) =

(P4 1)T/m + dies1)yT/m .

(P+1)1/m + dgs1yrm) (04
with UL > Uy > Uz > Uy
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We will denote by {m;},_, , € (0, 1)* the true transition probabilities.
4 4
Let {7;},_, , € (0,1)* be such that 3. 7%; = 3 Fu; = 1. The existence of
i=1 i=1
such {7;} i=1,...4 1s guaranteed at the equilibrium by the classical no-arbitrage
theorem and implies u; > 1 > uy. The two last equalities are equivalent to:

T = T
Ty = Mo
~ (1—u4)—?r1(ul—U4)—%2(U2—U4)
3= (uz—uq)
~  _ (uz—1)4+7; (w1 —uz)+Ta(uz—u3)
Ty =

(uz—ua)

Let 7, and 72 be given in (0, 1), since there exists at least one solution
{7i}i1,.4» We only need to consider conditions 73 > 0 and 4 > 0. They are
equivalent to:

T2 € [Binr (1), Boup (71)]

where R
Bins (711) = max (0, (1—u3()u—27:1u(:)1—ua))
Buyp () = Uil

For a given 7; € (0, 1), one can find 75 in (0, 1) if and only if:
Binf (%1) S Bsup (%1) ) Binf (%1) S 1 and 0 S Bsup (%1)
Finally, 77; must be in the following interval
|: ( 1-— U9 ) 1-— Uy :|
max | 0, ,
Uy — Uz Uy — Ug

Since we have a linear maximization program, extreme prices of the option
with respect to {7;},_, , will be achieved in one of the following points:
Ifuy <1,

%1 — l-uy %1 — 1w 5_‘_\1 — l-us

- Ur—u4 N Uli’U12 - Up—u3

7'('2:0 7T2:—u1 7T2:O

A~ A~ U1—uz A~ —1

7'('3:0 7'('3:0 7T3:—?Z1*U3

~ _  u;—1 =~ =~ __

T4 — 7'('4—0 7T4—O

Ifus > 1> us
~ _ l-uy -~ = _ ~ _ l-ug
™ = ——— 7T1—0 7'('1—0 ™ = ——
Up—uq 1 1 up—u3

~ ~ —usg =~ —U4 -
7'('2—0 7T2_u2—u13 7T2_u2—u4 7'('2—0 .
7'('3:0 7T3:—u27 7'('3:0 T3 = Ui
R w1 R U2 —U3 R wo 1 R U1 —U3
T4 = —ul—U4 Ty = 0 T4 = —uz—u4 v 0
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IfU3 >1

T = Aoy T = 0 T = 0

~ U1—ug A~ A~ 1—
7'('2:0 7'('2—0 FQZUZ_QZ:
A~ _ A~ _ 17/11/4 A~ _
7'('3—0 . T3 —u37u14 7T3—O .
~ oy ~ g ~ o
Ty = UL —Ua T4 = U3 —U4 T4 = U2 — U4

Now from Theorem 4, we can add the following requirement:

Ti _ Ty _ W3 _ M4
—<<Ec 2=

1 9 T3 Ty

Using the same approach, we obtain:
%2 € |:Bi/nf (%1) ) Béup (%1)}

where

’ (1-u3)—T1(u1—u3z) (I—mi—m2)(1—ua—71(u1—us))—m3(uz—ua)(1-71)
inf (ug—ug) ) (1—m1—m2)(ug—us)—m3(uz—us)

(%1) — Imax (:_?%\17
BI (5_‘_\1) — 71'2((1—11,4)—7?1(’&1_'“4))

sup 7o (ug—ua)+m3(ug—ua)
Finally:
T € [Ainf, Asup]
where

(w1—u3)’ (1—m1)(u1—ua)—mo(ug—ua)—m3(uz—ua)

A _ w1(1—ua)
sup 71 (U1 —ua)+ma(ug —ua)+m3(us—ua)

Ay = max (0’ (1—ug)  (1—m1)(1—ua)—mo(uz—us)—m3(us—us) )

In order for A;,r to be lower than A, one must check the following condition:
(1 — UQ) (7T1U1 + TolUs + T3U3 + TalUy — U4) S (U1 - U3) (1 — U4) 1

which involves the true transition probabilities and is restrictive only if
uy < 1.

