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Methodology of measuring performance in alternative investment

Alexis BONNET, Methodology Group, London
CERMSEM1, Université Paris 1 Panthéon-Sorbonne

Isabelle NAGOT2, Methodology Group, London
CERMSEM1, Université Paris 1 Panthéon-Sorbonne

Abstract

The development of alternative investment has highlighted the limitations of standard
performance measures like the Sharpe ratio, primarily because alternative strategies yield
returns distributions which can be far from gaussian. In this paper, we propose a new
framework in which trades, portfolios or strategies of various types can be analysed re-
gardless of assumptions on payoff. The proposed class of measures is derived from natural
and simple properties of the asset allocation. We establish representation results which
allow us to describe our set of measures and involve the log-Laplace transform of the
asset distribution. These measures include as particular cases the squared Sharpe ratio,
Stutzer’s rank ordering index and Hodges’ Generalised Sharpe Ratio. Any measure is
shown to be proportional to the squared Sharpe ratio for gaussian distributions. For non
gaussian distributions, asymmetry and fat tails are taken into account. More precisely,
the risk preferences are separated into gaussian and non-gaussian risk aversions.

First version: January 2004, current version: October 2005

1 Introduction

Measuring the performance or choosing the optimal allocation in an alternative investment
context raises several difficulties. First, fund managers are facing a large choice of strategy
and payoff types, resulting in the observation of a vast array of potential return distributions,
for example exhibiting asymmetry, fat tails, or even multimodality characteristics. Despite
its natural appeal as a simple, intuitive tool, the Sharpe ratio is not suitable when the shape
of the return distribution is far from normal. The need for a measure adapted to any kind of
distribution is then particularly clear for alternative investment. Another limitation of stan-
dard methods in this context is that they are based on returns, which is not always adapted
to the positions taken in alternative investment. For example for a single trade as simple as
a future, the notion of return is not really well defined and cannot correctly take account of
the leverage. Note that in addition, an ad hoc method is needed to cope with short sales, a
common tool in hedge funds strategies.

1Maison des Sciences Economiques, 106-112 Boulevard de l’Hopital 75647 Paris Cedex 13
2Corresponding author, nagot@univ-paris1.fr
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To remedy this, we propose a new framework in which trades, portfolios or strategies of
various types can be analysed regardless of assumptions on payoff. In particular, it allows
a fund manager to compare and work out his optimal allocation. In this framework, we
describe a position as its final net worth (including transaction costs and properly discounted
cash flows), modelised as a random variable X on a probability space (Ω,F , P ). We work
with prices rather than returns, since this choice will be more appropriate in the alternative
investment context. This allows us to evaluate the performance of a portfolio having an
initial value of 0. However, when limited to a unique period of time (as in this paper), our
methodology can be directly transposed to returns.

In further studying the desirable properties of a performance indicator in the context of alter-
native investment, we develop an axiomatic description of an adapted performance measure.
It is based on two axioms concerning the optimal portfolio achievable with two independent
trades. We observe first that the squared Sharpe ratio, Stutzer’s rank ordering index, and
Hodges’ Generalised Sharpe Ratio satisfy these axioms. Then we prove that a performance
measure satisfying these axioms always coincides with the squared Sharpe ratio on gaussian
variables.

Introducing a natural regularity assumption, we give then a full characterization of our class
of measures. We prove that any measure satisfying the assumptions can be expressed for any
random variable X as:

(1.1) π(X) = sup
λ∈IR

J (HλX)

where J is linear and continuous and HX denotes the log-Laplace transform: for λ ∈ IR,
HX(λ) = − ln E(e−λX). In this paper, we limit our study to distributions X having a proper
Laplace transform, i.e. such that {λ ∈ IR|E(e−λX) < +∞} contains 0 in its interior. This
corresponds to rather thin tails for unbounded random variables. This work can be extended
to fatter tails as those found in stable laws. In (1.1), the application J : X 7→ J (HX) appears
itself as a performance measure and π(X) can be interpreted as the best value achieved by
varying the quantity of X. Therefore the measure π refers to a potentiality, which will only
be realized if the asset is hold in the right quantity. This generalizes Hodges’ approach, where
the exponential utility function is maximized.

The structure of the paper is as follows. After a brief description of some known measures, we
describe in section 2 what properties a performance measure should satisfy. Section 3 presents
the first consequences of the axioms on the measures, in particular their value for gaussian
variables. The representation result (1.1) is proved in section 4. Under an additional financial
assumption for digital contracts, the associated measure J is expressed, in section 5, as the
action of a Schwartz distribution of order at most two on the log-Laplace transform3. Section
6 proposes the interpretation in terms of risk aversion. In the whole paper, the squared
Sharpe ratio and the Hodges measure (detailed in section 1.3), serve as simple illustrative
examples. Section 7 compares the portfolio optimization obtained with these two examples
and a more complex measure, while section 8 summarizes the most important results, and
also gives an insight on the results of a subsequent paper which will be devoted to further
properties of these measures. We conclude with some topics for future research.

3Note that a reciprocal property of this result is proved in Appendix C.
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1.1 Sharpe ratio and classical alternatives

Standard performance measurement and portfolio optimization have long been based on the
Sharpe ratio. The use of the latter relies on the assumption that investors choose portfolios
according to a mean-variance framework. It is well known that the Sharpe ratio is particularly
misleading when the return distribution is far from normal (see e.g. Bernardo and Ledoit
[12], Goetzmann and al. [17] or Till [29]). Using variance as the risk measure is indeed not
appropriate when investment strategies have asymmetric or leptokurtic outcomes. This is
the case with option strategies, and for example, option sellers score particularly high Sharpe
ratios. In [17], Goetzmann and al. derive an optimal option-based strategy for achieving the
maximum expected Sharpe ratio. This strategy has a truncated right tail and a fat left tail.
That means that “expected returns being held constant, high Sharpe ratio strategies” are
those that “generate modest profits punctuated by occasional crashes”. Because option-like
characteristics appear sometimes in hedge funds performances4, this confirms that the Sharpe
ratio will be of limited use in this context. We will test our new family of measures on the
same example of portfolio choice.

Some extensions have been proposed using risk measures such as downside deviation (Sortino
ratio), VaR, CVaR or higher moments. Pedersen and Satchell [22] propose a survey of risk
measures and remark that several have been converted into equilibrium risk measures in asset
pricing. For example, Bawa and Lindenberg [11] derive alternative CAPM-models based on
lower partial moments.

1.2 Stutzer’s rank ordering index

Stutzer [28] bases his performance measure on the minimization of the probability that the
growth rate of invested wealth will not exceed an investor-selected target growth rate. He
chooses a portfolio that makes this probability decay to zero asymptotically, as the time
horizon T → ∞, with a decay rate which is as high as possible. A simple result in large
deviations theory is used to show that this decay rate maximization criterion is equivalent to
maximizing an expected power utility of the ratio of invested wealth to the benchmark, with
a risk aversion parameter determined by maximization. If we denote by R the log return in
excess of the benchmark, this criterion leads, in the i.i.d. case, to choose portfolios which
maximize supλ[− ln E(e−λR)] (see [28]).

When the difference in the log gross returns of portfolios and benchmark is gaussian, this
criterion is half the squared Sharpe ratio and yields then the same ranking as the Sharpe
ratio for portfolios with a positive Sharpe ratio.

1.3 Hodges measure

Hodges [18] introduces a performance measure based on the exponential utility function
U(W ) = −e−αW . It is presented as a generalization of the Sharpe ratio, since it reduces to
it for gaussian outcomes. The Generalised Sharpe Ratio (GSR) is defined as a measure of
market opportunities. Its value on a given asset X satisfies: 1

2GSR2(X) = − ln[−U∗(X)]

4In [29], Till give several examples of alternative strategies where the investors are implicitly short of

options.
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where U∗(X) is the optimal expected utility obtainable when the investor chooses the best
level of investment (or sale) in the considered asset: U∗(X) = supλ∈IR[−E(e−αλX)]. The
measure of an opportunity is then obtained by maximising on the quantity λ invested in it.
Since it uses a utility function with constant absolute risk aversion, the composition of the
optimal portfolio is independent of the coefficient of risk tolerance α. Moreover the measure
provides rankings which are consistent with stochastic dominance.

We observe that Hodges and Stutzer approaches yield similar expressions. However Hodges
bases his analyses on prices, while Stutzer uses log returns (on prices, it corresponds to a
constant relative risk aversion utility function, with an endogenous risk aversion parameter).
Since we are working with prices, we will be referring to Hodges’ measure when using this
criterion in the remaining of the paper and we set:

(1.2) Hod(X) = sup
λ∈IR

[− ln E(e−λX)]

Hodges’ approach has been followed for example by Madan and McPhail [21] who use a
slightly modified measure to develop a ranking statistic based on the four first moments. The
higher moments are calibrated to distributions using the variance gamma class of processes.

1.4 Omega measure

Keating and Shadwick [20] propose a performance measure which is the ratio of average gain
on average loss, where gains as well as losses are considered with respect to a given bench-
mark: Ω(ρ) = E[(X−ρ)+]

E[(ρ−X)+]
measures the quality of a bet on a return > ρ. It is a measure of

the relative probability weighted gains to losses at the return level ρ. For two assets, the
one with the higher Omega is a better bet. The derivation of this measure does not rely on
any assumption about risk aversion. Note that giving ρ 7→ Ω(ρ) is equivalent to setting the
distribution of X. For a given ρ ∈ IR, Ω(ρ)− 1 has a usual form of risk/return criterion since
it is the ratio of the mean excess return over ρ on the first lower partial moment E[(ρ−X)+],
used as risk measure.

Bacmann and Pache [10] compare portfolio optimization according to Stutzer’ index and the
Omega measure with traditional mean-variance framework, on empirical series of hedge funds
indices returns. They find that the optimal weights of indices associated with negative skew-
ness and high kurtosis are reduced when compared to the mean-variance approach. Moreover,
the portfolios optimised with the new measures provide better out-of-sample returns than the
ones constructed in the mean-variance approach.

2 Description of our framework

2.1 Axioms related to the allocation among independent trades

A position (or asset, or trade) is a given risk exposure, considered as a gain opportunity. All
cash-flows linked to a position are taken into account at the end of a given trading period and
properly discounted, including premia, transaction costs and payoff of the asset itself. The
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relevant variable is then the discounted net profit-and-loss (P&L) at the end of the trading
period. It can be either the realized or the forecast P&L (depending if we use the measure for
comparison of funds, considering their past performances, or as an asset allocation criterion),
for a trade, a fund, a part of a fund... This final net worth is described as a random variable
on a probability space (Ω,F , P ). We denote by X the set of variables X on the probability
space (Ω,F , P ) such that {λ ∈ IR|E(e−λX) < +∞} contains 0 in its interior. A performance
measure will be an application on X , with values in IR = IR ∪ {−∞, +∞}. We make the
classical assumption of Law Invariance, meaning that the performance of X depends only on
its law5.

We consider performance measures π : X → IR having the following properties: the optimal
portfolio obtained with two independent trades has a measure equal to the sum of the mea-
sures of each separate trade (A1), and in this optimal portfolio, the weight of a trade depends
only on its own characteristics and not on the other trades (A2).

Assumptions (A)

(A1) For all X,Y ∈ X independent,

(2.1) sup
α,β∈IR

π(αX + βY ) = π(X) + π(Y )

(A2) There exists an “optimal weight” function X ∈ X 7→ λX ∈ IR such that:
λX depends only on the law of X, λ1 = λN (1,1) is positive6 and

∀X, Y ∈ X independent, the upper bound in (2.1) is achieved for α = λX and β = λY ,

possibly asymptotically for an infinite weight.

