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model. This model replaces expected utility by another functional, characterized by two
functions, a utility function u in conjunction with a probability-perception function f .
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dispersion introduced by Bickel & Lehmann [3, 4] in Non-parametric Statistics. We present
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an index of greediness Gu of the utility function u and an index of pessimism Pf of the
probability perception function f : the decision maker is monotone risk averse if and only
if Pf ¸ Gu. The index of greediness (non-concavity) of u is the supremum of u0(x)=u0(y)
taken over y · x. The index of pessimism of f is the in¯mum of 1¡f (v)

1¡v =f(v)v taken over
0 < v < 1. Thus, Gu ¸ 1, with Gu = 1 i® u is concave. If Pf ¸ Gu then Pf ¸ 1, i.e., f is
majorized by the identity function. Since Pf = 1 for Expected Utility maximizers, Pf ¸ Gu
forces u to be concave in this case; thus, the characterization of risk aversion as Pf ¸ Gu
is a direct generalization from EU to RDEU. A novel element is that concavity of u is not
necessary. In fact, u must be concave only if Pf = 1.
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1 Introduction

Under the expected utility (EU) model, a decision maker (DM) is characterized by a single

function u, called the utility function. The crucial criticism of the EU model by Allais [1]

from a theoretical point of view is that in such a model, the same function u characterizes

two distinct behaviors - satisfaction from certain wealth and attitude to risk - that have

no reason to be linked: a DM with diminishing marginal utility on certain wealth may be

risk-seeking, but this is precluded by the EU model.

The rank-dependent expected utility (RDEU) model (see [20, 32, 11, 28, 21, 6]) has been

built in part as an attempt to answer the criticism of Allais. A RDEU DM is characterized

by two functions: a utility function u on outcomes and a probability-perception function

f : [0; 1] ! [0; 1]. A RDEU decision maker compares a lottery with cumulative distribution

function F with another by the expected utility of the lottery evaluated as if the lottery

had distribution function 1 ¡ f(1 ¡ F ) instead of F (see (4)). Thus, f below (above) the

identity function indicates pessimism (optimism), while the diagonal case f(p) = p is the

perception-neutral attitude of EU maximizers.

A risk averse DM is usually de¯ned as one that, for every bounded random variable,

prefers the expectation of the random variable to the random variable itself. This notion

will be called weak risk aversion. Aversion to mean-preserving increase in risk (MPIR) in

the sense of Rothschild & Stiglitz (see [14, 24]) will be called strong risk aversion.

In Yaari's Dual Theory (RDEU with linear u), weak risk aversion is characterized by

f majorized by the identity function (henceforth pessimism). Monotone mean-preserving

increase in risk (M-MPIR), introduced by Quiggin [20, 21] and properly de¯ned in the

sequel, was then obtained ([5, 9], implicitly in [32]) as the kind of added risk to which

weakly risk averse Dual Theory decision makers are averse.

It is tautologically true that strong risk aversion implies monotone risk aversion, which

implies weak risk aversion. In the EU model, weak risk aversion is characterized by concavity

of u. MPIR was then obtained ([14, 24]) mathematically as the kind of added risk to which

weakly risk averse EU decision makers are averse. Thus, in EU theory, weak, monotone and

strong risk aversion are equivalent. In Dual Theory, weak and monotone risk aversion are

equivalent, while strong risk aversion requires f to be convex ([32]).

The situation in the RDEU model is more °exible due to the trade-o® between risk

aversion implications of utility and probability perception. However, if the utility on

2

ha
ls

hs
-0

02
11

90
6,

 v
er

si
on

 1
 - 

22
 J

an
 2

00
8



outcomes u is concave, the situation is much like for the Dual Theory. Weak risk aversion

under all concave utilities u is characterized by perception functions displaying pessimism

(see [21, 32]), while strong risk aversion under all concave utilities u requires the stricter

condition that f be convex (see Chew, Karni & Safra [11]). Chew, Karni & Safra [11]

proved, more generally, that concavity of u and convexity of f are necessary and su±cient

for strong risk aversion. Quiggin [20, 21] also brought to light that M-MPIR is the kind

of increase in risk to which RDEU weakly risk averse decision makers with concave utility

(not only linear) are averse.

Similarly to the de¯nition where G is a MPIR with respect to F if there exist random

variables X and Z with X distributed F , X + Z distributed G and Z is "noise" around

X (E[ZjX] = 0 a.s.), the notion of G being a M-MPIR requires instead that Z, with mean

zero, be comonotone with X . Because EU (under all concave utilities) is a special case of

RDEU (under all concave utilities and convex probability perception functions), M-MPIR

is in particular MPIR.

The notion of monotone risk aversion is model-free; it has been proved to be useful

in EU (see Section 2.3) and is well ¯tted to RDEU theory (see [11, 20, 28, 32]), where

comonotonicity plays a fundamental part at the axiomatic level. The above analysis

restricted u to the case of concave functions. Consistent with Allais' criticism, it is of

interest to study whether a decision maker can be averse to risk without u being concave.

In a previous paper, Chateauneuf & Cohen [7] proved that pessimism of f is a necessary

condition for weak risk aversion, while concavity of u is not, but did not succeed to fully

characterize weak risk aversion. This is the subject of our current research, by which we

know that when non-concave u are allowed, weak risk aversion does not imply monotone

risk aversion.

In this paper we characterize the class of pairs (u;f) of utility and probability perception

function that model aversion to M-MPIR.

More speci¯cally, for an increasing probability perception function f , let

(1) Pf = inf
0<v<1

[
1 ¡ f(v)

1 ¡ v
=
f(v)

v
]

be its index of pessimism (see Section 3.1). The probability perception function displays

pessimism, i.e., is majorized by the identity function, if and only if Pf ¸ 1.
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For a strictly increasing utility function u, de¯ne

(2) Gu = sup
x1<x2·x3<x4

[
u(x4) ¡ u(x3)

x4 ¡x3
=
u(x2) ¡u(x1)

x2 ¡x1
]

to be its index of non-concavity. This index (also called greediness, see Section 3.2)

satis¯es Gu ¸ 1 as well, and the value 1 corresponds exclusively to concavity. When u

is di®erentiable, it is the supremal value of u0(x)=u0(y) taken over x ¸ y.