We now apply the previous results to the pricing of options with stochastic
volatility and to the pricing of index options. The tree-structure will be
reconnecting and, except in the Poisson volatility process case, stationary.

6.2 Stochastic volatility
6.2.1 Binomial diffusion process for the volatility

We consider the following discrete process on a quadrinomial tree of n time-
steps

T
rLZ rL -1 L 1 L . Uy = 60”““\/:
P — qpuie n,puze n,puy € ", PUy € " o, with

Uy = egmin\/g
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This process is a discretization of the following diffusion process for the risky
asset in a continuous-time market model:

dSt = TStdt + O-tSth/t

where, at each date t, o, is known to be equal almost everywhere to 7,,;, or to
Omaz- We assume that for i =1,...,4, m; = ;11. We are in a position to apply
the general results established in the previous subsection with us = u; ' and
ug = uy*. If we do not take into account the well-ordering principle, the in-
terval of admissible prices for the European Call is [CRR (0yin) , CRR (0 max) ]
where CRR(0) is the price of a European Call in a binomial framework with
a volatility ¢. This result is due to the convexity of the payoff of the option
with respect to the price of the underlying asset as shown by Avellaneda,
Levy and Paras (1995). The same result holds for European and American
Puts. If we take into account the well-ordering property, the interval of ad-

2 2
(Umin +UmaX)

5 for n — 4o00. Indeed, we

missible prices converges to CRR(

have at each node a maximization program on the three following points

~ U2(u1_1) =~ 2u1Uu9—u]1—u2 =~ =~
T = ™ = m=1-—-3m
1 U%U2+U1U§+U1—3U2 1 2(u%u2+u1u%7u17ug) 1 2
~ =~ ~ 0~ ~ 'u,l'u,z(ul—l)
T2 =T T2 = 71.(1 T2 = 3ulug—uiul—u1—ug
Ty = T 7T3:§—7T1 g = Ty
Ri=1- 37, Fa=1-7 7y = 7

We consider an underlying asset such that pg = 100, oy = 10%, Opax =
15%. We assume also that the interest rate is r = 5%. We want to price,
in this framework, different kinds of options. The characteristics of these
options are:

e a European Call at the money (i.e. K = 100) with 7" =1 year

e a European Binary Call at the money (¢ = 1 if pp +dp > 100, gr =0
otherwise) with 7' =1 year

e a European Put at the money with T' =1 year
e an American Put at the money with T'= 1 year

e a FEuropean Up & Out Call at the money with 7' = 1 year and an up
and out barrier of L = 120 (i.e. if maxo<i<7 (pt +d;) > L, the option
value is zero).
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Tables 1 and 2 present the intervals of admissible prices for different
options, when varying the number of time-steps n.

Table 3 shows more specifically the convergence property for a European
Call, with respect to n.

We prove that we have a great stability of the results for various intervals
of volatility. We find also that the pricing intervals are very tiny (Table 4).

This last result is due in part to the fact that the considered true proba-
bility (for i = 1,...,4, m; = ;) makes the stock price process quasi-martingale.
It can be seen from Table 5 that the discounted price of the underlying asset
is close to the expectation, that is, the risk premium is close to zero.

The results obtained with varying true probabilities (or varying risk pre-
mia) are not so good, but satisfying. Indeed, suppose now that we consider
the following example : m = %, Ty = %, T3 = %, Ty = i. In this case, the
risk premium may be higher. We obtain the three following points on which

we compute the maximization program at each node of the tree :

= i T T e, 1= 127

5'('\2 = 45'('\1 %\2 == 4%1 %2 = 7u%uzﬁz’i21%l:’u11)—2u2
5'('\3 = 51'\1 %\3 =1 (1 - 5%1) %3 = %%\2

Ty =1—6m Ty =% (1 —5m1) Ty = 37

The computational results are given for the European Call, a 100 time-steps
tree, and varying intervals of volatility in Table 6.
Note that, as the true probability is not close to a log-normal diffusion

2 2
(Umin +Umax)

process, the convergence to CRR 5

does not hold anymore.

We consider now varying true probabilities depending linearly on a pa-
rameter € € R, as follows: m = i, Ty = ;11 + e, m3 = ;11, Ty = i —¢e. In this
case, we can easily draw the risk premium as a function of the parameter
(see Figure 1).