(AT) We exclude π ≡ 0 on the set of gaussian variables and we assume:
(i) ∀X ∈ X , ∃Z gaussian independent of X, such that π(Z + X) ∈ IR.
(ii) x 7→ π(N (x, x)) is bounded on a non empty open interval.

Note that the weights of the trades have values in IR, meaning that assets can be bought
or short sold. We do not impose that the weights sum to 1 in a portfolio, since no limit is
set on the positions and all cash-flows are taken into account at the end of the period only.
(A2) gives the optimal allocation between two independent trades. ‘Asymptotically achieved’
means, for example if λX = +∞ and λY ∈ IR, that we have:

sup
α,β∈IR

π(αX + βY ) = lim
α→+∞π(αX + λY Y )

We do not assume that the optimal weight is unique, and X 7→ λX will denote below any
weight function such that assumption (A2) holds7. The condition λ1 > 0 is a natural re-
quirement: it means that N (1, 1) will be strictly preferred to N (−1, 1), ensuring that π

corresponds to a performance measure.
5It allows us to use π(L) instead of π(X) if L is the law of the variable X.
6We use λL for λX if X has law L.
7In particular, we could take any real for λ0. We will always choose λ0 = 0.
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(AT) is a technical assumption preventing pathological candidates for π. An example is given
in section 2.2.1 where condition (i) is not satisfied.

2.2 Examples

These assumptions are satisfied by the following measures on X .

2.2.1 Squared Sharpe ratio

As the other measures, the Sharpe ratio will be calculated on the final net worth of the
trades. We denote by Sh(X) the Sharpe ratio of X. Let us consider two independent
random variables X and Y in X and compute

(2.2) sup
α,β∈IR

Sh2(αX + βY )

If V (X) and V (Y ) are positive, (2.2) is achieved for (α, β) proportional to (E(X)
V (X) ,

E(Y )
V (Y )) and

is worth Sh2(X) + Sh2(Y ). To ensure λN (1,1) = λ1, we set λX = λ1
E(X)
V (X) for V (X) 6= 0. If

V (X) = 0, with X positive, for any Y ∈ X with V (Y ) 6= 0, we have lim
α→+∞ Sh2(αX +λY Y ) =

+∞, then (2.2) is achieved asymptotically for α → +∞, β = λY and is worth +∞, as is
Sh2(X) + Sh2(Y ). Therefore Sh2 satisfies (A1) and (A2), with the optimal weight function
X 7→ λX = λ1

E(X)
V (X) (including infinite values if V (X) = 0).

For Z ∼ N (1, 1) and X ∈ X , Sh2(Z + X) = (1+E(X))2

1+V (X) is finite, while Sh2(N (x, x)) = x for
x > 0, which prove (AT).

Note that without assumption (AT) (i), the following (undesirable) measure

π(X) =

{
+∞ if X has moments with degree at least 3 which are non null
Sh2(X) else

would satisfy assumptions (A).

2.2.2 Hodges measure

According to (1.2), Hodges’ measure can be written by mean of the log-Laplace transform
of the variables. This function will also be involved in the characterization of our family of
measures.

Definition 2.1 For any random variable X, we set DX = {λ ∈ IR|E(e−λX) < +∞} and
define the function HX on IR by:

HX(λ) =

{
− lnE(e−λX) if λ ∈ DX

−∞ else

When X ∈ X , the distribution of X is uniquely determined by HX (see section 4.1 for
properties of the log-Laplace). With this definition, we have:

X = {X | 0 ∈
◦

DX}

6
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where
◦
D denotes the interior of the set D, and (1.2) can be written Hod(X) = sup

λ∈IR
HX(λ).

We have

(2.3) HX+Y = HX + HY for X,Y ∈ X independent

since then ∀λ ∈ IR, E(e−λ(X+Y )) = E(e−λX)E(e−λY ). Therefore

sup
α,β∈IR

sup
λ∈IR

[− lnE(e−λ(αX+βY ))] = sup
α∈IR

[− ln E(e−αX)] + sup
β∈IR

[− lnE(e−βY )]

Thus supα,β Hod(αX + βY ) = Hod(X) + Hod(Y ) and the upper bound is achieved8 for
(α, β) = (λX , λY ) where λZ denotes an element of IR where HX is maximum (concave func-
tion). Then (A1) and (A2) hold with the weight function X 7→ λX .

We give more details on the finiteness of Hod(X) in section 4.2 and appendix A. In particular,
proposition 8.3 proves that Hod(Z +X) is finite for any X ∈ X , when Z is gaussian and non
constant. Then all assumptions (A) are satisfied.

2.3 Regularity

To achieve the characterization of our family of performance measures, we will need a regu-
larity assumption on the measures.

Definition 2.2 Let H denote the set of log-Laplaces of variables of X : H = {HX | 0 ∈
◦

DX}.
To any π : X → IR, we associate a function on H by setting, for HX ∈ H, Π(HX) = π(X).

Note that when X ∈ X , HX is C∞ on
◦

DX .

Definition 2.3 For I interval of IR, let C∞(I) denote the space of C∞ functions on I and
let C∞ =

⋃{C∞(I)|I open interval}. We define on C∞ a family of semi-norms indexed by
(K, p), for K compact ⊂ IR and p ∈ IN by setting, for H ∈ C∞:

||H||K,p =

{
max

0≤k≤p
max
λ∈K

|H(k)(λ)| if H is C∞ on K

+∞ else

Notation 2.4 For x ≥ 0, let Zx denote a random variable with law N (2xλ1, 2xλ2
1).

Let us consider π : X → IR, satisfying assumptions (A). Roughly speaking, we would like
to express, as a regularity requirement, the derivability of Π at HZ1 . However, excepted
in special cases like X divisible and 1

ε ∈ IN, in general HZ1 + εHX is not the log-Laplace
of another distribution, and Π(HZ1 + εHX) is not defined. Then, instead of considering
Π(HZ1

+εHX)−Π(HZ1
)

ε , we will study Π(HZx + HX) − Π(HZx) with x = 1
ε , for a reason which

will appear in section 4.3 (see (4.3)).

Note that in this paper, we will consider only independent variables, in particular expressions
like π(X +Y ) will always refer to independent X and Y . This will be sufficient to define and
characterize the family of measures.

8Includes the case asymptotically achieved for an infinite weight.
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Notation 2.5 For π : X → IR, we denote by Xπ the set of variables X ∈ X such that,
for λ in a neighborhood of 1, lim

n→+∞[π(Zn + λX) − π(Zn)] exists9 and is in IR. We set

Hπ = {HX |X ∈ Xπ}.

Notation 2.6 For K ⊂ IR and η > 0, we set : Kη =
⋃

λ∈[1−η,1+η]

λK.

Assumption (R)
Lipschitz condition near gaussian variables, with respect to the family of semi-norms

∃p ∈ IN, K compact ⊂ ⋂
X∈Xπ

◦
DX and M > 0 such that ∀X1, ..., Xk ∈ Xπ,

∃η0 > 0, ∀η ≤ η0, ∃Mη > 0 such that ∀HY ,HY ′ ∈ V ectIN(HX1 , ..., HXk
),

n ≥ Mηmax(1, ||HY ||K,p, ||HY ′ ||K,p) ⇒ |π(Zn + Y )− π(Zn + Y ′)| ≤ M ||HY −HY ′ ||Kη ,p.

For this condition to be active, we assume that Xπ contains at least the centered Bernouilli
variables.

Note that this assumption is related to the Fréchet-derivability of Π in the direction of the
space V ectIN(HX1 , ..., HXk

) (which denotes the set of linear combinations of the HXi with
coefficients in IN) at the point HZ1 , and ensures the linearity and continuity of the tangent
function (derivative at HZ1). The formulation with V ectIN(HX1 , ..., HXk

) is introduced in or-
der to cope with variables Xi which are not divisible. We put Mηmax(1, ||HY ||K,p, ||HY ′ ||K,p)
instead of Mη so that this assumption concerns in fact only the neighborhood of the gaussian
variable Z1.

We will see in Appendix C that both examples of previous section satisfy this regularity
assumption.

3 Properties of the measures

3.1 Elementary properties

Proposition 3.1 If a performance measure π satisfies assumptions (A), then
(i) π has values in [0, +∞], with π(0) = 0.
(ii) ∀α ∈ IR∗, π(αX) = π(X)
(iii) (2.1) can be generalised to n independent variables, for any n ∈ IN∗.
(iv) If X,X1, ..., Xn are i.i.d., then

(3.1) π(X1 + ... + Xn) = nπ(X)

(v) For X and Y independent, π(X + Y ) ≤ π(X) + π(Y ).

Proof: (i) Taking X = 0 in (AT) (i), we know that there exists a gaussian variable Z such that
π(Z) ∈ IR. Now, for Y independent from Z, we have π(Y )+π(Z) = max

α,β∈IR
π(αY +βZ) ≥ π(Z)

9We assume that X is independent of {Zn, n ∈ IN}.
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(take (α, β) = (0, 1)). Then π(Y ) ≥ 0.

(A1) with X = Y = 0 yields π(0) = 2π(0). For Z ′ independent of Z, with same law, we have
0 ≤ π(0) = π(0Z + 0Z ′) ≤ 2π(Z) < +∞. We conclude that π(0) = 0.
We note in particular that λX = 0 implies π(X) = 0.

(ii) comes from π(αX) = max
β

π(βαX + 0) = π(X) + π(0) and (i).

(iii) For given independent X, Y, Z in X and γ, δ in IR, we have:
π(X) + π(γY + δZ) = max

α,β
π(αX + β(γY + δZ)) then

π(X) + π(Y ) + π(Z) = max
γ,δ

[π(X) + π(γY + δZ)] = max
α,λ,µ

π(αX + λY + µZ).

The property for n variables is then obtained by induction.

(iv) If λX = 0, (3.1) comes from 0 ≤ π(X1 + ... + Xn) ≤ max
α1,...,αn

π(α1X1 + ... + αnXn) =

π(X1) + ... + π(Xn) = nπ(X) = 0.
Else, from (ii), we have π(X1+...+Xn) = π(λX(X1+...+Xn)) = max

α1,...,αn

π(α1X1+...+αnXn),

since λXi = λX . Thus π(X1 + ... + Xn) = nπ(X).

This property is of particular interest for infinitely divisible laws as will be seen for the
gaussian case below.

(v) Consider α = β = 1 in the function maximized in (A1).
This property means that π is sub-additive10 for independent trades, while it is additive when
the trades are in the right proportions: if λX , λY ∈ IR, we have π(λXX+λY Y ) = π(X)+π(Y ).

3.2 Gaussian variables

Theorem 3.2 Under assumptions (A), a performance measure π is proportional to the
squared Sharpe ratio on the set of gaussian variables.

Proof: we assume, for example, that x 7→ π(N (x, x)) is bounded in a neighborhood of 1:
∃η,M > 0 such that |x− 1| < η ⇒ π(N (x, x)) ≤ M .

We set, for x ≥ 0, f(x) = π(N (x, x)). We have f(0) = 0. For p, q in IN∗ and x in IR,
N (px, px) is the law of the sum of p i.i.d. variables with law N (x, x) and of the sum of q

i.i.d. variables with law N (p
q x, p

q x). Then, from (3.1), pf(x) = qf(p
q x) and we get:

∀r ∈ IQ+, f(rx) = rf(x)

For x, y ≥ 0, the sum of two independent variables with law N (x, x) and N (y, y) has law
N (x + y, x + y), then, from proposition 3.1 (v), we have f(x + y) ≤ f(x) + f(y).

