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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL
WITH ENDOGENOUS LEISURE

MARIUS VALENTIN BOLDEA

Abstract. In this paper I study a discrete-time version of the Lucas model

with the endogenous leisure but without physical capital. Under standard
conditions I prove that the optimal human capital sequence is increasing. If the

instantaneous utility function and the production function are Cobb-Douglas,

I prove that the human capital sequence grow at a constant rate. I finish by
studying the existence and the unicity of the equilibrium in the sense of Lucas

or Romer.
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2 MARIUS VALENTIN BOLDEA

1. INTRODUCTION

Intertemporal models with elastic labor supply continue to be the standard set-
ting used to model many issues in applied macroeconomics. Examples include the
theories of business cycles fluctuation and the analysis of economic environments
that are distorted due to the presence of taxation and monetary policies. The at-
tempts to assess qualitatively the role of leisure in the process of growth include
the studies of Chase [4] and Ryder et al. [11]. Introducing leisure choice in Lucas
models, Lardon-De-Guevara et al. [6] and Ortigueira [9] show that elastic labor
has important qualitative implications for the behavior of equilibrium paths in the
long-run (multiple balanced growth paths), as well as, during the transitional pe-
riod.

The role of knowledge or human capital has been proved to be crucial for the
endogenous growth theory. In Romer [10], the author proves that the knowledge
accumulated by the agents is the basic form of the capital. In Lucas [7], physical
capital and human capital are used as inputs in the production process, but the
crucial role is the human capital accumulation. In both papers continuous-time
models are used. In Gourdel et al. [5] the authors show that, if the quality of the
human capital accumulation is high, the economy will take off and there exists a
unique equilibrium. Their model is a discrete-time version of the Lucas model. In
each period, every individual consumes a quantity ct.

Our model is a discrete-time Lucas model too, but in each period, every individ-
ual consumes a quantity ct and spends a quantity of leisure lt.

We first consider the social planner problem. We show that if the quality of
the human capital accumulation is high, then the economy will take off, i.e. the
optimal human capital sequence will grow over time. If we assume that the form
of instantaneous utility function is u (c, l) = cµl1−µ and the production function
f (x) = xα, then there exists a unique equilibrium. This equilibrium must be
understood in the sense of Lucas [7] or Romer [10]. That is a human capital path
such that, when it is used as externality, it will coincide with the solution to the
optimal problem taking it as exogenously determined.

It is known that Lucas [7] and Romer [10] use continuous-time models. Xie [15]
shows that a continuum of equilibria may exist in the Lucas model with physical
and human capital. In this paper, we use discrete-time framework as in Gourdel
and al. [5] or Le Van and Morhaim [13]. It reduces the complexity of the proofs of
the existence of optimal solutions to the social planner problem and of equilibria
as well.

The paper is organized as follows: in the second section, we present the model
and prove the existence of the optimal solution to the social planner problem. In
the third section, we prove the existence and uniqueness of equilibrium.

2. THE SOCIAL PLANNER PROBLEM

2.1. The Model. The following model is a discrete-time horizon version of the Lu-
cas model without physical capital. We consider an intertemporal model where the
social planner maximizes the utility of an infinitely lived representative consumer.
In each period, every individual consumes a quantity ct and spends a quantity of
leisure lt. The consumption good is produced through a production function using
only labour as input. Effective labour is the sum of working hours combined with
the human capital, which are devoted to the production process. More explicitly,
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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL WITH ENDOGENOUS LEISURE3

we assume there exists a representative worker who has h ∈ [0,+∞) as human
capital and devotes a fraction θ of his non-leisure time for working, the remaining
fraction (1− θ) to human capital accumulation. Effective labour is Ne = θh. Given
h, θ the production level is G (h) f (θh). The term G (h) represents the external
effect of the human capital. The rate of growth of the human capital depends on
the time devoted to human capital accumulation through a function φ. The model
can be written as follows:

max
+∞∑
t=0

βtu (ct, lt) , (P )

under the constraints:

(1) ∀t ≥ 0, 0 ≤ ct ≤ G (ht) f (θtht) ,

(2) ht+1 = ht (1 + λφ (1− θt)) ,

(3) 0 ≤ θt ≤ 1, h0 > 0 is given

and:
u (c, l) = cµl1−µ,

with:
0 < β < 1, l = 1− θ, 0 < µ < 1.

In the equation describing the dynamics of ht, the parameter λ measures the
quality of the human capital technology function φ.

We make the following assumptions:

H1: The utility function u, u : R2 → R, is a Cobb-Douglas: u (c, l) = cµl1−µ,
0 < µ < 1.