Note that ¢ lies by definition in the following closed interval [—0.0032581, 0.25].
We obtain the three following points on which we compute the maximization
program at each node of the tree:
uo(u1—1)

udug+(144e)ur us+uq —(3+4e)ug
o= (1+4e)m;

T =1—37;

~

Ty = (1—}—45)%3

%1:

% o 5_‘_\ 5_‘_\ o uiug(u1—1)
3— M 3= Bulug —(1+4e)ujui—u1 —(1—4e)ug
%4:1—(3+46)%1 %4:(1—45)%3
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~ 2(1—28)ujuo—u1—(1—4e)ug
2((1—25)u1/u\2(u1+(1+45)u2)—(1+25)(u1+(1—46)u2))
g = (1 + 46) Yl
Ty = —2(1i2€) (1 -2 (1 + 26) %1)

i

Ty = 2((11+_42?) (1—-2(1+428)7))

Figure 2 represents the pricing bounds for the European Call (with o, =
10%, 0max = 15% and a 100 time-steps tree) and varying . The bounds
widen as ¢ increases (i.e. as the true probability moves away from the mar-
tingale case).

6.2.2 Poisson diffusion process for the volatility

The framework is very close to the previous one, except that we assume now
that the transition probabilities depend on the value of o. More precisely, if
the volatility at date ¢ is equal to o ,.x, we have:
1—\T AT AT 1= \T
WIZM;WQZ /n;ﬂ'3: /n;ﬂ-4zw
2 2 2 2
and if it is equal to o, we have:
AT 1= \T 1= \T AT
gAML (L), XD
2 2 2 2
where A is a positive parameter. We can interpret A as the Poisson parameter
of the volatility process. Then, we must have AT < n.
The general interval of admissible prices is the same as before, since it
does not depend on the true transition probabilities. For the determination
of the well-ordered interval of admissible prices, there are two cases:

o If the volatility of the risky asset is 0.y, the maximization program is
on the three points

- (1-X/n)(u1—1)us R (u1—1)us—A/n{ui —uotuius(us—1))
1 (u%—l)uz—k/n(ul—uz)(uluz—l) 1 (u%—1)u2+>\/n(u1—u2)(u1u2—1)
~ _ An = ~ ~ A/n
WQ—WTH WQ—(l—Wl)W
A T
Ta=1=5mm T =1 =7) m
T = ((wa—Dug—A/n(u1—u2))(1-X/n)
1 (u%—l)uz—)\/n(ul—ug)(ulug—i—l)
T2 T

%4 = (1 —)\/71) —%1
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e The other case is obtained symmetrically, by changing A/n into 1—\/n.

We compute the intervals of admissible prices for n = 100 where the
volatility is initially equal to o, = 10% or on.e = 15% and the risk-free
rate is 7 = 5%. The options considered are a European Call at the money
with characteristics K = 100, T = 1 year and European and American Puts
at the money with characteristics K = 100, T' =1 year. In Figures 3, 4 and
5, we provide the intervals with a varying parameter .

Note that the model can be easily generalized using different jump prob-
abilities A; and \s for the transitions opax — Omin and Oy — Tmax. WVE can
also study the more general case where A lies in the interval [Amin, Amax]-
We consider now the pricing of an index option with a constant volatility.

6.3 Option on Index

We consider a market consisting in three basic assets: a risk-free asset and
two risky assets non perfectly correlated. We want to price in this setting a
call on the Index: (p; +di +ps+dy — K )+ . In the discrete-time model, we
suppose that each asset follows a binomial stationary tree, i.e. for i = 1,2,

p; — {pl-uie’“T/",piui_lerT/”} where u; = exp (0’2\/%) and o; > o03. We

suppose also that p; (0) = ps (0) = p. We apply the general model where
the index plays the rule of the primitive asset. Each node presents then four
(distinct) transitions:

rT/n rT'/n

+ pauze
+ p2u516TT/n
I 4 pauge
+ p2u51€rT/n

bhiuz€
biui€
plufle
plufleTT/n

rT/n

p1+p2— rT/n

We denote by:

-1 -1
_ pruitpous . . prui+pauy, = piug  +paug
Y = =—/————= | (9 = Inax
. pitp2 2 ( p1itp2 7 pitp2
—1 —1 —1 —1
. pruitpauy - p1u; ~+pau2 . P1uy “+p2uy
(3 = IMin Ny = ———————
3 ( ri+p2 7 pitpe . p1+p2