We set, for x > 0, g(x) = f(x)
x . For any x > 0, we have ∀r ∈ IQ+, g(rx) = rf(x)

rx = g(x). But
∃r ∈ IQ+ such that rx ∈]1 − η, 1 + η[, consequently g is bounded by M on IR+. Last, for
x, y > 0, we have g(x + y) ≤ f(x)+f(y)

x+y = x
x+yg(x) + y

x+yg(y). Let us prove that those three

10For coherent risk measures, the sub-additivity reflects the benefits of diversification of a portfolio. Here

the interpretation is different. π(X) + π(Y ) corresponds to the best performance achieved with X and Y by

varying their relative quantities. In X + Y , the proportion of each opportunity may not be optimal.
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properties imply that g is constant on IR∗+.

For x > 0, we consider (rn) in IQ+, decreasing and converging to 1
x . We have rnx =

1 + (rnx− 1), then g(x) = g(rnx) ≤ 1
rnxg(1) + rnx−1

rnx g(rnx− 1) ≤ 1
rnxg(1) + rnx−1

rnx M . Letting
n go to +∞, we get g(x) ≤ g(1).

Now we consider (r′n) in IQ+, increasing and converging to 1
x . From 1 = r′nx + (1− r′nx), we

get g(1) ≤ r′nxg(r′nx) + (1− r′nx)g(1− r′nx) ≤ r′nxg(x) + (1− r′nx)M , then g(1) ≤ g(x).

This proves that g(1) = g(x). Thus, we have for x ∈ IR+, f(x) = xf(1), and for m,σ ∈ IR∗:
π(N (m,σ2)) = π(σ2

mN (m2

σ2 , m2

σ2 )) = f(m2

σ2 ) = m2

σ2 f(1). In conclusion, for any gaussian X, we
have π(X) = Sh2(X)π(N (1, 1)), which proves theorem 3.2.

A performance measure π is defined up to a multiplicative constant, that will be fixed by
choosing π1 = π(N (1, 1)). We assume that π satisfies assumptions (A). Then the theorem
proves that necessarily π1 ∈]0, +∞[, since (AT) excludes π ≡ 0 or +∞ on the set of gaussian
variables. Thus π provides the same portfolio ranking as the Sharpe ratio for the variables
with a positive Sharpe ratio. This conclusion generalizes the results of Hodges [18] and
Stutzer [28].

Normalization 3.3 We choose 2π1 = 1. Then for X gaussian, π(X) = 1
2Sh2(X).

From section 2.2.1, we then know that for X and Y gaussian and independent, supα,β π(αX+
βY ) is achieved for any (α, β) proportional to (E(X)

V (X) ,
E(Y )
V (Y )). Consequently λX is proportional

to E(X)
V (X) , with a constant independent of X. This constant is necessarily λ1. Then we have

for any π satisfying assumptions (A):

(3.2) for X gaussian, π(X) = 1
2Sh2(X) = 1

2
E(X)2

V (X) and λX = λ1
E(X)
V (X)

In particular, for x > 0, Zx defined in notation 2.4 satisfies

(3.3) π(Zx) = x and λZx = 1

4 Characterization of the measures

We want to characterize the measures π satisfying assumptions (A), and show that any of
them can be expressed as

(4.1) π(X) = sup
λ
J (HλX), ∀X ∈ X

with J linear and continuous. For any random variable X, HX denotes the function of
definition 2.1: we have HX(λ) = − lnE(e−λX) for λ ∈ DX = {λ ∈ IR|E(e−λX) < +∞}.
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4.1 Properties of the log-Laplace transform

It is well known that DX is an interval containing 0 and that HX is a concave function on
DX , strictly concave if and only if X is non constant (see for example [19]). HX is called

degenerate if DX = {0}11. When X ∈ X (ie 0 ∈
◦

DX), the distribution of X is uniquely

determined by HX (which is said to be proper), and HX is analytic in
◦

DX . The derivatives of
HX at 0 exist, as do all moments of the distribution, and we have HX(0) = H ′

X(0) = E(X),
H ′′

X(0) = −V (X), H ′′′
X (0) = E(X −E(X))3, and H

(4)
X (0) = −[E(X − E(X))4 − 3V (X)2].

For X ∼ N (m,σ2), we have DX = IR and ∀λ ∈ IR, HX(λ) = mλ− σ2

2 λ2.

If E(X) = 0, from H concave and HX(0) = H ′
X(0) = 0, we get that H is non positive.

Else, we have HX(λ) = HX−E(X)(λ) + λE(X). For λ ∈ IR, H ′
X(λ) = E(Xe−λX)

E(e−λX)
is the mean

of X under the probability P λ
X defined by its Radon-Nikodym derivative:

(4.2)
dP λ

X

dP
=

e−λX

E(e−λX)

while H ′′
X(λ) = −E(X2e−λX)E(e−λX)+[E(Xe−λX)]2

[E(e−λX)]2
is the opposite of the variance of X under P λ

X .

Since HX ∈ H is C∞ on
◦

DX , to measure the distance between two elements of H, we
will use the family of semi-norms of definition 2.3. For K compact, p ∈ IN and HX ,HY ∈ H,

we get if K ⊂
◦

DX ∩
◦

DY : ||HX −HY ||K,p = max
0≤k≤p

max
K

|H(k)
X −H

(k)
Y |.

Notation 4.1 For K ⊂ IR, we set XK = {X ∈ X | K ⊂
◦

DX} and HK = {HX | K ⊂
◦

DX}.

Remarks: • || · ||K,p is finite on HK , since any HX is C∞ on
◦

DX .

• If X ∈ X , ∀λ ∈ IR, λX ∈ X , and ∀λ 6= 0, λx ∈ DX ⇔ x ∈ DλX (i.e. DλX = 1
λDX).

• Several studies on risk or performance measures are limited to bounded variables X. Then
DX = IR, which simplifies some considerations.

Proposition 4.2 For K compact, p ∈ IN and X ∈ X , λ 7→ HλX is continuous for || · ||K,p

on the non empty open set {λ ∈ IR | λX ∈ XK}.

Proof: for X ∈ X and K compact, {λ ∈ IR | λX ∈ XK} = {λ ∈ IR | λK ⊂
◦

DX} is an open
interval containing 0.

We have, if x, λx ∈
◦

DX , HλX(x) = HX(λx) then H
(k)
λX(x) = λkH

(k)
X (λx). Let us assume λ0X ∈

XK , then for |λ−λ0| small enough, λK ⊂
◦

DX . For 0 ≤ k ≤ p, H
(k)
X is uniformly continuous on

a neighborhood of K, therefore ||HλX −Hλ0X ||K,p = max x∈K
0≤k≤p

|λkH
(k)
X (λx) − λk

0H
(k)
X (λ0x)|

goes to 0 when |λ− λ0| → 0.
11For example the Cauchy distribution (more generally, any distribution with both tails behaving as negative

powers) has a degenerate HX .
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4.2 Examples

We prove that both examples of section 2.2, the squared Sharpe ratio and Hodges’ measure,
can be written as in (4.1).

• For a given X ∈ X ∗ = X \ {0}, the function λ 7→ E(X)λ − V (X)λ2

2 has its maximum

at E(X)
V (X) , where it is worth E(X)2

2V (X) = 1
2Sh2(X), including the case Sh2(X) = +∞. We have

therefore 1
2Sh2(X) = sup

λ∈IR
[E(X)λ− V (X)

2 λ2] = sup
λ∈IR

[H ′
λX(0) + 1

2H ′′
λX(0)], i.e.

1
2Sh2(X) = sup

λ∈IR
J (HλX) with J (H) = H ′(0) + 1

2H ′′(0)

J is linear and continuous for || · ||K,2 with K = {0}. Note that J is not unique since any
function H 7→ αH ′(0) + α2

2 H ′′(0) can be used, for α ∈ IR∗, with a maximum achieved at
E(X)

αV (X) .

• We have Hod(X) = sup
λ∈IR

HX(λ) i.e. Hod(X) = sup
λ∈IR

J (HλX) with J (H) = H(1)

J is linear and continuous for || · ||K,0 with K = {1}. Any function H 7→ H(α), with α ∈ IR∗,
can be used.

4.3 Construction of J , additive on Hπ

In this section, for a performance measure π satisfying the assumptions of section 2, we show
how to build a function J achieving representation (4.1). Assumptions (A) are supposed to
hold throughout section 4.3. Assumption (R) will be added from section 4.3.3 onward.

4.3.1 Definition of J(X)

Lemma 4.3 For π : X → IR satisfying assumptions (A) and X ∈ X ,
(i) the function x 7→ π(Zx + X)− π(Zx) is non increasing on IR+,
(ii) π(Zx + X) is finite for x large enough.

Proof: (i) For x, h ≥ 0, Zx+h can be written Z1
x + Z2

h with Z1
x and Z2

h independent, Z1
x ∼

N (2xλ1, 2xλ2
1) and Z2

h ∼ N (2hλ1, 2hλ2
1). Then we have, from sub-additivity and (3.3):

π(Zx+h + X)− π(Zx+h) ≤ π(Z1
x + X) + π(Z2

h)− π(Zx+h) = π(Zx + X)− π(Zx).

(ii) From assumption (AT), there exists Z gaussian such that π(Z + X) ∈ IR. Then, for
Y ∼ N ( 2

λ1
V (Z)−E(Z), V (Z)) independent of Z, we have Y +Z ∼ N ( 2

λ1
V (Z), 2V (Z)), which

is the law of Zx0 for x0 = V ( Z
λ1

). Then π(Zx0 +X) = π(Y +Z +X) ≤ π(Y )+π(Z +X) ∈ IR,
from (3.2) and π ≥ 0. We then use (3.3) and (i) to get π(Zx + X) < +∞ for x ≥ x0.

Definition 4.4 For X ∈ X , we set J(X) = lim
x→+∞↘ [π(Zx + X)− π(Zx)]

The function J on X defines a function on H: for HX ∈ H, we set J (HX) = J(X).
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From previous lemma, J has values in IR∪{−∞} and can be computed with x varying in IN.
Moreover the set Xπ of notation 2.5 is the set of variables X ∈ X such that J(λX) > −∞
for λ in a neighborhood of 1.

Interpretation in terms of a derivative of Π:
If X is infinitely divisible, J (HX) can be interpreted in terms of a Fréchet-derivative of Π:

For a given n, there is a random variable ξn such that X has the same law as the sum of n

i.i.d. variables with the law of ξn. Then π(Zn + X) = nπ(Z1 + ξn) and

J (HX) = lim
n→+∞[nπ(Z1 + ξn)− π(Zn)] = lim

n→+∞
π(Z1 + ξn)− π(Z1)

1
n

, from (3.3).

From (2.3), we have HZ1+ξn = HZ1 + Hξn = HZ1 + 1
nHX , then:

(4.3) J (HX) = lim
n→+∞

Π(HZ1 + 1
nHX)−Π(HZ1)

1
n

i.e. J (HX) corresponds to the derivative of Π in the direction HX at the point HZ1 .