H2: The production function f , f : R → R, is a Cobb-Douglas: f (x) = xα,
0 < α < 1.

H3: The function G, G : R → R, G (x) = xγ , 0 < γ < 1.

H4: The function φ is strictly increasing and twice continuously differentiable,
φ (0) = 0, φ (1) = 1, λ > 0.

H5: 0 < β (1 + λ)(α+γ)µ
< 1.

2.2. Optimal Solutions. Let ψ : [1, 1 + λ] → R be defined by:

(4) ψ (x) = 1− φ−1

(
1
λ

(x− 1)
)
,
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4 MARIUS VALENTIN BOLDEA

where φ−1 denotes the inverse map of φ. The function ψ gives the working time
fraction when the human capital growth factor is x.

We list the properties of ψ:
(a) ψ is continuously differentiable, decreasing, ψ (1) = 1, ψ (1 + λ) = 0, ψ

′
(1) =

− 1
λφ′ (0)

, ψ
′
(1 + λ) = − 1

λφ′ (1)
.

(b) If φ is (strictly) concave, then ψ is also (strictly) concave.

Observe that the problem is now equivalent to:

max
+∞∑
t=0

βth
(α+γ)µ
t

[
ψ

(
ht+1

ht

)]αµ [
1− ψ

(
ht+1

ht

)]1−µ

,

under the constraints:
∀t ≥ 0, ht ≤ ht+1 ≤ (1 + λ)ht and h0 > 0 is given.

PROPOSITION 1. Under assumptions H1 − H5, there exists a solution for
problem (P).

Proof. It is standard (see [12] ) . �

The following proposition states that the optimal sequence of human capital is
strictly increasing. In other words, the economy will take off.

PROPOSITION 2. Any optimal human capital sequence h = (h0, h1, ..., ht, ...) sat-
isfies h0 < h1 < ... < ht < ....

Proof. Since the problem is stationary, it suffices to show that for any h0 > 0, the
stationary sequence (h0, h0, ..., h0, ...) is not optimal.

Let ε > 0 sufficiently small such that (1 + λφ (ε)) ≤ (1 + λ). Define the sequence
h = (h0, h1, ..., ht, ...) by:

∀t ≥ 1, ht = h0 (1 + λφ (ε)) .

The associated sequence of consumptions cε = (c0ε, c1ε, ..., ctε, ...) is:

c0ε = G (h0) f (h0 (1− ε))

and:
ctε = G (h0 (1 + λφ (ε))) f (h0 (1 + λφ (ε))) ,

for any t ≥ 1.
We also have θε = (θ0ε, θ1ε, ..., θtε, ...), with:

θ0ε = 1− ε, θtε = 1, ∀t ≥ 1,

so:
l0ε = ε, ltε = 0, ∀t ≥ 1.

The sequences of consumptions c∗ and θ∗ associated with (h0, h0, ..., h0, ...) are:

c∗t = G (h0) f (h0) , ∀t ≥ 0

and:
θ∗t = 1, ∀t ≥ 0,

so:
l∗t = 0, ∀t ≥ 0.
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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL WITH ENDOGENOUS LEISURE5

We compare the utilities associated with these sequences. Let:

∆ε =
+∞∑
t=0

βtu (ct, lt)−
+∞∑
t=0

βtu (c∗t , l
∗
t ) .

From the concavity of u, one gets:

∆ε ≥ u (c0ε, l0ε)− u (c∗0, l
∗
0) +

β

1− β
[u (c1ε, l1ε)− u (c∗1, l

∗
1)] ≥

≥ uc (c0ε, l0ε) (c0ε − c∗0) + ul (c∗0, l
∗
0) (l0ε − l∗0) +

+
β

1− β
uc (c1ε, l1ε) (c1ε − c∗1) +

β

1− β
ul (c∗1, l

∗
1) (l1ε − l∗1) ,

so, we have:

∆ε ≥ uc (c0ε, ε) [G (h0) f (h0 (1− ε))−G (h0) f (h0)] + ul (c∗0, 0) ε+

+
β

1− β
uc (c1ε, 0) [G (h0 (1 + λφ (ε))) f (h0 (1 + λφ (ε)))−G (h0) f (h0)] .

Because uc (c1ε, 0) = 0, then:

∆ε ≥ uc (c0ε, ε) [G (h0) f (h0 (1− ε))−G (h0) f (h0)] + ul (c∗0, 0) ε.

We will show that:
lim
ε→0

∆ε

ε
= +∞.