We prove that ay > 1 and a3 < 1. In order to find the general interval, we
do the maximization program on the following points:

5'('\1 - A—ag %\1 == 0 5'('\1 = 0 5'('\1 = J—ag
a1 —og a1 —a3

To =0 T, — L=as Ty — =4 To =0

2 2 az—ag 27 ap—oy 2 1
~ ~ _ Gg— ~ ~ _ ay—
7'('3—0 . 7T3_—a2—a3 7'('3—0 . 7T3_—a1—043
~ g ~ ~ g ~
Ty = a—on Ty = 0 Ty = wo—on Ty = 0
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If we add the well-ordering condition and assume that the true transition
probabilities are equal, we get that

- [m (1—ui?) (2 —w) +p (1 —uz?) (2 — up)

I

" 2 (pl (Ul - Ufl) + P2 (UQ - UQ_I))
D1 (1—u1_1) + p2 (1—u2_1) ]

2 (pl (Ul — Ufl) + P2 (UQ — Uz_l))

We also have
%\2 S [Binf (%1) 3 Bsup (%1)]

where

~ N ~ 2—ag3—ou—T1(201 —az—a4)
Bins (1) = max [m,

(2ap—az—au)

~\ p1(17uf1)+p2(17u§1) o~
Bow (1) = Gl Vim0

We do then the following optimization program
on three points if x 2—az—ay . _3—ag—az—ay

ajtag—ag—ou) — 3a1—ag—az—ou

% B p1(l—ufl)(2—u1)+p2(1—u51)(2—u2) %\ B p1(l—ufl)(Q—ul)—i—pg(l—ugl)(Q—ug)

FR Y o) e o) IR Y et o oy
~ =~ ~ p1(u1—1)+p2(u2—1)
Ty = T Ty = -1 —1

2 pl(ul—ul )+p2(u2—u2 ))
~  (l-aa)—71(a1+as—204) ~  (l—oa)-71(oa—aa)—To{ar—a4)
T3 = T3 =
(az—aua) _ (oz—aq)
~ _ (az—D)471 (o +as—2a3) ~ _ (31471 (1 —a3)+Ta(as—a3)
Ty = T4 =
(3—aua) (az—aua)

= __m(ou)im(iw’)

P 2o (g )t (ueuy 1) )
Ty = T
T3 =M1
m,=1-—3m

and on four points otherwise
~  p(1—urt)@—w)+pe(1-up ') (2—un) ~ _ p(1—upt) @—u)4pe(1-up ) (2—us)
T = 1 1 ™ = 1 1
2(p1 (wa—uy ") +p2(uz—uz ")) 2(pa (wr =i )+p2(uz—uz "))
~ _ 2—ag—as—71(201—az—au ~ p1(u1—1)+p2(uz—1)
Ty = Ty = —1 —1
(2ag—az—ay) Q(pl(ul—ul )+p2(u2—u2 ))

%_\ _ (17044)7%1(0417044)7ﬁ2(0427044) 5_{_\ _ (17044)7%1(0417044)7%2(0427044)

3 _ (oz—aq) 3 _ (oaz—aq)
~ _ (as—1)+71 (o —as)tTa(as—as) ~ _ (os—1)+Ti (a1 —a3)+Ta(az—as)
Ty = T4 =

(3—aua) (3 —au)
—1 —1

Ty = 2—az—au T = pl(lful )+p2(17u2 )

1 2(a1+ g —az—oy) 1 2(p1 (ulfufl)erg (Uqugl
Ty = T To = T
A~ 1 A~ ~ _ ~
T3 =5 — T T3 = M1
7'('4_%—7'('1 7T4:1—37T1
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We get the following results that we can compare with the two extremes (the
general program and the risk-neutral world). Computationally, the bounds
are given in Table 7, with r = 0%, o1 = 15% and o5, = 10%, for a European
Call at the money, with a strike K = 200

Table 8 provides results for a European and an American Put at the
money with the same strike, but with a discount rate r = 5% (in order to
change the optimal exercise policy) and 100 Steps

7 Conclusion

In this paper we have shown that the equilibrium conditions give strong re-
strictions on the admissible martingale-measures and then on the derivatives
prices. The relevancy of these restrictions has been numerically exhibited on
several examples dealing with different frameworks and derivative assets.