Proposition 4.5 Under assumptions (A), J satisfies representation formula (4.1). For any
optimal weight function X 7→ λX , we have:

(4.4) ∀X ∈ X , π(X) = sup
λ∈IR

J(λX) =

{
J(λXX) if λX ∈ IR

lim
λ→λX

J(λX) if |λX | = +∞

and for X,Y ∈ X independent, such that λX , λY ∈ IR:

(4.5) J(λXX + λY Y ) = J(λXX) + J(λY Y )

In (4.4), J appears itself as a performance measure, and π(X) corresponds to the measure
obtained by holding X in the optimal quantity. Since J(0) = 0, when J(λX) < 0, the investor
prefers (according to measure J) to hold no asset X than a quantity λ of it. The second
result will be extended in section 4.3.3, where we address the additivity of J .

Proof: we consider X ∈ X . We have for λ ∈ IR, ∀x ≥ 0, π(Zx + λX) ≤ π(Zx) + π(X), thus
J(λX) ≤ π(X) and

(4.6) sup
λ∈IR

J(λX) ≤ π(X)

If λX ∈ IR, from λZx = 1 we have π(Zx + λXX) = sup
α,β

π(αZx + βX) = π(Zx) + π(X),

then J(λXX) = lim
x→+∞[π(Zx + λXX)− π(Zx)] = π(X), which proves equality in (4.6).

If |λX | = +∞, sup
λ∈IR

J(λX) > π(X) would imply the existence of ε > 0 such that, for λ large

enough, J(λX) > π(X) + ε. Then for x ≥ 0, π(Zx + λX)− π(Zx) ≥ J(λX) > π(X) + ε, but
it would contradict lim

λ→λX

π(Zx + λX) = π(Zx) + π(X). Then equality in (4.6) hold again.

The second result follows from λλXX+λY Y = 1 which can be proved using proposition 3.1
(iii): we have for Z ∈ X , supα,β π(α(λXX + λY Y ) + βZ) ≤ π(X) + π(Y ) + π(Z) and this
upper bound is achieved for (α, β) = (1, λZ).
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Notation 4.6 We denote by J1 the function J corresponding to λ1 = 1:
J1(X) = lim

x→+∞[π(Nx + X)− x] with Nx ∼ N (2x, 2x).

We have
(4.7) ∀X ∈ X , J(X) = J1

(
X

λ1

)

Therefore, according to (4.4), the value of λ1 appears as a scale factor. If X 7→ λX is an
optimal weight function for J1, then X 7→ λ1λX is an optimal weight function for J . Note
that changing the value of λ1 does not affect π.

4.3.2 Elementary properties of J

We prove easily the following properties for J :

Proposition 4.7 Under assumptions (A), we have, ∀X,Y ∈ X :

(i) For X gaussian, J(X) = E( X
λ1

)− 1
2V ( X

λ1
). Thus Xπ contains all gaussian variables.

(ii) For X and Y independent, J(X + Y ) ≤ J(X) + J(Y ).
(iii) ∀m ∈ IR, J(X + m) = J(X) + m

λ1
.

(iv) For X and Y independent, with X gaussian,

(4.8) J(X + Y ) = J(X) + J(Y )

Proof: it is sufficient to prove the proposition for λ1 = 1 (we keep the notations J , Zx).

(i) If X ∼ N (m,σ2) with σ ≥ 0, from (3.2), we have J(X) = lim
x→+∞ [12

(2x+m)2

2x+σ2 −x] = m− σ2

2 .

(ii) Let us consider X and Y independent. For x ≥ 0, Z2x can be written Z1
x + Z2

x

where Z1
x and Z2

x have same law than Zx and X,Y, Z1
x, Z2

x are independent. We have
J(X + Y ) = lim

x→+∞[π(Z2x + X + Y )− 2x] ≤ lim
x→+∞[π(Z1

x + X) + π(Z2
x + Y )− 2x].

Thus J(X + Y ) ≤ lim
x→+∞[π(Z1

x + X)− x] + lim
x→+∞[π(Z2

x + Y )− x] = J(X) + J(Y ).

(iii) For any constant m, we get J(X) = J(X + m−m) ≤ J(X + m)−m and J(X + m) ≤
J(X) + m, then J(X + m) = J(X) + m.

(iv) Assume X ∼ N (m,σ2), then Zx + X ∼ N (2x + σ2 + (m − σ2), 2x + σ2), thus Zx + X

and Z
x+σ2

2

+ m− σ2 have same law, while J(X) = m− σ2

2 .

Then J(X + Y ) = lim
x→+∞[π(Zx + X + Y )− x]

= lim
x→+∞ [π(Z

x+σ2

2

+ Y + m− σ2)− (x + σ2

2 )] + σ2

2

= lim
x→+∞[π(Zx + Y + m− σ2)− x] +σ2

2 = J(Y + m− σ2) + σ2

2

= J(Y ) + m− σ2 + σ2

2 = J(Y ) + J(X).
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4.3.3 Additivity of J , under additional regularity assumption

In order to obtain the additivity12 of J on Xπ, we need a continuity assumption on π, to get
λ 7→ J(λX) continuous at λ = 1 (see proof of proposition 4.10). However, to further extend
J to V ect(Hπ) in the next section, we need the stronger (and more complex) assumption
(R) given in section 2.3, which implies more regularity for J . Using notation 4.1, we recall
assumption (R): Xπ contains the centered Bernouilli variables and

∃p ∈ IN, K compact such that Xπ ⊂ XK and M > 0 such that ∀X1, ..., Xk ∈ Xπ,
∃η0 > 0, ∀η ≤ η0, ∃Mη > 0 such that ∀HY , HY ′ ∈ V ectIN(HX1 , ..., HXk

),
n ≥ Mηmax(1, ||HY ||K,p, ||HY ′ ||K,p) ⇒ |π(Zn + Y )− π(Zn + Y ′)| ≤ M ||HY −HY ′ ||Kη ,p.

Proposition 4.8 Under assumptions (A) and (R), J is finite and uniformly Lipschitz on
Hπ = {HX | X ∈ Xπ}, for the semi-norm || · ||K,p, with (K, p) as in (R).

Proof: we take (K, p, M) as in (R). Then the semi-norm || · ||K,p is finite on Hπ (since
Xπ ⊂ XK). For X1, X2 ∈ Xπ, (R) with k = 2 implies: ∃η0 > 0, ∀η ≤ η0, ∃Mη > 0 such that
n ≥ Mη ⇒ |π(Zn + X1)− π(Zn + X2)| ≤ M ||HX1 −HX2 ||Kη ,p.

For any η ≤ η0, taking n → +∞, we get |J(X1) − J(X2)| ≤ M ||HX1 − HX2 ||Kη ,p. Since

K ⊂
◦

DXi , this upper bound is finite for η small enough. Making η → 0, we prove:

(4.9) ∀X1, X2 ∈ Xπ, |J (HX1)− J (HX2)| ≤ M ||HX1 −HX2 ||K,p

i.e. J is uniformly Lipschitz on Hπ. The finiteness of J on Hπ follows, since 0 ∈ Xπ.

In particular, J is continuous on Hπ for || · ||K,p. We are going to show that this property
implies the additivity of J on Hπ.

Lemma 4.9 Under assumptions (A), for X ∈ Xπ such that π(X) < +∞ and for a given
optimal weight function X 7→ λX , the set ΛX = {λX+Z | Z gaussian, independent from X}
is dense in a neighborhood of 1.

Proof: again it is sufficient to prove it with λ1 = 1. Since X ∈ Xπ, we have J(λX) > −∞
for λ in a neighborhood of 1, say ]1− ε, 1 + ε[.
We consider λ2 < λ3 in ]1− ε, 1+ ε[ and show that exists λ ∈ ΛX between λ2 and λ3. We set
λ∗ = λ2+λ3

2 and consider Z ∼ N (λ∗σ2, σ2) independent from X. We have from propositions
4.5 and 4.7:

π(X + Z) = sup
λ

[
J(λX) + λλ∗σ2 − λ2σ2

2

]
= sup

λ
f(λ) +

(λ∗σ)2

2

with f(λ) = J(λX) − σ2

2 (λ − λ∗)2. From assumption (A2), supλ f(λ) is then achieved at
λX+Z . We have for λ /∈]λ2, λ3[, f(λ) ≤ supλ′ J(λ′X)− σ2

2 (λ3 − λ∗)2 = π(X)− σ2

2 (λ3 − λ∗)2.

12Such a property appears already in [16] where a premium calculation principle is called additive, if the

premium assigned to the sum of two independent risks is the sum of the premiums that are assigned to the

two risks individually.
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This upper bound converges to −∞ when σ converges to +∞ (from π(X) < ∞), while
f(λ∗) = J(λ∗X) is finite and independent of σ. Then for large σ, sup f is achieved on
]λ2, λ3[. We get λX+Z ∈ ]λ2, λ3[ and ΛX∩ ]λ2, λ3[ 6= ∅, which proves the density in ]1−ε, 1+ε[.

Proposition 4.10 Under assumptions (A) and (R), the function J is additive on Xπ, i.e.
(4.8) holds for any X and Y independent in Xπ. In particular Xπ and Hπ are stable under
addition.

Proof: We consider X, Y independent in Xπ and prove J(X + Y ) = J(X) + J(Y ).

• We can assume π(X) and π(Y ) finite. Indeed π(Zn + X) and π(Zn + Y ) are finite for n

large enough (lemma 4.3), and if we prove J(X + Z + Y + Z ′) = J(X + Z) + J(Y + Z ′) with
Z and Z ′ gaussian and X,Y, Z, Z ′ independent, then (4.8) yields J(X +Y ) = J(X)+J(Y ).

• Let (λ, λ′) = (λX+Z , λY +Z′) in ΛX ×ΛY . From lemma 4.9, (λ, λ′) can be chosen arbitrarily
close to (1, 1). We have J(λX+λ′Y ) = J(λ(X+Z)+λ′(Y +Z ′))−J(λZ+λ′Z ′) since λZ+λ′Z ′

is gaussian. By (4.5), we have J(λ(X + Z) + λ′(Y + Z ′)) = J(λ(X + Z)) + J(λ′(Y + Z ′)),
since λ, λ′ ∈ IR. Using again (4.8), we get J(λX + λ′Y ) = J(λX) + J(λ′Y ).

For λ and λ′ close enough to 1, we have λX, λ′Y ∈ XK . Then propositions 4.2 and 4.8 prove
that (λ, λ′) 7→ J (HλX +Hλ′Y ) = J(λX +λ′Y ) is continuous at (1, 1). Taking (λ, λ′) → (1, 1),
we get J(X + Y ) = J(X) + J(Y ).

We deduce that J is additive on Hπ: for X and Y independent in Xπ, we have

(4.10) J (HX + HY ) = J(X + Y ) = J (HX) + J (HY )

4.4 Extension of J into a linear application on V ect(Hπ), under assump-

tions (A) and (R)

Under assumptions (A) and (R), J is defined and additive on Hπ. In this section, with the
same assumptions, we extend its definition to V ect(Hπ), the vector space generated by Hπ

and in section 5, to a larger set of C∞ functions.

Step 1. We extend J uniquely to V ectIQ(Hπ), the vector space generated by Hπ with co-
efficients in IQ, as a linear application for the structure of IQ-vector space.