But:

lim
ε→0

∆ε

ε
≥ −uc (c∗0, 0)G (h0)h0 lim

ε→0

f (h0 (1− ε))− f (h0)
−h0ε

+ lim
ε→0

ul (c∗0, ε) =

= −h0uc (c∗0, 0)G (h0) f
′
(h0) + lim

ε→0
ul (c∗0, ε) = lim

ε→0
ul (c∗0, ε) = +∞.

We know that:
uc (c∗0, 0) = 0

and:
lim
ε→0

ul (c∗0, ε) = +∞.

Then, ∆ε > 0, for ε small enough. In other words, the stationary sequence
(h0, h0, ..., h0, ...) is not optimal. �

We define the value function of h0 by:

∀h0 ≥ 0, V (h0) = max
+∞∑
t=0

βth
(α+γ)µ
t

[
ψ

(
ht+1

ht

)]αµ [
1− ψ

(
ht+1

ht

)]1−µ

,

under the constrains: ∀t ≥ 0, ht ≤ ht+1 ≤ (1 + λ)ht and h0 given. Now, if we
define the function:

F (x, y) = x(α+γ)µ
[
ψ

(y
x

)]αµ [
1− ψ

(y
x

)]1−µ
,

with F : R2 → R, then the value function become:

∀h0 ≥ 0, V (h0) = max
+∞∑
t=0

βtF (ht, ht+1) ,

under the constrains: ∀t ≥ 0, ht ≤ ht+1 ≤ (1 + λ)ht and h0 given.
We now add assumptions in order to obtain uniqueness of optimal human cap-

ital paths which grow at constant rate:
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6 MARIUS VALENTIN BOLDEA

H6: The function φ is concave.

H7: [
ψ
′
(ξ)

]2

+ ψ (ξ)ψ
′′

(ξ) > 0.

Examples:

I. φ (x) = x.

ψ (ξ) = − 1
λξ + 1+λ

λ and so:
[
ψ
′
(ξ)

]2

+ ψ (ξ)ψ
′′

(ξ) > 0.

II. φ (x) = ln(1+x)
ln 2 .

ψ (ξ) = 2− 2
1
λ (ξ−1), ψ

′
(ξ) = − ln 2

λ · 2 1
λ (ξ−1), ψ

′′
(ξ) = − ln2 2

λ2 · 2 1
λ (ξ−1),

so:[
ψ
′
(ξ)

]2

+ ψ (ξ)ψ
′′

(ξ) = 2 · ln2 2
λ2 · 2 1

λ (ξ−1) ·
[
2

1
λ (ξ−1) − 1

]
≥ 0.

H8:
µ >

1
1 + α

.

We therefore weaken H5 in:

H5b: β (1 + λ)(α+γ)µ
< 1− (α+ γ)µ.

Lemma 1. (i) The value function satisfies the Bellman equation:

V (h0) = max
y∈[h0,(1+λ)h0]

{F (h0, y) + βV (y)}, ∀h0 ≥ 0.

(ii) We have V = limn→+∞ Tnf for any continuous function f on R+, where T is
the following linear operator:

∀h ≥ 0, T f (h) = max
y∈[h,(1+λ)h]

{F (h, y) + βf (y)}.

Proof. It is standard (see [12]). �

So, we can define a correspondence ϕ which associates any h0 with its maximizer.
Let:

ϕ (h0) = argmax{F (h0, y) + βV (y) : y ∈ [h0, (1 + λ)h0]}.

PROPOSITION 3. Assume H1-H2-H3-H4-H5-H6-H7-H8. Then, the function:

F (x, y) = x(α+γ)µ
[
ψ

(y
x

)]αµ [
1− ψ

(y
x

)]1−µ
,
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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL WITH ENDOGENOUS LEISURE7

with F : R2 → R is a concave function in the second variable.

Proof. It easy to see that:

F (x, y) =
{
x

[
ψ

(y
x

) [
1− ψ

(y
x

)]η] α
α+γ

}(α+γ)µ

,

where:
η =

1− µ

αµ
.

From H8, η < 1. If f (ξ) = ψ (ξ) [1− ψ (ξ)]η , then:

f
′
(ξ) = ψ

′
(ξ) [1− ψ (ξ)]η − ηψ

′
(ξ)ψ (ξ) [1− ψ (ξ)]η−1

,

so:
f
′′

(ξ) = ψ
′′

(ξ) [1− ψ (ξ)]η − η
h
ψ
′
(ξ)
i2

[1− ψ (ξ)]η−1 +

+η (η − 1)
h
ψ
′
(ξ)
i2
ψ (ξ) [1− ψ (ξ)]η−1 − η [1− ψ (ξ)]η−1

h
ψ
′
(ξ)
i2

+ ψ (ξ)ψ
′′

(ξ)

ff
.