The characterization of monotone risk aversion in the RDEU model will be based on

the comparison of these two indices.

In Section 2 we recall the basic de¯nitions and some basic properties of M-MPIR and

monotone risk aversion, and justify the interest in M-MPIR, irrespective of the model of

decision under risk used. The corresponding introductory material on the RDEU model

is contained in Section 3. Section 4 states the main result (Theorem 1) characterizing

monotone risk aversion in the RDEU model and its corollary that handles the case of

monotone risk-seeking attitudes, illustrates in the RDEU context the monotone risk seeking

behavior of a DM with diminishing marginal utility and compares monotone and strong risk

averse attitudes.

2 Monotone mean-preserving increase in risk and monotone
risk aversion

2.1 Notation

We assume that risk prevails and describe it through a set of states of nature  = [0; 1]

endowed with the uniform probability measure P on the Borel ¾-¯eld. Let V = fX; Y; ¢ ¢ ¢g
be the set of bounded R-valued random variables on .

For any X in V, we denote by FX (respectively, FX = 1 ¡ FX) the cumulative (de-

cumulative) distribution function of X and by E (X) the expected value of X. Let D be

the set of cumulative probability distribution functions on R.

The distribution (or law) of a discrete random variable Z will be denoted by

(3) L(Z) = (x1; p1; : : : ;xk; pk; : : : ;xn; pn)

with x1 < x2 < ¢ ¢ ¢ < xn, pi ¸ 0 and
P

pi = 1.

2.2 Comonotonicity and monotone mean-preserving increase in risk

Two functions X and Z:  ! R are comonotone if each is non-decreasing in the other. Z may

be non-decreasing in X:  ! R, that is, X(!) > X(!0) implies that Z(!) ¸ Z(!0), without
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Z being a function of X at all, that is, without the further requirement that X(!) = X(!0)

imply Z(!) = Z(!0). If Z is non-decreasing in X then X is clearly non-decreasing in Z as

well, so this notion is symmetric1. The common formal de¯nition (see [26, 27, 32, 13]) of

this notion of functions that are non-decreasing in each other, or comonotone functions, is:

De¯nition 1 Two real-valued functions X and Z on  are comonotone if for any ! and

!0 2 , [X(!) ¡X(!0)] [Z(!) ¡Z(!0)] ¸ 0.

Comonotonicity is not a transitive relation because constant functions are comonotone

with any function. Consistent with the usual conventions, random variables are said to be

comonotone if they are comonotone functions on some sure event.

Quiggin [21] introduced the following notion of monotone mean-preserving increase in

risk (M-MPIR).

De¯nition 2 For X;Y 2 V, Y is a monotone mean-preserving increase in risk M-MPIR

of X if there exists a random variable Z 2 V with E(Z) = 0 such that X and Z are

comonotone and Y has the same probability distribution as X +Z. Equivalently, X will be

said to be a monotone mean-preserving reduction in risk of Y .

This is a very intuitive notion of increase in risk: Y could be said to be a "progressive

stretch" of X: if an X-mass at x is shifted to become a Y -mass at y, then all X -masses to

the right of x will be shifted by at least y ¡ x. In particular, their distribution functions

single cross. For illustrative intuition, observe that net income and tax are comonotone

because each is a non-decreasing function of gross income. Thus, taxation (centered so as

to display mean zero) accomplishes a monotone mean-preserving reduction in risk. The

notion of price band stabilization, used in the theory of the ¯rm, is also a particular case of

monotone reduction in risk.

Monotone increases or reductions in risk are assumed to be mean preserving. Except

for this requirement, they coincide with the notion of comparative dispersion introduced in

a statistical framework by Bickel & Lehmann (see [3, 4]):

De¯nition 3 For F and G in D, F is Bickel & Lehmann less dispersed than G if for every

0 < x < y < 1;F¡1(y) ¡ F¡1(x) · G¡1(y) ¡G¡1(x):
1Equivalently, as some further thought will reveal, each of X and Z is a non-decreasing function of some

third function from  to R, and this other function can always be taken to be X +Z.
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That is, all the interquantile intervals are shorter for X than for Y . The de¯nition of

dispersion doesn't require F nor G to possess ¯nite ¯rst moments, and even if they do,

these moments need not be equal. In fact, Y » G is more dispersed than X » F if and

only if Y + c is more dispersed than X, for arbitrary c 2 R. Gathering di®erent properties

obtained in the literature on this subject (see [8, 19, 21]), it is possible to obtain the following

connection between the Bickel & Lehmann dispersive order and M-MPIR.

Proposition 1 When two random variables X and Y in V have the same expected value,

Y is a M-MPIR of X if and only if FY is more dispersed than FX in the sense of Bickel &

Lehmann.

>From now on, we concentrate on M-MPIR, the mean-preserving version of comparative

dispersion and on the corresponding notion of attitude to risk, monotone risk aversion, to

be viewed as aversion to M-MPIR. More formally:

De¯nition 4 A DM is monotone risk averse (respectively, monotone risk seeking) if for

any X and Y in V with equal means such that Y is a M-MPIR of X, the DM weakly prefers

X to Y (respectively, Y to X).