First, the property of additivity can be generalised to the following one: for any HX , HY ∈ Hπ

and n, p ∈ IN, we have

(4.11) J (nHX + pHY ) = nJ (HX) + pJ (HY )

Indeed we have nHX + pHY = HX1+...+Xn+Y1+...+Yp where X1, ..., Xn, Y1, ..., Yp are indepen-
dent and (Xi, Yi) has the same law as (X,Y ). Then J (nHX +pHY ) = J(X1 + ...+Xn +Y1 +
...+Yp) = nJ(X)+pJ(Y ) from proposition 4.10. Note that in particular, V ectIN(Hπ) = Hπ.
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Then we note that the additivity of the log-Laplace for independent variables implies

(4.12) V ectIQ(Hπ) =
{

1
q
HY − 1

q′
HY ′

∣∣∣∣ HY ,HY ′ ∈ V ectIN(Hπ), q, q′ ∈ IN∗
}

Indeed, any element of V ectIQ(Hπ) is the difference of two terms
∑

i
pi
qi

HXi with pi, qi ∈ IN∗,
Xi ∈ Xπ, and we have

∑ pi

qi
HXi = 1

Πqi
HY with HY ∈ V ectIN(Hπ).

Now, for HY ,HY ′ ∈ V ectIN(Hπ) and q, q′ ∈ IN∗, let us set:

J
(

1
q
HY − 1

q′
HY ′

)
=

1
q
J (HY )− 1

q′
J (HY ′)

This definition is consistent: if 1
qHY − 1

q′HY ′ = 1
pHX − 1

p′HX′ , we get q′pp′HY + qq′pHX′ =
qq′p′HX + qpp′HY ′ , therefore J (q′pp′HY + qq′pHX′) = J (qq′p′HX + qpp′HY ′). Then, using
(4.11), we get 1

qJ (HY )− 1
q′J (HY ′) = 1

pJ (HX)− 1
p′J (HX′).

Note that for q = 1 and Y ′ = 0, 1
qHY − 1

q′HY ′ = HY , which proves that the definition of J
on V ectIQ(Hπ) is consistent with its definition on Hπ.

It is then easy to check that J is linear (for coefficients in IQ) on V ectIQ(Hπ).

Step 2. We prove that J is continuous on V ectIQ(Hπ) for || · ||K,p, with a norm ||J || ≤ M .

Since J is linear, we have to prove |J (H)| ≤ M ||H||K,p for H ∈ V ectIQ(Hπ). From (4.12), it
is sufficient to prove that for any HY ,HY ′ ∈ V ectIN(Hπ) and q, q′ ∈ IN∗, we have:

(4.13)
∣∣∣∣ J

(
1
q
HY

)
− J

(
1
q′

HY ′

) ∣∣∣∣ ≤ M

∣∣∣∣
∣∣∣∣

1
q
HY − 1

q′
HY ′

∣∣∣∣
∣∣∣∣
K,p

Note that (4.13) is easy to prove for Y and Y ′ divisible. Indeed if we can write Y = ξ1+...+ξq,
then 1

qHY = Hξq . With Y ′ = ξ′1 + ... + ξ′q′ , we get from (4.9):

|J (1
qHY )− J ( 1

q′HY ′)| ≤ M ||Hξ1 −Hξ′1 ||K,p = M ||1qHY − 1
q′HY ′ ||K,p.

We want to prove (4.13) with Y, Y ′ non divisible. Note that for X ∈ X , we have J (HX) =
lim

n→+∞[π(Znq + X)− nq] then

(4.14) J
(

1
q
HX

)
= lim

n→+∞

[
1
q
π(Znq + X)− n

]

We have HY ,HY ′ ∈ V ectIN(HX1 , ..., HXk
) with Xi ∈ Xπ. From (R), ∃η0 > 0 such that

∀η ≤ η0, ∃Mη > 0 such that ∀HX ,HX′ ∈ V ectIN(HX1 , ..., HXk
),

n ≥ Mηmax(1, ||HX ||K,p, ||HX′ ||K,p) ⇒ |π(Zn +X)−π(Zn +X ′)| ≤ M ||HX−HX′ ||Kη ,p.

Let us consider Y1, ..., Yq′ i.i.d. with same law as Y and Y ′
1 , ..., Y

′
q i.i.d. with same law as Y ′.

Then HY1+...+Yq′ , HY ′1+...+Y ′q ∈ V ectIN(HX1 , ...,HXk
). For η ≤ η0 and

n ≥ Mηmax( 1
qq′ ,

1
q ||HY ||K,p,

1
q′ ||HY ′ ||K,p), we have nqq′ ≥ Mηmax(1, q′||HY ||K,p, q||HY ′ ||K,p),

then
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|π(Znqq′ + Y1 + ... + Yq′)− π(Znqq′ + Y ′
1 + ... + Y ′

q )| ≤ M ||q′HY − qHY ′ ||Kη ,p, and
∣∣∣∣

1
q
π(Znq + Y )− 1

q′
π(Znq′ + Y ′)

∣∣∣∣ ≤ M

∣∣∣∣
∣∣∣∣

1
q
HY − 1

q′
HY ′

∣∣∣∣
∣∣∣∣
Kη ,p

From (4.14), taking n → +∞ we deduce that:

(4.15)
∣∣∣∣ J

(
1
q
HY

)
− J

(
1
q′

HY ′

) ∣∣∣∣ ≤ M

∣∣∣∣
∣∣∣∣

1
q
HY − 1

q′
HY ′

∣∣∣∣
∣∣∣∣
Kη ,p

and making η → 0, we get (4.13).

Step 3. Extension to V ect(Hπ)

The extension of J is then classical. For any X, Y independent in Xπ and α, β ∈ IR, let us
set:

J (αHX + βHY ) = αJ (HX) + βJ (HY )

This definition is consistent under assumption (R): let us prove that if αHX +βHY = α′HX′+
β′HY ′ , then

(4.16) αJ (HX) + βJ (HY ) = α′J (HX′) + β′J (HY ′)

We assume α, β, α′, β′ ∈ IR+. For α, β, α′, β′ ∈ IR, the same result will be obtained by
rearranging the terms in αHX + βHY = α′HX′ + β′HY ′ in order to get only non negative
coefficients.

Let (r1n, r2n, r′1n, r′2n) in (IQ∗+)4, converging toward (α, β, α′, β′). We write rin = pin

qin
with

pin, qin ∈ IN∗. We have r1nHX + r2nHY = 1
mn

HWn with mn = q1nq2n and Wn = X1 + ... +
Xp1nq2n + Y1 + ... + Yp2nq1n where the Xi, Yi are independent and each Xi (resp Yi) has the
law of X (resp Y ). Then, with obvious notations, r1nHX + r2nHY − (r′1nHX′ + r′2nHY ′) =
1

mn
HWn − 1

m′
n
HW ′

n
and HWn ,HW ′

n
∈ V ectIN(Hπ).

From (4.15), we have |J ( 1
mn

HWn) − J ( 1
m′

n
HW ′

n
)| ≤ M || 1

mn
HWn − 1

m′
n
HW ′

n
||K,p. We note

here that we needed a uniformity in Y, Y ′ in assumption (R) since Wn and W ′
n are changing

when n → +∞, for X,Y, X ′, Y ′ given in Xπ.

But || 1
mn

HWn − 1
m′

n
HW ′

n
||K,p = ||r1nHX + r2nHY − [r′1nHX′ + r′2nHY ′ ]||K,p

= ||(r1n − α)HX + (r2n − β)HY − [(r′1n − α′)HX′ + (r′2n − β′)HY ′ ]||K,p is less than

|r1n − α| · ||HX ||K,p + |r2n − β| · ||HY ||K,p + |r′1n − α| · ||HX′ ||K,p + |r′2n − β′| · ||HY ′ ||K,p

and converges toward 0 when n → +∞.

Then J (r1nHX +r2nHY )−J (r′1nHX′ +r′2nHY ′) = J ( 1
mn

HWn)−J ( 1
m′

n
HW ′

n
) goes to 0 when

n → +∞, i.e. r1nJ (HX) + r2nJ (HY ) − [r′1nJ (HX′) + r′2nJ (HY ′)] converges to 0 and this
proves (4.16).

The previous proof can be easily extended to any finite number of terms, instead of two,
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and we get a consistent definition of J on V ect(Hπ).

Conclusion J is now defined on V ect(Hπ) and by construction, it is linear on this space
and continuous for || · ||K,p, with the same norm ||J || ≤ M as in V ectIQ(Hπ).

Indeed, if H =
∑

i αiHXi ∈ V ect(Hπ), for ri
n converging to αi, we have ∀n, |∑i r

i
nJ (HXi)| =

|J (
∑

i r
i
nHXi)| ≤ ||J || · ||∑i r

i
nHXi ||K,p. Taking n → +∞, we get |J (H)| ≤ ||J || · ||H||K,p.

We have proved the following representation theorem:

Theorem 4.11 Under assumptions (A) and (R), π can be written:

(4.17) ∀X ∈ X , π(X) = sup
λ
J (HλX)

with J linear and continuous for the semi-norm || · ||K,p on V ect(Hπ). If X 7→ λX is an
optimal weight function, the upper bound in (4.17) is achieved at λX .

J(X) is itself a performance measure for the investment in X.
π(X) = supλ J (HλX) is the best performance obtained by varying the quantity of X.
λ1 = λN (1,1) is a scale factor on any optimal weight function.

5 Expression of J as a distribution

5.1 Definition of the distribution

We consider π satisfying assumptions (A) and (R) and keep the notations of last section. We
work with λ1 = 1, setting J1(HX) = J1(X) for X ∈ X . Let us denote by Cp(K) the set of
functions which are p-times derivable on the compact K. On V ect(Hπ) ∩ Cp(K), subspace
of the vector space Cp(K), J1 is a linear application with values in IR, which is continuous
and has a norm ||J1|| ≤ M . Then by the Hahn-Banach theorem, J1 can be prolonged to the
whole space Cp(K), with the same norm ||J1||, the semi-norm || · ||K,p being used on Cp(K).
In particular J1 is now defined on C∞

0 , the subspace of Cp(K) of C∞ functions with compact
support. The restriction of J1 to C∞

0 is a distribution g of order p with compact support Kg

included in K.

g is a Schwartz distribution on C∞
0 with the compact support Kg, therefore it can be extended

as a distribution acting on the space of C∞ functions defined on a neighborhood of Kg, space
which contains V ect(Hπ) since any function of Hπ is C∞ on K ⊃ Kg.

In particular, for X ∈ Xπ, we have:

(5.1) J1(HX) = 〈g, HX〉

We construct a primitive of g with compact support
[This is a classical result, for completeness we describe the proof below.]
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We denote by I the convex envelop of Kg ∪ {0}. We consider ϕ2 ∈ C∞
0 , such that ϕ2 ≡ 1 on

I. We choose c1 ∈ IR such that 〈g + c1δ0, ϕ2〉 = 0 where δ0 denotes the Dirac distribution at
0. Replacing g by g+c1δ0, we keep (5.1) for X ∈ Xπ since HX(0) = 0, and we get 〈g, ϕ2〉 = 0.

Let G be a primitive of the distribution g (see Schwartz [27]). We consider ϕ1 ∈ C∞
0 , with

support included in Ic, the complementary set of I, and such that
∫

ϕ1 = 1. Modifying G

by a constant, we can assume 〈G, ϕ1〉 = 0. Let us prove that the support of G is included in
I and then is compact.

Let ϕ ∈ C∞
0 with support included in Ic. We know (from

∫
ϕ1 = 1) that ϕ has a unique

decomposition ϕ = α1ϕ1 + ψ′1 with α1 ∈ IR and ψ1 ∈ C∞
0 . Since I is an interval, ψ1 is

constant on I then ψ1 = α2ϕ2 + ψ2 with ψ2 ∈ C∞
0 and ψ2 ≡ 0 on I. We have:

〈G,ϕ〉 = α1〈G,ϕ1〉+ 〈G,ψ′1〉 = −〈g, ψ1〉 = −α2〈g, ϕ2〉 − 〈g, ψ2〉 = 0, since suppg ⊂ I.