From H6 and H7, f is strict concave and so F is a strict concave function. �

Lemma 2. Assume H1-H2-H3-H4-H5-H6-H7-H8.
i) The correspondence ϕ is upper semi-continuous.
ii) If the sequence h is optimal, then the mapping ϕ satisfies: ∀t ≥ 0, then h∗t+1 =
ϕ (h∗t ) .

Proof. i) The statement is a consequence of the Maximum Theorem.
ii)We know that a feasible sequence h is optimal if, and only if,

V (h∗t ) = F
(
h∗t+1, h

∗
t

)
+ βV

(
h∗t+1

)
.

This shows that ∀t ≥ 0, h∗t+1 ∈ ϕ (h∗t ). But F is a concave function in y, so:

∀t ≥ 0, h∗t+1 = ϕ (h∗t ) .

�

In the following proposition, we show the uniqueness of optimal human capital
paths with constant growth rate.

PROPOSITION 4. Assume H1-H2-H3-H4-H5b-H6-H7-H8. Then, the optimal
human capital sequence is unique and grows at constant rate δ ∈ (1, 1 + λ).

Proof. The proof is done in two steps.

Step 1. We claim that:
(i) The value function has the form: V (h0) = Ah

(α+γ)µ
0 for some constant A.

(ii) Given h0 the optimal value of the human capital of period 1 is h∗1 = δh0 with
δ solution to:

max
v∈[1,1+λ]

{[ψ (v)]αµ [1− ψ (v)]1−µ + βAv(α+γ)µ}.

Proof claim (i): Let T the operator which associates any continuous function f on
R+ with the function:

Tf (h) = max
y∈[h,(1+λ)h]

{F (h, y) + βf (y)}.
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8 MARIUS VALENTIN BOLDEA

Take h > 0. We have successively:

T0 (h) = max
y∈[h,(1+λ)h]

{F (h, y)} =

= max
y∈[h,(1+λ)h]

{
h(α+γ)µ

[
ψ

(y
h

)]αµ [
1− ψ

(y
h

)]1−µ
}

=

= h(α+γ)µ max
v∈[1,1+λ]

{[ψ (v)]αµ [1− ψ (v)]1−µ} = A1h
(α+γ)µ.

T 20 (h) = max
y∈[h,(1+λ)h]

{F (h, y) + βA1y
(α+γ)µ} =

= max
y∈[h,(1+λ)h]

{
h(α+γ)µ

[
ψ

(y
h

)]αµ [
1− ψ

(y
h

)]1−µ
+ βA1y

(α+γ)µ

}
=

= h(α+γ)µ max
v∈[1,1+λ]

{[ψ (v)]αµ [1− ψ (v)]1−µ + βA1v
(α+γ)µ} = A2h

(α+γ)µ.

By induction, we have:
Tn0 (h) = Anh

(α+γ)µ,

where v = y
h .

From Lemma 1 (ii) we know that limn→+∞ Tn0 = V and from An → A when
n→ +∞ we obtain V (h0) = Ah(α+γ)µ, so we proved the first part of the claim.

Proof claim (ii): From Lemma 1 (i), we know that V satisfies Bellman equation:

V (h) = max
y∈[h,(1+λ)h]

{F (h, y) + βV (y)} =

= max
y∈[h,(1+λ)h]

{
h(α+γ)µ

[
ψ

(y
h

)]αµ [
1− ψ

(y
h

)]1−µ
+ βAy(α+γ)µ

}
=

= h(α+γ)µ max
v∈[1,1+λ]

{[ψ (v)]αµ [1− ψ (v)]1−µ + βAv(α+γ)µ} =

= h(α+γ)µ{[ψ (δ)]αµ [1− ψ (δ)]1−µ + βAδ(α+γ)µ},
where δ ∈ [1, 1 + λ].

From Lemma 2 (ii), the optimal policy ϕ is defined by ϕ (h) = δh and h is
optimal if, and only if, ht = δth0, ∀t ≥ 0. Since the problem is stationary, if {ht}
is an optimal sequence, then we have ht = δth0 for every t.

Step 2. From Proposition 2, an optimal sequence of human capital must satisfy
ht+1 > ht, ∀t ≥ 0. Since u satisfies Inada condition, optimal consumption must be
positive. Thus Euler equation holds for all t ≥ 0. First, we put:

F
(
ht+1

ht

)
=

[
ψ

(
ht+1

ht

)]αµ [
1− ψ

(
ht+1

ht

)]1−µ

.