2.3 Motivation for the study of monotone mean-preserving increase in
risk and the dispersive order: insurance and portfolio management
under the EU model

To gain some intuition on M-MPIR, note that, as a consequence of De¯nition 3, the

distributions F and G must single cross. Thus (see Diamond & Stiglitz [14]), G is a MPIR

(in the sense of Rothschild & Stiglitz) with respect to F . But De¯nition 3 (i.e. dispersion)

not only makes F and G single cross - it makes G single cross every horizontal translation

of F . This property is very meaningful for Insurance: a horizontal translation of F is the

distribution of a random variable X¡c obtained from an F -distributed X by the subtraction

of an arbitrary constant c. This constant may play the role of insurance premium for an

otherwise fair contract that replaces the distribution G of the uninsured position Y by the

distribution F of the random variable X . Since the distribution of X ¡ c single crosses the

distribution of Y and the utility function u is non-decreasing, the distributions of u(X ¡ c)

and u(Y ) single cross as well. Choosing the premium c so that E(u(X ¡ c)) = E(u(Y )),

u(Y ) becomes a MPIR with respect to u(X ¡ c), so E(´(u(X ¡ c))) ¸ E(´(u(Y ))) for

all non-decreasing and concave ´. Since for EU DM's this characterizes v(¢) = ´(u(¢)) as
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displaying more risk aversion than u, this proves that a Arrow-Pratt more risk averse EU

DM will always be ready to pay higher premiums for monotone mean-preserving reductions

in risk. This property does not necessarily hold for standard mean-preserving reductions

in risk, as shown by Ross [23] and others. This apparent drawback of the usual (Arrow-

Pratt) notion of comparative risk aversion is in fact a drawback of the automatic use of

second degree stochastic dominance as the reference for reduction of risk by insurance.

Landsberger & Meilijson [18] proved that M-MPIR is the weakest order compatible with

the Arrow-Pratt index of risk aversion, in the class of all non-decreasing utility functions.
Jewitt [15] introduced a weaker order, still stronger than Rothschild & Stiglitz's, that

characterizes risk reductions compatible with the Arrow-Pratt index in the class of non-

decreasing concave utility functions. We respectfully credit Jewitt with the technical idea

for connecting insurance premia with horizontal shifts of distributions. Landsberger &

Meilijson [19] have presented other applications of this stochastic order to insurance.

In the following sections we study a role played by monotone mean-preserving risk in

the RDEU model. A forthcoming paper [9] analyzes other roles played by monotone risk

and its weaker version Location-independent Risk by Jewitt, in the same model. We ¯nish

this section on monotone risk by illustrating an application to Portfolio management.

In the standard problem of designing an optimal portfolio based on one safe and one

risky asset, a natural prediction is that if the risky asset becomes riskier (in the usual

Rothschild & Stiglitz (1970) sense, see [24]), the EU strongly risk averse investors will want

less of it. This prediction was shown to be wrong by Rothschild & Stiglitz in their 1971

paper (see [25]), where they present the following necessary and su±cient condition on the

utility function u under which a MPIR will always lead to a reduction in the allocation to

the risky asset: u0(¢) must be convex2 and the relative index of risk aversion ¡xu00(x)=u0(x)

must be bounded from above by 1. This somewhat counter-intuitive result, that has puzzled

many economists, has lead to various attempts to restrict not only the type of risk aversion

postulated, but also the notion of increase in risk itself. In one of these contributions,

Quiggin [21] showed that an EU DM with DARA (Decreasing Absolute Risk Aversion)

utility function will reduce the allocation to the risky asset if it is subjected to a M-MPIR.

It should be noted that the CARA utility function ¡ expf¡Kxg, a special case of DARA,

has unbounded relative index of risk aversion, and as such, it does not meet the Rothschild

& Stiglitz (1971) necessary conditions. Hence, a EU DM with CARA utility function will
2u' convex is termed "prudence" by Kimball [16].
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coherently reduce the allocation on a monotonely riskier asset while failing to do so under

the standard notion of riskier asset.

3 The RDEU model

Variants of the Rank Dependent Expected Utility theory due to Quiggin [20] have been

treated by Yaari [32], Chew, Karni & Safra [11], Segal [28, 29] and Allais [2]. General

axiomatization can be found in Wakker [30], Quiggin & Wakker [22], Chateauneuf [6].

De¯nition 5 A DM behaves in accordance with the Rank Dependent Expected Utility model

(RDEU) if the DM is characterized by a continuous, strictly increasing utility function u

in conjunction with a probability-perception function f : [0;1] ! [0;1] that is strictly

increasing and satis¯es f(0) = 0; f(1) = 1. Such a DM (weakly) prefers the random variable

X to the random variable Y if and only if V (X) ¸ V (Y ), where the RDEU functional V is

given by

V (X) = Vu;f(X) = ¡
Z 1

¡1
u(x)df(P(X > x))

=
Z 0

¡1
[f(P(u(X) > t)) ¡ 1] dt +

Z 1

0
f(P(u(X) > t))dt :(4)

If the support of the random variable X is a ¯nite set, V (X) can be written as

V (X) =
nX

i=1
u(xi)

2
4f(

nX

j=i
pj) ¡ f(

nX

j=i+1
pj)

3
5

= u(x1) +
nX

i=2

[u(xi) ¡u(xi¡1)]f(
nX

j=i

pj)

= u(x1) +
nX

i=2
[u(xi) ¡u(xi¡1)]f(vi¡1) ;(5)

where vi =
Pn
j=i+1 pj = P (X > xi).

If the perception function f is the identity function f(v) ´ v, then V (X) = Vu;I (X)

is the expected utility E[u(X)] of the random variable. The Yaari functional (see [32]) is

the special case V (X) = VI;f(X), in which the utility on outcomes is the identity function

u(x) ´ x. If both perception and utility are identity functions, then V (X) = VI;I(X) is

simply the expected value E[X] of the random variable.

In some sharp sense, M-MPIR plays for Dual Theory (in fact, for the RDEU model with

concave utility) the role played by MPIR for the EU model: for equal{mean X and Y in
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V, all RDEU DM's with linear u and pessimistic f (f(p) · p) prefer X to Y , if and only if

Y is a M-MPIR with respect to X (see [5, 9] and implicitly [32]).