This proves that the support of G is included in I.

We construct a primitive of 2(G + Cδ0), with support included in I

By the same argument, for a good choice of C ∈ IR, we can construct a primitive Γ of the
distribution 2(G + Cδ0) with a support included in I. From Γ′ = 2(G + Cδ0) we get:

(5.2) g = G′ = −Cδ′0 +
1
2
Γ′′

G and Γ are distributions with compact support included in I, then as g, they can be ex-
tended as distributions acting on the space of C∞ functions defined on a neighborhood of I.

If K ′ denotes the convex envelop of K ∪ {0}, assumption (R) still holds with (K ′, p) instead
of (K, p), since || · ||K,p ≤ || · ||K′,p. Then changing K in K ′, we can always assume that K

is a closed interval containing 0, then containing I (note that, since
◦

DX is an interval con-
taining 0, we have XK′ = XK). After this change, J1 is continuous for || · ||K,p on V ect(Hπ),
the distributions g, G and Γ have their support included in K and for X ∈ Xπ, we have
J1(X) = 〈g,HX〉 = −〈G,H ′

X〉 = CH ′
X(0) + 1

2〈Γ,H ′′
X〉.

If X ∼ N (m,σ2), we get J1(X) = Cm − σ2

2 〈Γ, 1〉, which must be equal to m − σ2

2 from
proposition 4.7. Then necessarily C = 1 and 〈Γ, 1〉 = 1.

Note that for any c ∈ IR, we have ∀X ∈ Xπ, J1(HX) = 〈g+cδ0, HX〉. In the set {g+cδ0 | c ∈
IR}, the distribution g satisfying (5.2) is the one such that

(5.3) 〈g, 1〉 = 0

In conclusion, we get that g, G and Γ are distributions with compact support included in K

(closed interval containing 0), such that

(5.4) g = G′ = −δ′0 + 1
2Γ′′ with 〈Γ, 1〉 = 1
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and ∀X ∈ Xπ, J1(X) = 〈g, HX〉 = −〈G,H ′
X〉 = E(X) + 1

2 〈Γ,H ′′
X〉.

Example: if the distribution Γ is a function, we get J1(HX) = H ′
X(0)+ 1

2

∫ +∞
−∞ Γ(x)H ′′

X(x)dx

with
∫ +∞
−∞ Γ(x)dx = 1. Note that a partial parallel can be made with the spectral measures

of risk of Acerbi [1] and [2] (obtained as general combination of expected shortfalls). A “risk
aversion function” φ appears which plays an analogous role as Γ.

Coming back to the general case for λ1, we get:

∀X ∈ Xπ, J(X) = 〈g, H X
λ1

〉 = E( X
λ1

) + 1
2 〈Γ,H ′′

X
λ1

〉

5.2 Γ is a non negative measure

To further characterize our class of performance measures, we consider simple financial in-
struments, assuming that one can enter in any digital contract, i.e. a contract whose payoff
distribution is a Bernouilli variable. By assumption (R), Xπ contains at least the centered
Bernouilli variables (then all Bernouilli variables, from proposition 4.7). To get a performance
measure with financial consistency, we make the following assumption:

Assumption (F): It cannot exist centered Bernouilli variables with an arbitrary large π.

Definition 5.1 A performance measure π is called admissible if it satisfies assumptions
(A), (R) and (F).

Theorem 5.2 An admissible performance measure π can be written:

∀X ∈ Xπ, π(X) = sup
λ
J (λX) with J(X) = E( X

λ1
) + 1

2 〈Γ,H ′′
X
λ1

〉
where Γ is a non negative measure with compact support such that 〈Γ, 1〉 = 1.

If X 7→ λX is an optimal weight function, we have:





E(X) = 0 ⇒ π(X) = 0
E(X) > 0 ⇒ λX ≥ 0
E(X) < 0 ⇒ λX ≤ 0

A reciprocal property of this representation result is proved in Appendix C. Note that we
have now: ∀X ∈ Xπ, J(X) = 〈g,H X

λ1

〉 where g is a distribution of order at most 2, since the

order of Γ is 0. In particular, any measure based on 3 or 4 first moments (see references in
[24] for example) cannot be an admissible performance measure, since it involves the third
or fourth order derivative of the log-Laplace.

Proof: we need to prove it only with λ1 = 1.

1. From assumption (R), Xπ contains the centered Bernouilli variables, in particular, for
p ∈]0, 1[, the variable

X =

{
1− p with probability p

−p with probability 1− p
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We prove in Appendix B that for given λ > 0, x0 6= 0, we have, for p = eλx0

1+eλx0
:

H ′′
λX(x) = −λϕλ,x0(x) with ϕλ,x0(x) = λeλ(x−x0)

[1+eλ(x−x0)]2
and

∫
ϕλ,x0(x)dx = 1.

When λ → +∞, the function ϕλ,x0 concentrates around x0. With the same notations
as in the previous section, we study the sign of 〈Γ, ϕλ,x0〉. For L ∈ IR, we set a(L) =
infx0∈IR,λ≥L〈Γ, ϕλ,x0〉. The function a is increasing. Let us prove that:

(5.5) lim
L→+∞

a(L) ≥ 0

By contradiction, if limL→+∞ a(L) ≤ −b, with b > 0, then for arbitrary large L, there exists
λ, x0 ∈ IR such that λ ≥ L and 〈Γ, ϕλ,x0〉 ≤ − b

2 . Since π(X) ≥ J1(λX) = λE(X)+ 1
2 〈Γ,H ′′

λX〉
and E(X) = 0, we get π(X) ≥ −1

2λ 〈Γ, ϕλ,x0〉 ≥ b
4λ ≥ b

4L. This would lead to the existence
of centered Bernouilli variables with arbitrary large π. Contradiction proves (5.5).

Setting ϕλ(x) = ϕλ,0(x) = λeλx

(1+eλx)2
, we have ϕλ(x) = ϕλ(−x) and ϕλ,x0(x) = ϕλ(x0 − x).

Thus ∀x0 ∈ IR, 〈Γ, ϕλ,x0〉 = Γ ∗ ϕλ(x0) and a(L) = infx0∈IR,λ≥L Γ ∗ ϕλ(x0). When λ → +∞,
ϕλ → δ0 in the distribution sense. Consequently the C∞ function Γ ∗ϕλ converges toward Γ
in the distribution sense. We set b(λ) = − inf{0, a(λ)} for λ > 0. Then limλ→+∞ b(λ) = 0
and the Γ ∗ϕλ + b(λ) are non negative C∞ functions converging toward Γ in the distribution
sense.

This proves that Γ is a non negative measure (a non negative distribution is a measure, see
[27]).

2. Sign of an optimal weight function X 7→ λX : from 〈Γ,H ′′
X〉 non positive, we have for X ∈

Xπ, ∀λ ∈ IR, J(λX) ≤ λE(X). If E(X) = 0, we get J(λX) ≤ 0 then π(X) = max
λ

J(λX) = 0.

If E(X) > 0, for any λ < 0, we have J(λX) < − 1
2λ1
〈Γ,−H ′′

λX〉 ≤ 0. Therefore λX ≥ 0.
If E(X) < 0, changing X in −X, we prove λX ≤ 0.

Our two basic examples are admissible measures (see Appendix C). We can verify that they
correspond to distributions Γ which are non negative measures with compact support:

The half squared Sharpe ratio, with J1(X) = E(X) + 1
2H ′′

X(0), corresponds to ΓSh = δ0,
gSh = −δ′0 + 1

2δ′′0 , and λX = λ1
E(X)
V (X) (for any λ1 > 0).

Hodges’ measure, with J1(X) = HX(1) corresponds to gHod = δ1, up to a term cδ0. Following
the construction of g, G,Γ in section 5.1, we take g = gHod = δ1−δ0 (from (5.3)). Then 1

2Γ′′ =
g + δ′0 = δ1 − δ0 + δ′0. A primitive of δa is 1Ix≥a and a primitive of 1Ix≥a is (x− a)1Ix≥a. Then
integrating twice with appropriate choice of contants, we get 1

2Γ = (x−1)1Ix≥1−x1Ix≥0+1x≥0

i.e. the Hodges measure corresponds to:

gHod = δ1 − δ0, ΓHod(x) = 2(1− x)1I[0;1](x) and λX = λ1argmaxHX .
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6 Interpretation in terms of risk

We have for X ∈ Xπ, J(X) = E( X
λ1

) + 1
2 〈Γ,H ′′

X
λ1

〉. This formulation allows to separate the

risk aversion preferences relative to two kinds of risk, gaussian and non-gaussian.

6.1 Gaussian risk aversion

Lemma 6.1 1
λ1

corresponds to the usual risk aversion parameter for gaussian risks.

Proof: For X gaussian, we have J(X) = 1
λ1

[E(X)− 1
2λ1

V (X)].

Theorem 6.2 If all investors face the same risks, then the relative proportions of the risky
assets in any optimal portfolio are independent of gaussian risk preferences.

Proof: from (4.7), in the optimal portfolio, the asset weights are proportional to those corre-
sponding to λ1 = 1, which is a known result in the mean-variance context.

We keep here a separability theorem for gaussian risks, as in the usual Capital Asset Pricing
Model. The factor λ1 corresponds to the scale to which the investor considers the opportu-
nities.

6.2 Non-gaussian risk aversion

For a given λ1 (say λ1 = 1), the remaining risk aversion is characterized by Γ. In J1(X) =
E(X) + 1

2 〈Γ,H ′′
X〉, the second term appears as a term of risk: ρ(X) = 〈Γ,−H ′′

X〉 is non neg-
ative and calculated on the centered random variable (since H ′′

X−E(X) = H ′′
X). From Γ non

negative and 〈Γ, 1〉 = 1, ρ is a convex combination of the risk measures −H ′′· (λ), for λ in the
support of Γ. Note that these risk measures are Esscher variances: −H ′′

X(λ) is the variance
of X under the probability P λ

X defined in (4.2). Therefore ρ corresponds to a generalized
variance; it reduces to the classical variance if Γ = δ0 (giving the half squared Sharpe ratio
for π).

Therefore our class of measures allows to develop a new CAPM, including non-gaussian risk
aversion and efficient frontiers can be studied. This is more pertinent for monotones π (al-
lowing convex frontiers) and this question will be addressed in further research, as will the
properties of the risk measure ρ.

7 Practical application in an example of portfolio optimisation

We show how our family of measures will be better adapted than the Sharpe ratio in the
presence of financial derivatives. We consider trading strategies on a future whose final net
worth X is assumed to be gaussian and we calculate the optimal position when available
assets are this future and all standard calls and puts on it. We recall that any final net payoff
function s(X) can be achieved with these available trades.

We assume that the market is complete and that the risk-neutral and true probability dis-
tributions of X are gaussian with standard deviation 1. We denote by f∗ the risk-neutral
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density function (with mean 0) and by f the true density (with a mean m > 0). We have for

x ∈ IR, f∗(x) = 1
2πe−

x2

2 and f(x) = 1
2πe−

1
2
(x−m)2 . The Sharpe ratio is m for the future alone

and we will take m = 2 below.