Note that the true probability is directly involved in our conditions, which
is unusual. Nevertheless, some information has already been derived from the
true probability since, as shown by Arrow (1970), and quoted by Huang and
Litzenberger (1988, p.19), a risky asset can be chosen by an agent only if its
expected rate of return (under the true probability measure) is greater than
the risk-free asset return. It is then necessary to derive the true probability
(identified with the historical one) from the data in order to apply our model.

We have not investigated the hedging of the derivative assets. When those
assets are redundant, hedging comes to form a replicating portfolio. This is
not the case in our model. The hedging strategy must be derived from the
individual optimization problem. This requires to know the price process of
every existing asset, which is obtained from the utility of the representative
agent. This utility has to be estimated econometrically from the data.

At last we conjecture that any price lying in our constrained interval can
be sustained at the equilibrium by a well-chosen utility function. We leave
that point for further researches.
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Eur. Call | Bin. Call | Eur. Put | Am. Put | Up & Out

CRR( ﬁ%*ﬂ) 7.764116 | 0.564304 | 2.887059 | 3.407614 | 3.001408

Well-ord. Lower Lim. | 7.770313 | 0.599351 | 2.893255 | 3.406393 | 2.970884

Well-ord. Upper Lim. | 7.779874 | 0.600587 | 2.902816 | 3.416010 | 2.987122

Arbitrage Lower Lim. | 6.812824 | 0.475717 | 1.935766 | 2.437191 | 1.702878

Arbitrage Upper Lim. | 8.602021 | 0.724580 | 3.724963 | 4.237087 | 4.899250

Table 1 - Results for different kinds of options (with n = 100)

We consider here a quadrinomial reconnecting tree, which models a binomial
2 2
structure of the volatility for the risky asset. In this Table, ”CRR | 1/ w 7

is the asymptotic case, when the number of steps tends to infinity ; ”Well-ord.
Lower Lim.” and ”Well-ord. Upper Lim.” are the bounds given by our approach
at the equilibrium ; ”Arbitrage Lower Lim.” and ”Arbitrage Upper Lim.” are
the bounds given by the arbitrage. Calculations are made for some representative
options: an "at the money” (ATM) European Call ("Eur. Call”), an ATM Binary
Call ("Bin. Call”), an ATM European Put ("Eur. Put”), an ATM American Put
(”Am. Put”) and an ATM Up & Out Call ("Up & Out”). Results are given for
a tree of n = 500 periods, with oy, = 10% and 0. = 15%. The parameters
values are a maturity 7' = lyear for each option and a discount factor r = 5%.
The initial price of the underlying asset is pg = 100. As the options are ”at the
money”, their strike is equal to the initial price of the asset & = 100. Moreover,
the barrier of the Up & Out Call is fixed at L. = 120. We get very tiny intervals
with our approach and larger intervals considering only the arbitrage conditions.
Note also that the asymptotic case is not always included in the interval, but that
it is a good approximation.
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Eur. Call | Bin. Call | Eur. Put | Am. Put | Up & Out

CRR( ﬁ%*ﬂ) 7.774589 | 0.601719 | 2.897531 | 3.412688 | 2.88074

Well-ord. Lower Lim. | 7.771180 | 0.598640 | 2.894122 | 3.410002 | 2.880769

Well-ord. Upper Lim. | 7.775451 | 0.599112 | 2.898394 | 3.414289 | 2.887712

Arbitrage Lower Lim. | 6.806426 | 0.495291 | 1.929368 | 2.436757 | 1.685774

Arbitrage Upper Lim. | 8.593191 | 0.708824 | 3.716134 | 4.233413 | 4.686262

Table 2 - Results for different kinds of options (with n = 500)

We consider here a quadrinomial reconnecting tree, which models a binomial
2 2
structure of the volatility for the risky asset. In this Table, ”CRR | 1/ w 7