Example 1. Spreading out a two-point distribution { a necessary condition for

monotone risk aversion.

Let 0 < v < 1 and ¡1 < x1 < x2 < x3 < 1, let x4 = x3+(x2¡x1)(1¡ v)=v. Consider

the M-MPIR from the two-point distribution L(X) = (x2;1 ¡ v;x3; v) (see (3)) to the two-

point distribution L(Y ) = (x1;1 ¡ v; x4; v). Since E(X) = E(Y ); monotone risk aversion

implies that V (X) ¸ V (Y ) for all choices of v and xi as above. Using the representation

V (X) = u(x2)+f(v)[u(x3)¡u(x2)] (see (5)), this inequality is readily seen to be equivalent

to

(6)
u(x4) ¡ u(x3)

x4 ¡ x3
=
u(x2) ¡u(x1)

x2 ¡x1
· 1 ¡ f(v)

1 ¡ v
=
f(v)

v
:

Hence, a necessary condition for monotone risk aversion is that the supremum of the

left-hand side of (6), related to the index of greediness Gu (see (2)) of the utility function

u, be less than or equal to the in¯mum of the right-hand side of (6), the index of pessimism

Pf (see (1)) of the probability perception function f. However, the supremum of the LHS

of (6) should be taken over vectors (x1; x2; x3; x4) satisfying x1 < x2 < x3 < x4 and also

x4 = x3 + (x2 ¡ x1)(1 ¡ v)=v, so this supremum could in principle depend on v. By the

following Lemma 1, this supremum, independent of v, is equal to the index of greediness Gu

of the utility function u, to be compared with the index of pessimism Pf of the probability

perception function f.

Lemma 1 Let u : R ! R be continuous and strictly increasing and let ¸ > 0. Denote

E¸ = fxjx = (x1; x2; x3; x4) 2 R4 ; x1<x2·x3<x4 ;
x4 ¡ x3
x2 ¡ x1

= ¸g(7)

Gu(¸) = sup
x2E¸

[ u(x4) ¡u(x3)
x4 ¡ x3

=u(x2)¡ u(x1)
x2 ¡ x1

] :(8)

Then Gu(¸) = Gu :

The lemma is proved in the Appendix. As noted following the de¯nition of the index of

non-concavity, if u is di®erentiable, then Gu is expressible as Gu = supy<x
u0(x)
u0(y) and Lemma

1 is super°uous.

The next subsections introduce more formally these indices of pessimism and greediness

as well as their dual of optimism and thriftiness (or non-convexity), and analyze some of

their main properties.
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3.1 Index of pessimism

A RDEU DM is pessimistic under risk if the DM assesses lotteries as a EU DM who, for

each x 2 R; undervalues the probability to win at least x; this is the e®ect of a probability

perception function f such that f(v) · v for all v 2 [0;1]. For any probability perception

function f lying under the identity function, 1 ¡ f(v) ¸ 1 ¡ v and f(v) · v. Thus, by

(1), the index of pessimism Pf = inf0<v<1[1¡f(v)1¡v =f (v)v ] of such an f satis¯es Pf ¸ 1. For a

probability v of winning, (1 ¡ v)=v is the odds-ratio against winning. Pessimists exaggerate

this odds ratio by amplifying it to (1¡f(v))=f(v). The index of pessimism can be intuitively

understood as the minimal such ampli¯cation factor.

Example 2. Kink perception function. Let a kink function be the pointwise maximum

of two increasing linear functions de¯ned on [0; 1]: one with slope less than 1 going through

(0; 0), the other with slope exceeding 1 going through (1; 1). If f is a kink, then

(9) Pf = min(1=f0(0); f 0(1)) > 1 :

Example 3. Hyperbolic perception function. For P > 1, let the function

(10) fP(v) =
v

v + (1 ¡ v)P

be called the hyperbolic perception function with index of pessimism P . It is an iso-

pessimistic perception function in the sense that the expression

[(1¡fP(v))=(1¡v)]=[fP(v)=v], whose in¯mum over v generally de¯nes the index of pessimism,

is identically equal to the index of pessimism P of fP .

The following proposition summarizes some basic properties of the index of pessimism

Pf . Properties (i)-(v) are of intrinsic interest. Property (vi) is a technical lemma needed in

the sequel.

Proposition 2

(i) For perception functions f and g, if f(v) · g(v) for all v 2 (0;1), then Pf ¸ Pg.

(ii) If f is a non-linear, convex perception function, then Pf > 1.

The following property characterizes strict pessimism.

(iii) For a perception function f, Pf > 1 if and only if f is majorized by some non-

linear, convex perception function. Furthermore, every perception function f with Pf > 1

10
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is majorized by the hyperbolic perception function with the same index of pessimism Pf (see

(9)).

(iv) Fix P > 1 and let LP (v) = v=P and RP (v) = 1 + (v ¡ 1)P be the linear support

functions of the hyperbolic perception function fP at 0 and 1 respectively. Then Pf = P for

every perception function f satisfying LP · f · fP or RP · f · fP .

The following property gives an alternative de¯nition of Pf .

(v) For a pessimistic perception function f , Pf = Q, where

Q = inffP > 1jf(v) > fP(v) for some v 2 (0; 1)g

= supfP ¸ 1jf(v) · fP (v) for all v 2 (0; 1)g :(11)

(vi) The index of pessimism of a pessimistic DM satis¯es

(12) Pf = inf
0<v2·v1<1

1 ¡ f(v1)
1 ¡ v1

=
f(v2)
v2

:

The proof is in the Appendix. This proposition further justi¯es Pf as an index of

pessimism { the more f \hangs down" below the diagonal, the more pessimistic the DM is,

and the larger Pf is. The index of pessimism is the same for all perception functions that

are \sandwiched" between an hyperbolic perception function and the kink that supports it

from below at 0 and at 1.

Example 4. Power-type perception functions. For ® > 1, the perception functions

f(v) = v® and g(v) = 1 ¡ (1 ¡ v)1=® have index of pessimism ®.