We consider portfolios with final net worth s(X) satisfying E∗[s(X)] = 0, where E∗ denotes
the expectation under the risk-neutral probability, meaning that the portfolio is worth 0 at
the beginning of the period. The optimal position is built successively according to three
criteria: we optimize the Sharpe ratio, Hodges’ measure and a third measure π3 obtained
by choosing K with a cardinal equal to 2 (next simplest choice of admissible measure after
Hodges’ measure). Moreover the parameters of π3 are choosen in order to get a measure with
good properties (see Bonnet and Nagot [14]), in particular π3 is monotone.

Note that if we denote by P the set of available payoffs, since no a priori limit is set on lever-
age, solving max

X∈P
π(X) = max

X∈P
max
λ∈IR

J(λX) is equivalent to solving max
X∈P

J1(X). In conclusion,

we solve, for each of the three criteria:

(7.1) max
X∈P

J1(s(X)) under the constraint
∫

s(x)f∗(x)dx = 0

1. According to the Sharpe ratio:
We solve (7.1) with J1(X) = E(X)− 1

2V (X). The optimal payoff s(X) maximizes

∫
s(x)f(x)dx− 1

2

(∫
s(x)2f(x)dx−

[∫
s(x)f(x)dx

]2
)

The Euler-Lagrange conditions on s imply:

∀x ∈ IR, f(x)− 1
2

[
2s(x)f(x)− 2f(x)

∫
s(y)f(y)dy

]
+ cf∗(x) = 0

for some constant c. Therefore s(x)− cf∗(x)
f(x) is constant and s is proportional to 1− C f∗(x)

f(x) ,

with a constant C given by (7.1). We get C
∫ f∗(x)2

f(x) dx = 1 then C = e−m2
and the optimal

payoff is, up to a multiplicative constant:

s(x) = 1− e−m2
e−mx, for x ∈ IR

future payoff-2 -1 1 2 3 4

-1

-0.5

0.5

1

2. According to Hodges’ measure:
We solve (7.1) with J1(X) = HX(1) = − lnE[e−X ]. The optimal payoff s(X) maximizes

−
∫

e−s(x)f(x)dx
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Then there exists a constant C > 0 such that ∀x ∈ IR, e−s(x)f(x) − Cf∗(x) = 0. We get
∀x ∈ IR, s(x) = C1 + ln f(x)

f∗(x) = C2 + mx and
∫

C2f
∗(x)dx = 0 implies C2 = 0. We get

s(x) = mx for x ∈ IR, i.e. the optimal portfolio corresponds to m units of the future.

future payoff-2 -1 1 2 3 4

-2

-1

1

2

3

4

3. According to π3:
We solve (7.1) with J1(X) = α1HX(x1) + α2HX(x2). We choose 0 < x1 < 1 < x2 to have
a monotone measure and (α1, α2) = ( x2−1

x1(x2−x1) ,
1−x1

x2(x2−x1)) to get the right value on gaussian
variables. The optimal payoff s(X) maximizes

−
2∑

i=1

αi ln
∫

e−xis(x)f(x)dx

Then for some constants ci, we have ∀x ∈ IR,
∑2

i=1 cie
−xis(x)f(x) + c3f

∗(x) = 0 which gives∑2
i=1 Cie

−xis(x) = e−mx, ∀x ∈ IR, for some constants Ci. The function s can then be obtained
as the inverse function of y 7→ − 1

m ln[C1e
−x1y + C2e

−x2y].

future payoff
-2 -1 1 2 3 4

-1

1

2

3

4

5

As described before, we find that the Sharpe ratio optimization leads to a quite dangerous
choice, based on a short position in out-of-money puts, but scoring a Sharpe ratio of 7.32
(and 90 if the Sharpe ratio for the future is set to 3)! The Hodges’ measure optimization
proposes to be long in the future without any option position. The third choice has call-like
characteristics.

8 Conclusion and future directions

A new class of performance measures is built, based on axioms designed for the alternative
investment context and related to portfolio optimization. While coinciding with the squared
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Sharpe ratio on gaussian variables, the new framework allows to analyse general final net
worth distribution.

A full characterization of admissible measures is given, as the optimum of an associated
measure J when varying the quantity of asset hold, this measure being a linear and continuous
function of the logLaplace. Adding a financial assumption to rule out unappropriate measures,
we express J as a Schwartz distribution of order at most two.

This expression helps to study the properties of the class of measures. In Bonnet and Nagot
[14], further characterization in the case of monotone measures with respect to first or second
order stochastic dominance are presented. We prove that both monotonicities are equivalent,
and give the condition for them to hold. We then address the question of the unicity of the
optimal weight function.

Preferences relationship associated to J is also studied in [14]. We prove that the axioms for a
representation with a utility function are all satisfied except the independence axiom, which
holds if and only if J corresponds to a CARA utility function. Associated risk measures
are studied, addressing the question of coherence. These measures do not satisfy positive
homogeneity but are convex.

Other further directions include the determination of the most appropriate measure for each
business.

26

ha
ls

hs
-0

01
96

44
3,

 v
er

si
on

 1
 - 

12
 D

ec
 2

00
7



Appendix A. Complement on Hodges’ measure on X
We discuss here the possibility of infinite values for Hod according to X being or not an
arbitrage opportunity. Since we allow short selling, we take the following definition for an
arbitrage opportunity:

Definition 8.1 An arbitrage opportunity is a variable X such that X ≥ 0 P -ps, or X ≤ 0
P -ps, and P (X = 0) < 1.

Notation 8.2 We denote by SX the closed convex envelop of the support of the law of X.
Then SX is a closed interval included in IR and X ∈ X ∗ is an arbitrage opportunity if and

only if 0 /∈
◦

SX (i.e. SX included in [0, +∞] or [−∞, 0]).

Proposition 8.3 We have Hod(0) = 0 and for X ∈ X ∗:
(i) If X is not an arbitrage opportunity, Hod(X) < +∞, λX is uniquely defined in IR and
has the sign of E(X).
(ii) If X is a strict arbitrage opportunity (X > 0 P -ps or X < 0 P -ps), then Hod(X) = +∞.

This proves in particular that Hod(Z + X) is finite for any X ∈ X , when Z is gaussian and

non constant (from
◦

SZ+X= IR), which completes section 2.2.2.

Proof: we consider X ∈ X ∗.
(i) If X is not an arbitrage opportunity, we have 0 ∈

◦
SX , then Hod(X) < +∞ (this is a

classical consequence of Cramer’s theorem). Since X is not constant, HX is strictly concave
and its maximum is achieved at a unique point λX ∈ DX (HX is worth −∞ outside DX).
From HX(0) = 0, H ′

X(0) = E(X) and HX strictly concave, we deduce that λX and E(X)

have same sign (and λX = 0 if E(X) = 0). Note that if HX is steep13, λX ∈
◦

DX .

(ii) If for example X > 0 P -ps, then DX contains [0, +∞[. We have X ≥ ε > 0 P -ps,
and for λ > 0, HX(λ) ≥ ελ therefore Hod(X) = +∞ and supHX is achieved at λX = +∞.

Appendix B.

We consider a Bernouilli variable X =

{
1− p with probability p

−p with probability 1− p

Then E(X) = 0 and V (X) = p(1 − p)2 + (1 − p)p2 = p(1 − p). We have for x ∈ IR,
HX(x) = − ln

[
pe−(1−p)x + (1− p)epx

]
then

H ′
X(x) = −−p(1− p)e−(1−p)x + p(1− p)epx

pe−(1−p)x + (1− p)epx
= p(1− p)

1− ex

p + (1− p)ex
,

H ′′
X(x) = p(1− p)

−ex [p + (1− p)ex]− (1− p)ex(1− ex)
[p + (1− p)ex]2

= −p(1− p)
ex

[p + (1− p)ex]2

13I.e., for any boundary point of DX , λ0, lim
λ→λ0,λ∈

◦
DX

|H ′
X(λ)| = +∞.
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and
H ′′

X(x) = − p

1− p

ex

[
p

1−p + ex
]2 ≤ 0.

For given λ > 0, x0 ∈ IR, we choose p such that ln p
1−p = λx0 i.e. p = eλx0

1+eλx0
∈]0, 1[.

Then H ′′
λX(x) = λ2H ′′

X(λx) = −λ2eλx0 eλx

[eλx0+eλx]2
= −λ2 eλ(x−x0)

[1+eλ(x−x0)]2
= −λϕλ,x0(x) where

ϕλ,x0(x) = λeλ(x−x0)

[1+eλ(x−x0)]2
. Note that

∫
ϕλ,x0(x)dx =

∫
ey

[1 + ey]2
dy =

[ −1
1 + ey

]+∞

−∞
= 1.

When λ → +∞, p converges toward 1 if x0 > 0, 0 if x0 < 0, while p = 1
2 if x0 = 0. In

any case the function ϕλ,x0 concentrates around x0 when λ → +∞. Precisely, ϕλ,x0 con-
verges toward δx0 in the distribution sense.

Appendix C. Sufficient condition

We establish a reciprocal property of theorem 5.2. We consider a non negative measure Γ
with compact support K such that 〈Γ, 1〉 = 1 and π given by:

∀X ∈ X , π(X) = sup
λ∈IR

J(λX) with J(X) =

{
E(X) + 1

2〈Γ,H ′′
X〉 if X ∈ XK

−∞ if X /∈ XK

Replacing K by the the convex envelop of K∪{0}, we get a closed interval containing 0 (with-
out changing the definition of J since XK does not change). We set J (H) = 〈−δ′0 + 1

2Γ′′,H〉
for H ∈ C∞(K). Then J is linear and continuous for the semi-norm || · ||K,2 and ∀X ∈ XK ,
J (HX) = J(X).

Notes: • A scaling factor λ1 could be incorporated, to reflect different gaussian risk aver-
sions, by setting π(X) = sup

λ∈IR
J( λ

λ1
X) for X ∈ X .

• For X ∈ X , we have π(X) = sup
λ/λX∈XK

J (HλX), upper bound on an open set which contains

a neighborhood of 0, from Proposition 4.2. Moreover π(X) is non negative.

• This will not give exactly the reciprocal property, since in section 5, we can have X ∈ XK

and J(X) = −∞, which is not the case here, in particular XK and Xπ will coincide.

Proposition 8.4 π is admissible.

This proves in particular that both examples of section 2.2 satisfy property (R).

Proof: • Law invariance is obvious since J(X), then π(X), depends only on HX .

• π satisfies assumption (A1).
J is additive on XK . Thus for X, Y ∈ X independent, (2.1) comes from

(8.1) sup
α,β∈IR

sup
λ∈IR

J(λ(αX + βY )) = sup
α,β∈IR

J(αX + βY ) = sup
α∈IR

J(αX) + sup
β∈IR

J(βY )
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• π satisfies assumption (A2).
From the continuity of J and Proposition 4.2, λ 7→ J (HλX) is continuous on {λ ∈ IR|λX ∈
XK}. But due to the existence of variables X with particular behavior of HX at the boundary
of DX , the upper bound defining π(X) is not necessary achieved. For example in the Hodges’
measure case, π(X) = supHX and this upper bound can be achieved on the boundary of
DX : we can have DX = [−1, 1], supHX = lim

λ→1
λ<1

HX(λ) while J(X) = HX(1) = −∞ (non

steep HX , for an example see [8]). To take account of these limit cases, we replace J by J̄

defined by:

(8.2) J̄(X) = lim
λ→1
λ<1

J(λX), for X ∈ X

λ 7→ −J̄(λX) corresponds to the lower semicontinuous closure of λ 7→ −J(λX) (see [25]).
From the continuity of λ 7→ J(λX), J and J̄ coincide on XK . If λX /∈ XK for λ in a
neighborhood of 1, J(X) = J̄(X) = −∞. Therefore J(X) and J̄(X) can differ only if K and
DX have a common extremity. In that case J(X) = −∞ while J̄(X) can be finite.