So:

(E) : h
(α+γ)µ
t F

′
(
ht+1

ht

)
1
ht

+ β (α+ γ)µh(α+γ)µ−1
t+1 F

(
ht+2

ht+1

)
−

−βh(α+γ)µ
t+1

ht+2

ht+1
F
′
(
ht+2

ht+1

)
1

ht+1
= 0,
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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL WITH ENDOGENOUS LEISURE9

(E) : h
(α+γ)µ−1
t F

′
(
ht+1

ht

)
+ β (α+ γ)µh(α+γ)µ−1

t+1 F
(
ht+2

ht+1

)
−

−βh(α+γ)µ−1
t+1

ht+2

ht+1
F
′
(
ht+2

ht+1

)
= 0.

From step 1 we have:

(E) : F
′
(δ) + β (α+ γ)µδ(α+γ)µ−1F (δ)− βδ(α+γ)µ−1δF

′
(δ) = 0,

so:

(E) : x1−(α+γ)µ − xβ = −β (α+ γ)µ
F (x)
F ′ (x)

.

Let:

L (x) = x1−(α+γ)µ − xβ

and:

K (x) = −β (α+ γ)µ
F (x)
F ′ (x)

.

We know that L (1) = 1 − β > 0, L (1 + λ) = (1 + λ)1−(α+γ)µ − β (1 + λ) and
from H5b:

L
′
(x) = [1− (α+ γ)µ]x−(α+γ)µ − β > 0,

so L is a increasing function.
For K we know that K (1) = 0, K (1 + λ) = 0 and from H7 and H8:

K
′
(x) = −β (α+ γ)µ

[
1− F (x)F ′′

(x)

[F ′ (x)]2

]
< 0,

so K is a decreasing function.
But:

K (x) = −β (α+ γ)µ
[ψ (x)] [1− ψ (x)]

ψ′ (x) [αµ+ (µ− αµ− 1)ψ (x)]
.

Because αµ + (µ− αµ− 1)ψ (x) 6= 0 must hold, if x ∈ (ξ, 1 + λ], then K is a
positive decreasing function; if x = ξ, then K is not well defined and if x ∈ [1, ξ),
then K is a negative decreasing function, where:

ξ = 1 + λφ

(
1− µ

αµ− µ+ 1

)
∈ (1, 1 + λ) ,

solution for F ′
(x) = 0 and:

lim
x→ξ,x<ξ

K (x) = −β (α+ γ)µ lim
x→ξ,x<ξ

[ψ (x)] [1− ψ (x)]
ψ′ (x) [αµ+ (µ− αµ− 1)ψ (x)]

= −∞,

lim
x→ξ,x>ξ

K (x) = −β (α+ γ)µ lim
x→ξ,x>ξ

[ψ (x)] [1− ψ (x)]
ψ′ (x) [αµ+ (µ− αµ− 1)ψ (x)]

= +∞.

Therefore, there exists a unique solution x ∈ (1, 1 + λ) for equation L (x) = K (x).
�
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10 MARIUS VALENTIN BOLDEA

3. EQUILIBRIUM

We first define the concept of equilibrium (in the sense of Lucas or Romer).
Suppose we are given a sequence of human capital h =

(
h0, h1, ..., ht, ...

)
. Con-

sider the following model:

max
+∞∑
t=0

βtu (ct, lt) ,

under the constraints:

(5) ∀t ≥ 0, 0 ≤ ct ≤ G
(
ht

)
f (θtht) ,

(6) ht+1 = ht (1 + λφ (1− θt)) ,

(7) 0 ≤ θt ≤ 1, h0 > 0 is given.

The solution h = (h0, h1, ..., ht, ...) to this problem depends on h. We write
h = Φ

(
h

)
. An equilibrium is a sequence of human capital h∗ = (h0, h

∗
1, ..., h

∗
t , ...)

such that h∗ = Φ(h∗).

3.1. Existence and Uniqueness of Equilibrium. We give below conditions for
which an equilibrium h∗ is strictly increasing.

PROPOSITION 5. Assume H1-H2-H3-H4-H5b-H6. Then, any equilibrium h∗

is strictly increasing.

Proof. Assume the contrary. We have two cases.

Case 1. The optimal sequence h∗ satisfies h∗t = h∗T for any t ≥ T . Define a
sequence h by ht = h∗t , ∀t ≤ T and ht = h∗T + ε, ∀t ≥ T + 1 and the sequence θ by
θt = θ∗t , ∀t ≤ T − 1, θT = 1− ε and θt = 1, ∀t ≥ T +1. We will show that, with h∗

as externality, the intertemporal utility generated by h and θ is greater than the
one generated by h∗ and θ∗, which contradicts the optimality of h∗.