Sketch of proof: By property (iv), f is sandwiched between R® and f®, while g is

sandwiched between L® and f®. The details are skipped.

Optimism and index of optimism

By duality, a RDEU DM with a probability perception function f is optimistic under

risk if f(v) ¸ v for all v 2 [0; 1] with an index of optimism Of

(13) Of = inf
0<v<1

[
f(v)

1 ¡ f(v)
=

v
1 ¡ v

] = inf
0<v<1

[
f(v)

v
=
1 ¡ f(v)

1 ¡ v
]

where Of ¸ 1 for an optimist.

3.2 Index of non-concavity (or greediness)

For a strictly increasing utility function u, (2) de¯nes its index of non-concavity. Since

non-decreasing functions are di®erentiable almost everywhere, the ratio in (2) can be made
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arbitrarily close to 1 by concentrating all four points xi close to a point of di®erentiability

of u. Hence, Gu ¸ 1. The value 1 corresponds exclusively to concavity. For di®erentiable u

the index of non-concavity can be expressed in the simpler form

(14) Gu = sup
y<x

u0(x)
u0(y)

Intuitively, as the maximal possible ampli¯cation factor of marginal utility from a low

level of wealth to a higher level of wealth, it measures \greed" - valuing an additional cent

more when rich than when poor. We propose to call it index of greediness.

A function u¤ is said to be more concave than a function u if there is a

concave, strictly increasing function ´ such that for all x 2 R, u¤(x) = ´(u(x)). In this

de¯nition, neither of the two utility functions is required to be concave3. Since

u¤(x4) ¡u¤(x3)
x4 ¡x3

=
u¤(x2) ¡ u¤(x1)

x2 ¡ x1
=

´(u(x4))¡ ´(u(x3))
x4 ¡ x3

=
´(u(x2)) ¡ ´(u(x1))

x2 ¡ x1

= [
´(u(x4)) ¡ ´(u(x3))

u(x4) ¡u(x3)
=

´(u(x2)) ¡ ´(u(x1))
u(x2) ¡u(x1)

][
u(x4) ¡u(x3)

x4 ¡ x3
=
u(x2) ¡u(x1)

x2 ¡x1
]

· u(x4) ¡u(x3)
x4 ¡x3

=
u(x2) ¡ u(x1)

x2 ¡ x1
;(15)

it follows directly from the de¯nition (see (2)) of the index of greediness that Gu¤ · Gu.

Proposition 3 summarizes the above properties of this index:

Proposition 3 (i) Gu ¸ 1:

(ii) Gu = 1 if and only if u is concave.

(iii) If u is di®erentiable,

(16) Gu = sup
y<x

u0(x)
u0(y)

:

(iv) If the utility function u¤ is more concave than the utility function u, then Gu¤ · Gu.

Index of non-convexity (or thriftiness)

By duality, we can de¯ne, for a strictly increasing utility function u; an index of non-

convexity (or thriftiness):

(17) Tu = sup
x1<x2·x3<x4

[u(x2) ¡u(x1)
x2 ¡ x1

= u(x4)¡ u(x3)
x4 ¡ x3

] :

Tu ¸ 1 and the value 1 corresponds exclusively to convexity.
3In EU theory, the utility function u¤ is then said to display (Arrow-Pratt) more risk aversion than the

utility function u:
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Moreover, for a di®erentiable u the index of non-convexity can be expressed in the

simpler form

(18) Tu = sup
x<y

u0(x)
u0(y)

4 Characterization of monotone risk aversion

We can now state the main result:

4.1 Main result

Theorem 1 A RDEU DM with probability perception function f and utility function u is

monotone risk averse if and only if the DM's index of pessimism exceeds the DM's index of

non-concavity: Pf ¸ Gu.

The theorem will be proved in Section 5. Let us ¯rst emphasize some implications of

this result.

1. Since Gu ¸ 1, the fact that Pf ¸ Gu for monotone risk averse DM's, implies that

Pf ¸ 1, or f(v) · v. In other words, pessimism is a necessary condition for monotone risk

aversion. This fact also follows from (i) monotone risk aversion implies weak risk aversion

and (ii) weak risk aversion implies pessimism: f(v) · v for v 2 [0; 1] (see for instance

Chateauneuf & Cohen [7]).

2. If f is the identity function then Pf = 1. However, there are pessimistic f other than

the identity function itself, for which Pf = 1: it su±ces that f(p) = p for some p 2 (0; 1) or

that f 0(p) = 1 at either p = 0 or p = 1. Thus, concavity of u is necessary for monotone risk

aversion only for EU maximizers and for RDEU DM \locally close" to being EU maximizers,

in this precise sense.

3. Quiggin (see [21]) uses the concept of monotone risk aversion only for DM with

concave u. Theorem 1 proves that concavity of u is not a necessary condition for monotone

risk aversion. Similarly, convexity is not necessary for monotone risk-seeking attitudes (see

the following corollary).

4. If f crosses the diagonal, the DM is neither monotone risk averse nor monotone risk

seeking. In fact, not even weakly so.

The following theorem is presented as a corollary since its proof is analogous to that of

Theorem 1.
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Corollary 1 A RDEU DM with probability perception function f and utility function u is

monotone risk seeking if and only if the DM's index of optimism exceeds the DM's index of

non-convexity: Of ¸ Tu.

4.2 Examples and discussion

4.2.1 Risk-seeking attitude with diminishing marginal utility

Restrict attention to random variables with values in [0; 1] and assume accordingly that the

utility function is de¯ned in the unit interval.

Example 5. CARA4 utility and power-type perception functions. Let a RDEU

DM's choices among lotteries on [0;1] be characterized by the concave CARA utility function

u(x) = ¡ae¡bx and the optimistic power-type perception function f(v) = 1 ¡(1¡ v)h, with

a > 0, b > 0 and h > eb. As is easy to ascertain, Of = h and Tu = eb. Hence, in spite of

the concavity of the utility function, the DM is monotone risk seeking.