is the asymptotic case, when the number of steps tends to infinity ; ”Well-ord.
Lower Lim.” and ”Well-ord. Upper Lim.” are the bounds given by our approach
at the equilibrium ; ”Arbitrage Lower Lim.” and ”Arbitrage Upper Lim.” are
the bounds given by the arbitrage. Calculations are made for some representative
options: an "at the money” (ATM) European Call ("Eur. Call”), an ATM Binary
Call ("Bin. Call”), an ATM European Put ("Eur. Put”), an ATM American Put
(’Am. Put”) and an ATM Up & Out Call ("Up & Out”). Results are given
for a tree of n = 100 periods, omin = 10% and opax = 15%. The parameters
values are a maturity 7' = lyear for each option and a discount factor r = 5%.
The initial price of the underlying asset is pg = 100. As the options are ”at the
money”, their strike is equal to the initial price of the asset k = 100. Moreover, the
barrier of the Up & Out Call is fixed at L = 120. We get very tiny intervals with
our approach. Note that, in comparison to Table 1, which gives results for a 100
steps tree, the equilibrium interval is more precise and the asymptotic case is more
often included in the equilibrium interval. On the contrary, the arbitrage bounds
do not seem to converge for a high number of steps. In fact, for convex pay-offs
(standard European and American Calls or Puts), the lower bound converges to
the Black and Scholes price associated to oy, and the upper bound converges to
the Black and Scholes price associated to 0,x. For the other options (Binary Call
and Up & Out Call), one can only prove that the Black and Scholes bounds are
included in the arbitrage interval.
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n =10 n = 50 n =100 | n=>500 | n= 1000
CRR( %) 7.873366 | 7.791726 | 7.764116 | 7.774589 | 7.772933
Well-ord. Lower Lim. | 7.798492 | 7.771227 | 7.770313 | 7.771180 | 7.771484
Well-ord. Upper Lim. | 7.829619 | 7.784763 | 7.779874 | 7.775451 | 7.774504

Table 3 - Convergence Results for the European Call

We compute a quadrinomial reconnecting tree, which models a binomial struc-
2 2
ture of the volatility for the risky asset. In this Table, ?CRR/|( 1/ Lf‘“” ? s

the asymptotic case, if the number of steps tends to infinity ; ”Well-ord. Lower
Lim.” and ”"Well-ord. Upper Lim.” are the bounds given by our equilibrium
approach. We consider an ”"at the money” (ATM) European Call. Results are
given for trees with various time-steps n, opmin = 10% and 0. = 15%. The
parameters values are adiscount factor r = 5% and a maturity 7' = lyear for the
option. The initial price of the underlying asset is set at py = 100 and the strike
k is also equal to 100. We can see that the precision of the interval is increasing
with the number of time-periods.
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Interval [0 min, Omax] | Well-Ordered Interval | Arbitrage Interval
[05% , 20%] [8.426119,8.451166] | [5.279331, 10.459286]
06% , 19%] [8.248757,8.270748] | [5.539258, 10.088168]
07% , 18% 8.094125,8.113088 5.833043,9.716874
08% , 17% 7.961263,7.977183 6.138075,9.345413
09% , 16% 7.852977,7.865789 6.469000, 8.973792
10% , 15% 7.770313,7.779874 6.812824, 8.602021
11% , 14% 7.715898,7.721955 7.156561, 8.230107
12% , 13%)] [7.685186, 7.687341] [7.500204, 7.858060]

Table 4 - Call Price Bounds for a varying range of [0min, Omax]

We consider a quadrinomial reconnecting tree, which models a binomial struc-
ture of the volatility for the risky asset. In this Table, the ” Well-ordered Interval”
gives the bounds using our equilibrium approach and the ” Arbitrage Interval”
gives the bounds obtained only by the arbitrage conditions. We price an ”at the
money” (ATM) European Call ("Eur. Call”). Results are given for a tree of 100
periods. The parameters values are a discount factor r = 5% and a maturity
T = lyear for the option. The initial price of the underlying asset is pg = 100
and the strike k is also equal to 100. We consider varying volatility values. We
find that the arbitrage precision is very sensitive to the interval of volatilities (as
it consists in the Black and Scholes prices for o, and 0p.x). It is not the case
for the well-ordered interval, which gives very stable results.
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Interval [0 min, Omax] | Risk Premium
[05% , 20%] 0.785549 %
06% , 19%] 0.795628 %
07% , 18% 0.815789 %
08% , 17% 0.846038 %
09% , 16% 0.886385 %
10% , 15% 0.936340 %
11% , 14% 0.997420 %
[12% , 13%) 1.068141 %