Let:

∆ε =
+∞∑
t=0

βtu (ct, lt)−
+∞∑
t=0

βtu (c∗t , l
∗
t ) ,

so:

∆ε =

+∞X
t=0

βtu

„
G (h∗t ) f

„
htψ

„
ht+1

ht

««
, lt

«
−

+∞X
t=0

βtu

„
G (h∗t ) f

„
h∗tψ

„
h∗t+1

h∗t

««
, l∗t

«
=

= βT

"
u

„
G (h∗T ) f

„
hTψ

„
hT+1

hT

««
, lT

«
− u

 
G (h∗T ) f

 
h∗Tψ

 
h∗T+1

h∗T

!!
, l∗T

!#
+

+

+∞X
t=T+1

βt

»
u

„
G (h∗t ) f

„
htψ

„
ht+1

ht

««
, lt

«
− u

„
G (h∗t ) f

„
h∗tψ

„
h∗t+1

h∗t

««
, l∗t

«–
.
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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL WITH ENDOGENOUS LEISURE11

From the definition of h∗ and h we have:

∆ε = βT

"
u

 
G (h∗T ) f

 
h∗Tψ

 
h∗T + ε

h∗T

!!
, ε

!
− u (G (h∗T ) f (h∗Tψ (1)) , 0)

#
+

+ [u (G (h∗T ) f ((h∗T + ε)ψ (1)) , 0)− u (G (h∗T ) f (h∗Tψ (1)) , 0)]
∑

t≥T+1

βt.

Because ψ (1) = 1 and from the concavity of u, f and ψ one gets:

∆ε ≥ β
T
uc

 
G
`
h
∗
T

´
f

 
h
∗
Tψ

 
h∗T + ε

h∗T

!!
, ε

!
G
`
h
∗
T

´
f
′
 
h
∗
Tψ

 
h∗T + ε

h∗T

!!
ψ
′
 
h∗T + ε

h∗T

!
ε+

+βTul (G (h∗T ) f (h∗T ) , l∗T ) ε+

+uc

`
G
`
h
∗
T

´
f
`
h
∗
T + ε

´
, 0
´
G
`
h
∗
T

´
f
′ `
h
∗
T + ε

´
ε
X

t≥T+1

β
t
+ ul

`
G
`
h
∗
T

´
f
`
h
∗
T

´
, l
∗
T+1

´
· 0 ·

X
t≥T+1

β
t
,

so:

∆ε ≥ β
T
uc

 
G
`
h
∗
T

´
f

 
h
∗
Tψ

 
h∗T + ε

h∗T

!!
, ε

!
G
`
h
∗
T

´
f
′
 
h
∗
Tψ

 
h∗T + ε

h∗T

!!
ψ
′
 
h∗T + ε

h∗T

!
ε+

+βTul (G (h∗T ) f (h∗T ) , l∗T ) ε+ uc (G (h∗T ) f (h∗T + ε) , 0)G (h∗T ) f
′
(h∗T + ε) ε

X
t≥T+1

βt.

We will show that:

lim
ε→0

∆ε

ε
= +∞.

But:

lim
ε→0

∆ε

ε
≥ βTuc (G (h∗T ) f (h∗T ) , 0)G (h∗T ) f

′
(h∗T )ψ

′
(1)+

+βT lim
ε→0

ul (G (h∗T ) f (h∗T ) , ε) + uc (G (h∗T ) f (h∗T ) , 0)G (h∗T ) f
′
(h∗T )

∑
t≥T+1

βt.

We know that:

uc (G (h∗T ) f (h∗T ) , 0) = 0,
and:

lim
ε→0

ul (G (h∗T ) f (h∗T ) , ε) = +∞.

Hence ∆ε > 0 for ε > 0 sufficiently small.

Case 2. The optimal sequence h∗ satisfies h∗t = h∗T for any T ≤ t ≤ T + τ and
h∗t < h∗t+1, ∀t < T and t ≥ T + τ . Define a sequence h by ht = h∗t , ∀t 6= T + τ and
h∗T+τ < hT+τ = h∗T+τ + ε < h∗T+τ+1 and a sequence θ by θt = θ∗t , ∀t 6= T + τ − 1
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12 MARIUS VALENTIN BOLDEA

and θT+τ−1 = 1− ε. As previously, we will show that, with h∗ as externality, the
intertemporal utility generated by h and θ is greater than the one generated by h∗

and θ∗.