Note, however, that a RDEU DM with the same utility function u(x) = ¡ae¡bx as

above but pessimistic power-type probability perception function f(v) = vk with k ¸ 1, is

monotone risk averse, since Pf = k and Gu = 1.

In summary, a DM with a given concave utility function can be monotone risk averse or

monotone risk seeking or in fact neither, depending on the probability perception function.

4.2.2 Mean-preserving increase in risk does not imply monotone mean-preserving
increase in risk.

In the following example, Y is a mean-preserving spread but not a monotone mean-preserving

spread of X, because X and Z are not comonotone.

Example 6. A non-monotone mean-preserving spread. Consider four equally likely

points and two random variables Y and X with respective values

Y 0 1000 3000 4000

X 0 2000 2000 4000

and di®erence Z = Y ¡ X

Z 0 ¡ 1000 1000 0

Any RDEU DM with linear u (Gu = 1) and pessimistic f (Pf ¸ 1) is monotone risk

averse because Pf ¸ Gu. For any f satisfying moreover f(1=2) > f (1=4)+f (3=4)
2 , it is easy

to see that V (Y ) > V (X) and thus this monotone risk averse DM strictly prefers the more
4borrowing EU terminology that may be inappropriate beyond EU
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risky random variable Y . By Chew, Karni & Safra [11], this could not have been possible

with a convex f .

4.2.3 Comparison of monotone risk aversion with weak and strong risk aversion

As expressed in the Introduction, these three kinds of risk aversion are logically related

so that strong r.a. implies monotone r.a., which in turn implies weak r.a. The three are

equivalent in EU theory. In RDEU theory, pessimism is necessary for each of the three and

concavity of u is necessary only for strong r.a. Furthermore, the three hold simultaneously

only in the class of DM's with concave u and convex f (Chew, Karni & Safra [11]). In the

class of DM's with concave u, weak and monotone r.a. are equivalent and hold as long as f

displays pessimism (Quiggin [20, 21]), but do not imply strong r.a. However, if u is allowed

not to be concave, weak r.a. does not imply monotone r.a., as the following example shows,

which we present without proof: a DM with u(x) = x2 on [0;1) and f(p) = p2, easily seen

not to be monotone risk averse because Pf = 2 and Gu = 1, is weakly risk averse ([10], in

preparation).

There is, thus, an essential di®erence in the attitude of RDEU DM's to the Quiggin -

Bickel & Lehmann and Rothschild & Stiglitz notions of increase in risk: for the latter, there

is no degree of pessimism that can compensate for departures from concavity of u and still

make the DM averse to risk. The main theorem of this paper shows that for the stronger

monotone notion of risk (and thus, weaker notion of risk aversion), such a compensation

exists and is completely separable in the sense that no joint condition in terms of both u

and f is needed. Rather, the compensation is based on a comparison of intrinsic indices of

pure type, one for greediness displayed by u and the other for pessimism displayed by f.

5 Proof of Theorem 1

5.1 Necessity of the condition Pf ¸ Gu

Consider the setup introduced in Example 1, for some given v 2 (0; 1) . By Lemma 1, it is

enough to prove that for every (y1; y2; y3; y4) 2 E¸, where ¸ = (1 ¡ v)=v, a monotone risk

averse DM characterized by (u;f) veri¯es

(19)
u(y4) ¡ u(y3)

y4 ¡ y3
=
u(y2) ¡u(y1)

y 2 ¡ y1
· 1 ¡ f(v)

1 ¡ v
=
f(v)

v
:

Let a random variable X have values y2 < y3 and respective probabilities 1 ¡ v and v.
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The RDEU functional for a DM characterized by a pair (u;f) is (see (5))

(20) V (X) = u(y2) + f(v)[u(y3) ¡ u(y2)] :

Let us apply a monotone mean-preserving spread to this distribution in the following

way: Since (y1; y2; y3; y4) 2 E¸, there exists ° > 0 such that y1 = y2 ¡ °v and

y4 = y3+°(1¡v). The random variable Y taking values y1 < y4 with respective probabilities

1 ¡ v and v is then riskier than X in the sense of a M-MPIR. Since

(21) V (Y ) = u(y1) + f(v)[u(y4) ¡ u(y1)] ;

then V (Y ) ¡V (X) · 0 if and only if (1 ¡ f(v))(u(y1) ¡ u(y2)) + f(v)(u(y4) ¡ u(y3)) · 0.

But (y4 ¡ y3)=(y2 ¡ y1) = (1 ¡ v)=v, so the required inequality (19) follows.

5.2 Su±ciency of the condition Pf ¸ Gu

We must compare V (X) and V (Y ) for an arbitrary pair (X;Y ) of (equal-mean) random

variables for which Y is a M-MPIR with respect to X. The proof will proceed in two

steps: (i) su±ciency of the condition for random variables with ¯nitely many values, and

(ii) a continuity argument to extend su±ciency of the condition to the set V, composed of

bounded random variables in general.