Table 5 - Risk premium of the stock

In Table 4, we compared the pricing intervals for different ranges of volatilities.
We obtained very precise results even for wide ranges. This is in part due to our
choice of true probability distribution. Indeed, for each node of the tree, the
four possible states of the world at the following date are supposed equiprobable.
This may a priori infer importantly on the computational results. A good way
to measure the importance of the distribution of the true probability choice is to
compute the risk premium of the risky asset. This risk premium is equal to the
relative difference between the expected value of the asset at the final date and its
initial price (more precisely: (E[pr] — po)/po ). We compute a quadrinomial tree
of 100 steps as done in Table 4. One can see in this Table that the risk premium
is very small in our model (almost one percent in a year).
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Interval [0 min, Omax] | Risk premium | Well-Ordered Interval
[05% , 20%] T5.280387 % | [7.720859, 7.907094]
06% , 19%] ~0.460844 % | [7.706147, 7.720148]
07% , 18% 04.611808 % 7.569279,7.693189
08% , 17% 09.951244 % 7.457249,7.685950
09% , 16% 15.571895 % 7.392304, 7.683990
10% , 15% 21.488996 % 7.382683,7.684766
11% , 14% 27.718625 % 7.441050, 7.687538
[12% , 13%)] 34.277757 % [7.578588,7.686510]

Table 6 - Call Price Bounds for a varying range of [0min, Omax]

In order to see if the risk premium is important in the precision of our pricing
method, we consider a different distribution of the true probability. In this Table,
we compute simultaneously the risk premium and the pricing interval with our
approach for different ranges of volatilities. We consider here a quadrinomial
reconnecting tree, which models a binomial structure of the volatility for the risky
asset. We price a standard European Call. Results are given for a tree of 100
periods. The parameters values are r = 5% and a maturity 7' = lyear for the
option. The initial price of the underlying asset is py = 100 and the strike £ is also
equal to 100. We obtain also precise intervals for high risk premia. We consider
also the case of negative risk premia (which is not a priori compatible with the
arbitrage) because this case is realistic on short periods. The precision is also
satisfying.
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50 Steps 100 Steps
Risk Neutral 7.203377 7.201218
Well Ordered | [7.118168, 7.235547] | [7.134722, 7.224525]
General [1.530502,9.950711] | [1.358856, 9.965889]

Table 7 - European Call Prices on a Basket with different steps

We consider a quadrinomial reconnecting tree, which models an index on two
risky assets. We assume that the first asset has the following characteristics: initial
price p§ = 100, volatility oy = 10%. and that the second asset has an initial price
ps = 100 and a volatility o5 = 15%. The correlation between the assets is not
perfect and the exogenous information is only on the index diffusion process. We
price a standard European Call on the index. Results are given for trees of 50 and
100 periods. The parameters values are r = 0% and a maturity 7' = lyear for
the option. The initial price of the index is 200 and the strike k is also equal to 200
(the Call is at the money). We give results in a risk neutral world. In this case,
we know exactly the diffusion process of the two assets. The market is therefore
complete and leads to a unique price for the option (row ”"Risk Neutral”). Our
method using the equilibrium is computed in row ”Well Ordered” and leads to a
precise pricing interval. The precision is not satisfying if we use only the arbitrage
conditions (row ”General”).
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European Put American Put
Risk Neutral 3.176536 4.181391
Well Ordered | [3.122208,3.196138] | [4.128643, 4.201095]
General [0.000000, 5.602376] | [0.354224, 6.628533]

Table 8 - European and American Put Prices on a Basket

We consider in this Table a quadrinomial reconnecting tree, which models
an index on two risky assets. We assume that the first asset has the following
characteristics: initial price pg = 100, volatility o1 = 10%. and that the second
asset has an initial price pg = 100 and a volatility 09 = 15%. The correlation
between the assets is not perfect and the exogenous information consists only in
the index diffusion process. We price a European Put and an American Put on
the index. Results are given for a tree of 100 periods. The parameters values
are r = 5% and a maturity 7' = lyear for the option. The initial price of the
index is 200 and the strike £ in both cases is equal to 200 (the Puts are at the
money). As the discount factor is not null, the prices of the European and the
American options are different. We give results in a risk neutral world. In this
case, we know the diffusion process of the two assets. The market is complete and
we get a unique price for the option (row ”"Risk Neutral”). Our method using
the equilibrium is computed in row ”Well Ordered” and leads to a precise pricing
interval. The precision is not satisfying if we use only the arbitrage conditions
(row ”General”).
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