Let:

∆ε =

+∞X
t=0

βtu

„
G (h∗t ) f

„
htψ

„
ht+1

ht

««
, lt

«
−

+∞X
t=0

βtu

„
G (h∗t ) f

„
h∗tψ

„
h∗t+1

h∗t

««
, l∗t

«
,

so:

∆ε = βT+τ−1

»
u

„
G
`
h∗T+τ−1

´
f

„
hT+τ−1ψ

„
hT+τ

hT+τ−1

««
, lT+τ−1

«
−

−u
 
G
`
h∗T+τ−1

´
f

 
h∗T+τ−1ψ

 
h∗T+τ

h∗T+τ−1

!!
, l∗T+τ−1

!#
+

+βT+τ

»
u

„
G
`
h∗T+τ

´
f

„
hT+τψ

„
hT+τ+1

hT+τ

««
, lT+τ

«
−

−u
 
G
`
h∗T+τ

´
f

 
h∗T+τψ

 
h∗T+τ+1

h∗T+τ

!!
, l∗T+τ

!#
.

From definition of h∗ and h we have:

∆ε = β
T+τ−1

"
u

 
G
`
h
∗
T

´
f

 
h
∗
Tψ

 
h∗T + ε

h∗T

!!
, ε

!
− u

`
G
`
h
∗
T

´
f
`
h
∗
Tψ (1)

´
, 0
´#

+

+β
T+τ

"
u

 
G
`
h
∗
T

´
f

 `
h
∗
T + ε

´
ψ

 
h∗T+τ+1

hT + ε

!!
, l
∗
T+τ

!
− u

 
G
`
h
∗
T

´
f

 
h
∗
Tψ

 
h∗T+τ+1

h∗T

!!
, l
∗
T+τ

!#

and from the concavity of u, f and ψ and because ψ (1) = 1 one gets:

∆ε ≥ β
T+τ−1

uc

 
G
`
h
∗
T

´
f

 
h
∗
Tψ

 
h∗T + ε

h∗T

!!
, ε

!
G
`
h
∗
T

´
f
′
 
h
∗
Tψ

 
h∗T + ε

h∗T

!!
ψ
′
 
h∗T + ε

h∗T

!
ε+

+βT+τ−1ul

`
G (h∗T ) f (h∗T ) , l∗T+τ

´
ε+

+β
T+τ

uc

 
G
`
h
∗
T

´
f

 `
h
∗
T + ε

´
ψ

 
h∗T+τ+1

h∗T + ε

!!
, l
∗
T+τ

!
G
`
h
∗
T

´
f
′
 `
h
∗
T + ε

´
ψ

 
h∗T+τ+1

h∗T + ε

!!
·

·
"
ψ

 
h∗T+τ+1

h∗T + ε

!
−
h∗T+τ+1

h∗T + ε
ψ
′
 
h∗T+τ+1

h∗T + ε

!#
ε+

+βT+τul

 
G (h∗T ) f

 
h∗Tψ

 
h∗T+τ+1

h∗T

!!
, l∗T+τ

!
· 0,

so:

∆ε ≥ β
T+τ−1

uc

 
G
`
h
∗
T

´
f

 
h
∗
Tψ

 
h∗T + ε

h∗T

!!
, ε

!
G
`
h
∗
T

´
f
′
 
h
∗
Tψ

 
h∗T + ε

h∗T

!!
ψ
′
 
h∗T + ε

h∗T

!
ε+

+βT+τ−1ul

`
G (h∗T ) f (h∗T ) , l∗T+τ

´
ε+

+β
T+τ

uc

 
G
`
h
∗
T

´
f

 `
h
∗
T + ε

´
ψ

 
h∗T+τ+1

h∗T + ε

!!
, l
∗
T+τ

!
G
`
h
∗
T

´
f
′
 `
h
∗
T + ε

´
ψ

 
h∗T+τ+1

h∗T + ε

!!
·

·
"
ψ

 
h∗T+τ+1

h∗T + ε

!
−
h∗T+τ+1

h∗T + ε
ψ
′
 
h∗T+τ+1

h∗T + ε

!#
ε.

But:
lim
ε→0

∆ε

ε
≥ βT+τ−1uc (G (h∗T ) f (h∗T ) , 0)G (h∗T ) f

′
(h∗T )ψ

′
(1) +
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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL WITH ENDOGENOUS LEISURE13

+βT+τ−1 lim
ε→0

ul (G (h∗T ) f (h∗T ) , ε)+

+βT+τuc

 
G (h∗T ) f

 
h∗Tψ

 
h∗T+τ+1

h∗T

!!
, l∗T+τ

!
G (h∗T ) f

′
 
h∗Tψ

 
h∗T+τ+1

h∗T

!!
·

·
"
ψ

 
h∗T+τ+1

h∗T

!
−
h∗T+τ+1

h∗T
ψ
′
 
h∗T+τ+1

h∗T

!#
.