5.2.1 The discrete case

As in Landsberger & Meilijson [18] and Chateauneuf, Cohen & Meilijson [9], let the result

of an out-stretch (v,w;a,b) (where 0 < v · w < 1 and a ; b > 0) of a distribution function F

be the distribution G obtained from F by shifting to the right by an amount b the section

of F above height 1 ¡ v and by a to the left the section of F below height 1¡w. (If F is an

income distribution, then the poorest (1¡w)-quantile of the population becomes poorer by

the constant amount a and the richest v-quantile becomes richer by the constant amount

b). Clearly, if vb = (1 ¡w)a, then (v; w; a; b) is a mean-preserving out-stretch. Notice that

these out-stretches may entail splitting an atom in each side in two, one part of which gets

shifted and the other stays in place. It is intuitively true and easy to prove (see [18]) that

(i) if G is obtained from F by a mean-preserving out-stretch then G is a M-MPIR with

respect to F , and (ii) if F and G are supported by ¯nite sets and G is a M-MPIR with

respect to F , then there is a ¯nite sequence F = F1;F2; : : : ;Fk = G of distributions such

that for each 1 · i < k, Fi+1 is a mean-preserving out-stretch of Fi. Due to these facts, it
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is enough to prove that V (Y ) · V (X) whenever the distribution of Y is a mean-preserving

out-stretch of that of X. Let (v;w; a; b) be this stretch and let

L(X) = (x1;1 ¡ v1;x2; v1 ¡ v2; : : : ;xi; vi¡1 ¡ vi; : : : ;xj ; vj¡1 ¡ vj ;

: : : ;xn¡1; vn¡2 ¡ vn¡1;xn; vn¡1)(22)

be the distribution of X, with atoms x1 < x2 < ¢ ¢ ¢ < xn and probabilities P (X > xk) = vk.

Let i < j be chosen so that vi¡1 ¸ w ¸ vi ¸ vj¡1 ¸ v ¸ vj . Then V (X) ¡ V (Y ) is

¢V = [u(x1) ¡ u(x1 ¡ a)]f1 ¡ f (v1)g + [u(x2) ¡ u(x2 ¡ a)]ff (v1) ¡ f (v2)g + ¢ ¢ ¢
+ [u(xi) ¡ u(xi ¡ a)]ff (vi¡1) ¡ f (w)g ¡ [u(xj + b) ¡ u(xj )]ff (v) ¡ f (vj )g
¡ [u(xj+1 + b) ¡ u(xj+1)]ff (vj ) ¡ f (vj+1)g ¡ ¢ ¢ ¢ ¡ [u(xn + b) ¡ u(xn)]ff (vn¡1)g :(23)

To prove non-negativity of (23), it is enough to prove its non-negativity when each term

in square brackets with a + sign in front is replaced by the minimum of these terms, and

each term in square brackets with a ¡ sign is replaced by the maximum of these. Let

the minimum of u(xk) ¡ u(xk ¡ a) over k · i be attained at k = l and the maximum of

u(xk + b) ¡ u(xk) over k ¸ j ¡ 1 be attained at k = m. Then, since (1 ¡ w)a = vb,

¢V ¸ [u(xl) ¡ u(xl ¡ a)]f1 ¡ f(w)g ¡ [u(xm + b)¡ u(xm)]ff(v)g

=
½

u(xl) ¡u(xl ¡a)
a

1 ¡ f(w)
1 ¡ w

¡ u(xm + b) ¡u(xm)
b

f(v)
v

¾
vb

¸ u(xl) ¡u(xl ¡ a)
a

f(v)
v

f[
1 ¡ f(w)

1 ¡w
=
f(v)

v
] ¡Gugvb :(24)

Since by assumption Pf ¸ Gu, the last term is non-negative by Proposition 2 (vi). This

completes the proof of su±ciency of the condition Pf ¸ Gu, dealing with random variables

supported by a ¯nite set. It remains to present a continuity argument that will extend

su±ciency to general bounded random variables.

5.2.2 Continuity arguments for the general case

Let us now consider two elements X and Y of V, such that Y is a M-MPIR of X . We can

assume without loss of generality that Y = X+Z with Z and X comonotone and E(Z) = 0.

We use the standard uniform approximations of bounded random variables by non-

decreasing step functions, which preserve comonotonicity.

Thus, let Xn and Zn be such approximations of X and Z. Explicitly,

(25) Xn =
n2n¡1X

i=0
[

i
2n

1f i2n ·X< i+1
2n g ¡ i +1

2n
1f¡i+12n ·X<¡

i
2ng]
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where 1A denotes the characteristic function of the event A. A similar expression de¯nes

Zn. Xn and Zn are comonotone, since they are non-decreasing functions of comonotone

random variables. (One of the equivalent de¯nitions of comonotonicity of X and Z is the

existence of a random variable U of which each of X and Z is a non-decreasing function.

Obviously, so are Xn and Zn, automatically).

For n large enough so that X;Y and Z are supported by the interval (¡n; n),

(26) X ¡ 1
2n

· Xn · X and Z ¡ 1
2n

· Zn · Z :

Hence, with Yn = Xn+ Zn,

(27) Y ¡ 1=2n¡1 · Yn · Y :

The second statement in (26) and the fact that E(Z) = 0 entail E(Zn) " 0. De¯ne then

®n # 0 by E(Zn +®n) = 0 and set Z0
n = Zn +®n;Y 0

n = Xn +Z0
n:

Clearly, Xn and Y 0
n are ¯nite-support random variables and Y 0

n has been obtained from

Xn by a M-MPIR. It follows from part (i) of the proof that for each n,

(28) V (Xn) ¸ V (Y 0
n) :

For a random variable T, V (T ) is the Choquet integral of u(T ) with respect to the

capacity c = f ± P , i.e., V (T ) =
R

u(T)df ± P . Since the Choquet integral is monotone and

comonotonically additive (see [5, 13, 26, 27]), (28) will entail the desired result V (X) ¸
V (Y ). For the sake of completeness, we present a direct argument.

Y 0
n ¸ Yn implies u(Y 0

n) ¸ u(Yn) and, a-fortiori, V (Y 0
n) ¸ V (Yn). By (28),

(29) V (Xn) ¸ V (Yn); 8n 2 N :

Since the utility function u is continuous, it is uniformly continuous on any compact

subset of R. Hence, from (26) and (27), 8²9N(²) s.t. n ¸ N(²) implies that

(30) u(X) ¡ ² · u(Xn) · u(X) ; u(Y ) ¡ ² · u(Yn) · u(Y ) :

Monotonicity, comonotonic additivity and the normalization property
R
1 df ± P = 1

lead to the two inequalities: 8n ¸ N(²),

(31) V (X) ¡ ² · V (Xn) · V (X) ; V (Y ) ¡ ² · V (Yn) · V (Y ) :

Therefore, limn!1V (Xn) = V (X) and limn!1V (Yn) = V (Y ). Hence, by (29),

V (X) ¸ V (Y ).
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Remark A RDEU DM was postulated in De¯nition 5 to have a continuous, strictly

increasing utility function u and a strictly increasing probability perception function f .