For X ∈ X , we have
π(X) = sup

λ∈IR
J(λX) = sup

λ∈IR
J̄(λX)

and the last upper bound is achieved on IR: we get λX ∈ IR such that π(X) = J̄(λXX), or
λX = +∞ (resp. −∞) if π(X) = lim

λ→+∞
J(λX) (resp. lim

λ→−∞
). Together with (8.1) (written

with J replaced by J̄ , still additive), this leads to (A2), with these {λX}.

• π satisfies assumption (AT).
For X gaussian, we have X ∈ XK and J(X) = E(X) − 1

2V (X), then λX = E(X)
V (X) and

π(X) = 1
2Sh2(X), which proves π 6≡ 0 on gaussian variables, λZ = 1 for Z ∼ N (1, 1) and

x 7→ π(N (x, x)) bounded on a non empty open interval.

Moreover for X ∈ X and any non constant gaussian variable Z, we have π(Z + X) < +∞.
Indeed ∀λ ∈ IR, J(λ(Z + X)) ≤ λ[E(X) + E(Z)]− 1

2λ2V (Z) (from 〈Γ,H ′′
λ(X+Z)〉 ≤ 〈Γ,H ′′

λZ〉,
since 〈Γ,H ′′

λX〉 ≤ 0). Then for V (Z) > 0, sup
λ

J(λ(Z + X)) is achieved on IR and is finite.

• π satisfies assumption (F). Indeed, for any centered variable X, if λX ∈ XK (e.g. X

Bernouilli), we have, since Γ is non negative, J(λX) = 1
2〈Γ, H ′′

λX〉 ≤ 0, then π(X) = 0 < +∞.

• π satisfies assumption (R).
For x > 0, Zx defined in notation 2.4 (with λ1 = 1) satisfies π(Zx) = x, λZx = 1 and for
λ ∈ IR, J(λZx) = −x(λ2 − 2λ), since λZx ∼ N (2xλ, 2xλ2). For X ∈ X 14 and x > 0, we have
then π(Zx +X)−π(Zx) = supλ∈IR[J(λX)+J(λZx)]−x = sup fX

x (upper bound on IR), with
fX

x (λ) = J(λX)−x(λ−1)2. This proves that x 7→ π(Zx+X)−π(Zx) is non increasing on IR+.

14independent from all Zx, x > 0.
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Lemma 8.5 For X ∈ X , if lim
x→+∞↘ [π(Zx + X)− π(Zx)] ∈ IR, then lim

x→+∞λZx+X = 1.

Proof: Let X ∈ X such that L = lim
x→+∞[π(Zx +X)−π(Zx)] ∈ IR. If we prove λZx+X

x→+∞−→ 1

when π(X) < +∞, then, for other cases, since π(Z1 + X) < ∞, we will have λZx+1+X =

λZx+Z1+X
x→+∞−→ 1 and the conclusion will still hold. We assume then π(X) < +∞.

For η > 0 and |λ− 1| ≥ η, we have fX
x (λ) ≤ J(λX)−xη2 ≤ π(X)−xη2. Considering x large

enough, we get π(X)− xη2 ≤ L− 1 and sup fX
x > L− 1, since L = inf

x
sup fX

x . Thus sup fX
x

is achieved on [1− η, 1 + η], which then contains λZx+X .

Lemma 8.6 The set Xπ defined as in notation 2.5, with λ1 = 1, satisfies Xπ ⊂ XK .

Proof: For X ∈ Xπ, lim
x→+∞[π(Zx + X) − π(Zx)] ∈ IR, then from previous lemma, for x

large enough, there exists λ arbitrarily close to 1 such that J(λ(Zx + X)) ∈ IR (since
π(Zx + X) ∈ IR), implying λ(Zx + X) ∈ XK . Since Dλ(Zx+X) = DλX for λ > 0, we get
λX ∈ XK with λ arbitrarily close to 1. We could yet have X /∈ XK , but the same argument
for αX replacing X, with α > 1 arbitrarily close to 1 (from the definition of Xπ and lemma 8.5,

we still have lim
x→+∞λZx+αX = 1) allows to prove X ∈ XK . Then Xπ ⊂ XK (or K ⊂ ⋂

X∈Xπ

◦
DX).

Lemma 8.7 For X1, ..., Xk ∈ XK , ∀η > 0, ∃Mη > 0 such that ∀HY ∈ V ectIN(HX1 , ..., HXk
),

x ≥ Mη||HY ||K,2 implies λZx+Y ∈ [1− η, 1 + η].

Proof: Let X1, ..., Xk ∈ XK . We set m = min
1≤i≤k

J(Xi) ∈ IR and M = max
1≤i≤k

π(Xi) ∈ [0, +∞].

1. We assume M < +∞. Let n1, ..., nk ∈ IN and HY = n1HX1 + ... + nkHXk
. We have

sup fY
x ≥ fY

x (1) =
∑

i niJ(Xi) ≥ nY m where nY =
∑

1≤i≤k ni.

Let η > 0. For |λ − 1| ≥ η, we have fY
x (λ) ≤ ∑

i niJ(λXi) − xη2 ≤ nY M − xη2. Assuming
x ≥ [M − (m− 1)]nY

η2 (note that m ≤ M), we get fY
x (λ) ≤ nY (m− 1) for λ /∈ [1− η, 1 + η].

Thus π(Zx + Y ) − π(Zx) = sup fY
x = sup

λ∈[1−η,1+η]
fY

x (λ) and this upper bound is achieved at

λZx+Y .

We have proved that ∀η > 0, ∃Mη > 0 such that ∀n1HX1+...+nkHXk
∈ V ectIN(HX1 , ..., HXk

),
for x ≥ Mη

∑
1≤i≤k ni, we have λZx+Y ∈ [1− η, 1 + η].

2. General case. We set I = {1 ≤ i ≤ k |Xi is not constant}. Any HY ∈ V ectIN(HX1 , ...,HXk
)

can be written HY = n0HX0 +
∑

i∈I niHXi with n0 ∈ IR and X0 constant equal to 1. Let
nY = n0 +

∑
i∈I ni (not uniquely defined). For x > 0 and ∀λ ∈ IR, we have HZnY

+Y =∑
i∈I∪{0} niHZ1+Xi and π(Z1 + Xi) < +∞ for i ∈ I ∪ {0}. Then ∀η > 0, ∃Mη > 0 such that

∀HY ∈ V ectIN(HX1 , ..., HXk
), for x ≥ MηnY (for at least one of the possible values for nY )

we have λZx+nY
+Y ∈ [1− η, 1 + η].

Now we link nY to ||HY ||K,2. We have ||HY ||K,2 ≥ max
K

|H ′′
Y | ≥ min

K
|H ′′

Y | = min
K

∑
i∈I ni(−H ′′

Xi
)
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since for i ∈ I, H ′′
Xi

is negative (HX is strictly concave for X non constant). Thus, with
A = min

i∈I,λ∈K
[−H ′′

Xi
(λ)] > 0, we have:

(8.3) A
∑

i∈I
ni ≤ ||HY ||K,2

But |n0| = |H ′
Y −

∑
i∈I niH

′
Xi
| ≤ max

K
|H ′

Y |+ A′
∑

i∈I ni with A′ = max
i∈I

max
K

|H ′
Xi
|. Using

(8.3), we get |n0| ≤ (1 + A′
A )||HY ||K,2 and by (8.3) again, nY ≤ C||HY ||K,2, with C indepen-

dent of Y .

In conclusion, for x ≥ C(Mη+1)||HY ||K,2, since x−nY ≥ MηnY , we have λZx+Y ∈ [1−η, 1+η]
and the lemma is proved.

To complete the proof of assumption (R), let us consider X1, ..., Xk ∈ XK . The open set

I = ∩1≤i≤k

◦
DXi contains K, let η0 ∈]0, 1[ such that Kη0 ⊂ I. We consider 0 < η ≤ η0, then

K ⊂ Kη ⊂ I.

For HY , HY ′ ∈ V ectIN(HX1 , ..., HXk
) ⊂ HI and λ ∈ [1 − η, 1 + η], we have λY, λY ′ ∈ XK ,

since XI ⊂ XKη ⊂ XλK . From the continuity of J on C∞(K), we get:

(8.4) |J(λ(Zn + Y ))− J(λ(Zn + Y ′))| = |J (HλY )− J (HλY ′)| ≤ ||J || ||HλY −HλY ′ ||K,2

Since H
(k)
λX(·) = λkH

(k)
X (λ·), if λ ∈ [1− η, 1 + η], we have:

(8.5) ||HλY −HλY ′ ||K,2 = max
0≤k≤2

[λk max
λK

|H(k)
Y −H

(k)
Y ′ |] ≤ (1 + η)2||HY −HY ′ ||Kη ,2

From lemma 8.7, there exists Mη such that if n ≥ Mη||HY ||K,2, then λZn+Y ∈ [1− η, 1 + η].

In that case λZn+Y K ⊂ I ⊂
◦

DY =
◦

DZn+Y and since J and J̄ coincide at λZn+Y (Zn +Y ) ∈ XK ,
we get π(Zn +Y ) = J(λZn+Y (Zn +Y )) ∈ IR. Using (8.4) and (8.5) with λ = λZn+Y , we get:

|π(Zn + Y )− J(λZn+Y (Zn + Y ′))| ≤ M ||HY −HY ′ ||Kη ,2, with M = (1 + η)2||J ||.

Then π(Zn + Y ′) ≥ J(λZn+Y (Zn + Y ′)) ≥ π(Zn + Y ) − M ||HY − HY ′ ||Kη ,2 and by sym-
metry, we get for n ≥ Mηmax(||HY ||K,2, ||HY ′ ||K,2):

(8.6) |π(Zn + Y )− π(Zn + Y ′)| ≤ M ||HY −HY ′ ||Kη ,2

Then for X1, ..., Xk ∈ XK (which contains Xπ), we have found η0 such that ∀η ≤ η0, ∃Mη

such that ∀HY ,HY ′ ∈ V ectIN(HX1 , ...,HXk
),

n ≥ Mηmax(||HY ||K,2, ||HY ′ ||K,2) ⇒ |π(Zn + Y )− π(Zn + Y ′)| ≤ M ||HY −HY ′ ||Kη ,2.

We get that (R) is satisfied with p = 2 and this completes the proof of proposition 8.4.

Note that we have in fact Xπ = XK . Indeed, for X ∈ XK and α in a neighborhood
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of 1, we have αX ∈ XK and from (8.6) with Y = X1 = αX, Y ′ = 0, for η small

and n large enough: |π(Zn + αX) − π(Zn)| ≤ M ||HαX ||Kη ,2 while Kη ⊂
◦

DαX . Therefore
lim

n→+∞[π(Zn + αX)− π(Zn)] ∈ IR, then X ∈ Xπ and Xπ = XK from lemma 8.6.

Exemple: the assumption (R) is satisfied with K = {0} and p = 2 for the squared Sharpe
ratio (note that X = XK and Kη = {0}), and with K = [1− ε, 1 + ε] and p = 2 for Hodges
measure, with ε arbitrary small.
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