The preceding proof could be somewhat simpli¯ed if we added di®erentiability assumptions

on u.

6 Appendix

Proof of Lemma 1

Obviously, Gu(¸) · Gu. We have to prove the opposite inequality Gu(¸) ¸ Gu, i.e.,

for any (x1; x2; x3; x4) 2 R4 such that x1 < x2 · x3 < x4 and any " > 0, there exists a

(y1; y2; y3; y4) 2 E¸ such that

u(y4)¡ u(y3)
y4¡y3

=
u(y2) ¡u(y1)

y2 ¡ y1
¸ u(x4) ¡u(x3)

x4 ¡x3
=
u(x2) ¡ u(x1)

x2 ¡ x1
¡ ² :

By continuity of u, there exists some x0 2 (x3; x4) such that for every x 2 (x0; x4),

u(x) ¡u(x3)
x¡x3

=
u(x2) ¡u(x1)

x2 ¡x1
¸ u(x4) ¡u(x3)

x4 ¡x3
=
u(x2) ¡ u(x1)

x2 ¡ x1
¡ ² :

Divide the interval (x1; x2) into K sub-intervals of equal length ¢ = (x2 ¡x1)=K such

that ¸¢ < x4¡x0. This guarantees that the sequence x3; x3 +¸¢; x3 +2¸¢; x3 +3¸¢; : : :

has some element x3 + k¸¢ (call it x) in the interval (x0;x4).

Since (u(x) ¡ u(x3))=(x ¡ x3) = (1=k)
Pk¡1
i=0 [u(x3 + (i + 1)¸¢) ¡ u(x3 + i¸¢)]=¸¢,

there is a sub-interval (y3; y4) = (x3 + i¸¢; x3 + (i + 1)¸¢) of (x3;x4) such that

(u(y4) ¡u(y3))=(y4 ¡ y3) ¸ (u(x) ¡ u(x3))=(x ¡ x3). Similarly, there exists a sub-interval

(y1; y2) = (x1 + j¢;x1 + (j + 1)¢) of (x1; x2) along which (u(y2) ¡ u(y1))=(y2 ¡ y1) ·
(u(x2) ¡ u(x1))=(x2 ¡x1). This completes the proof.

Proof of Proposition 2

Property (i) follows easily from the de¯nition of Pf (see (1)) as the in¯mum of

(v=(1 ¡ v))(1=f(v) ¡ 1)), that majorizes the corresponding expression involving g.

Property (ii) follows from Property (i) by observing that every non-linear, convex

perception function is separated from the identity function by some kink function (see

(9).

One direction of the proof of Property (iii) is clear: If f · g and g is a non-linear,

convex perception function, then by Properties (i) and (ii), Pf ¸ Pg > 1. As for the
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opposite direction, assume that Pf > 1. Let g(v) = fPf (v) = v=(v + (1 ¡ v)Pf) be the

hyperbolic perception function with index of pessimism Pf and re-write the inequality

Pf = inf
w

f[(1 ¡ f(w))=(1 ¡w)]=[f(w)=w]g · [(1 ¡ f(v))=(1 ¡ v)]=[f(v)=v]

simply as f · g.

Property (iv) is proved by ¯rst applying Property (i) to obtain that Pf ¸ PfP = P , and

then observing that Pf = infv2(0;1)f¢ ¢ ¢ g · infv2If¢ ¢ ¢ g for every sub-interval I ½ (0;1).

The inequality Pf · P follows by taking I = (0; ²) and minorizing f by LP on I , or by

taking I = (1 ¡ ²;1) and minorizing f by RP on I .

Proof of Property (v): To see that Pf ¸ Q, observe that this is trivial if Q = 1 and

concentrate on the case Q > 1. Take any ² 2 (0; Q¡ 1). By de¯nition of Q, fQ¡² majorizes

f . Hence, by Property (i), Pf ¸ Q¡ ². Since this is true for all su±ciently small ², Pf ¸ Q.

To prove the opposite inequality, take any P > Q and any v 2 (0; 1) at which f(v) > fP(v).

Then,

Pf = inf
w

1 ¡ f(w)
1 ¡w

=
f(w)

w
· 1 ¡ f(v)

1 ¡ v
=
f(v)

v
<

1 ¡ fP (v)
1 ¡ v

=
fP (v)

v
´ P :

Since Pf < P for all P > Q, the inequality Pf · Q follows.

Proof of Property (vi): It is clear that the right-hand side of (12) is less than or equal

Pf , since the in¯mum over v2 · v1 is less than or equal to the in¯mum over v2 = v1, that is

Pf by de¯nition. To see that the in¯mand in the right-hand side of (12) is greater or equal

than Pf , it is enough to show that for arbitrary 0 < v2 < v1 < 1,

(32)
1 ¡ f(v1)

1 ¡ v1
=
f(v2)

v2
¸ min[

1 ¡ f(v1)
1 ¡ v1

=
f(v1)

v1
;

1 ¡ f(v2)
1 ¡ v2

=
f(v2)

v2
] :

Otherwise, f(v2)=v2 > f(v1)=v1 and (1 ¡ f(v2))=(1 ¡ v2) > (1 ¡ f(v1))=(1 ¡ v1), so

f(v1) > 1 ¡ (1 ¡ f(v2))(1¡ v1)=(1 ¡ v2) > 1 ¡ (1¡ f(v1)v2=v1)(1 ¡v1)=(1 ¡ v2). Extracting

f(v1) from the ¯rst and third terms implies that f(v1) > v1, a contradiction.
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