We know that:

uc (G (h∗T ) f (h∗T ) , 0) = 0, lim
ε→0

ul (G (h∗T ) f (h∗T ) , ε) = +∞.

So:

lim
ε→0

∆ε

ε
= +∞.

Hence ∆ε > 0 for ε > 0 sufficiently small. �

The following proposition gives necessary and sufficient conditions for a sequence
h∗ to be an equilibrium.

PROPOSITION 6. Assume H1-H2-H3-H4-H5b-H6-H7-H8. A sequence h∗ is an
equilibrium starting from h0 > 0 if, and only if, it satisfies the following conditions:

(1) Interiority:

∀t ≥ 0, h∗t < h∗t+1 < (1 + λ)h∗t , h∗0 = h0 > 0,

(2) Euler equation: ∀t ≥ 0,

(E) : (h∗t )
(α+γ)µ−1 F

′
(
h∗t+1

h∗t

)
+ βαµ

(
h∗t+1

)(α+γ)µ−1 F
(
h∗t+2

h∗t+1

)
−

−β
(
h∗t+1

)(α+γ)µ−1 h∗t+2

h∗t+1

F
′
(
h∗t+2

h∗t+1

)
= 0.

(3) Transversality condition:

lim
t→+∞

βt (h∗t )
(α+γ)µ

[
αµF

(
h∗t+1

h∗t

)
−
h∗t+1

h∗t
F
′
(
h∗t+1

h∗t

)]
= 0

where:

F
(
h∗t+1

h∗t

)
=

[
ψ

(
h∗t+1

h∗t

)]αµ [
1− ψ

(
h∗t+1

h∗t

)]1−µ

.

Proof. 1. Let h∗ be an equilibrium.

(1) From the previous proposition, we have h∗t+1 > h∗t , ∀t ≥ 0. Since u satisfies
Inada condition, optimal consumptions must be positive at each period. Hence,
h∗t+1 < (1 + λ)h∗t , for every t.

If not:
h∗t+1 = (1 + λ)h∗t ,

but:
h∗t+1 = h∗t (1 + λφ (1− θt)) ,

ha
ls

hs
-0

01
18

82
9,

 v
er

si
on

 1
 - 

6 
D

ec
 2

00
6



14 MARIUS VALENTIN BOLDEA

so θt = 0 and ct = G
(
ht

)
f (θtht) = 0. Contradiction.

(2) Since the optimal path h∗ is interior, Euler equation must hold.

∀t ≥ 0, h∗t < h∗t+1 < (1 + λ)h∗t .

Let y, with y ∈ V and:
h∗t < y < (1 + λ)h∗t ,

y < h∗t+2 < (1 + λ) y,
where V is a open neighborhood of h∗t+1. Consider the following sequence h defined
as follows:

∀τ 6= t+ 1, hτ = h∗t , ht+1 = y.

The sequence h is feasible, so we have:

F
(
h∗t , h

∗
t+1

)
+ βF

(
h∗t+1, h

∗
t+2

)
≥ F (h∗t , y) + βF

(
y, h∗t+2

)
,

where:

F
(
h∗t , h

∗
t+1

)
= (h∗t )

(α+γ)µ F
(
h∗t+1

h∗t

)
.

Thus, the function:
Φ (y) = F (h∗t , y) + βF

(
y, h∗t+2

)
,

has a local maximum at h∗t+1. By writing Φ
′ (
h∗t+1

)
= 0, we obtain the Euler equa-

tion.

(3) We now prove that the transversality condition also holds. Let:

Vh∗ (h0) = max
+∞∑
t=0

βt (h∗t )
γµ

[
ψ

(
ht+1

ht

)
ht

]αµ [
1− ψ

(
ht+1

ht

)]1−µ

,

under the constraints:

∀t ≥ 0, ht ≤ ht+1 ≤ (1 + λ)ht, h0 > 0

and the sequence h∗ is an externality. Let:

H (x, y) =
{
x · ψ

(y
x

) [
1− ψ

(y
x

)]η}αµ
,

where:
1− µ

αµ
= η.

From H8, η < 1.
But if:

h (ξ) = ψ (ξ) [1− ψ (ξ)]η ,
then:

h
′
(ξ) = ψ

′
(ξ) [1− ψ (ξ)]η − ηψ

′
(ξ)ψ (ξ) [1− ψ (ξ)]η−1

,
so:
h
′′

(ξ) = ψ
′′

(ξ) [1− ψ (ξ)]
η − η

h
ψ
′
(ξ)
i2

[1− ψ (ξ)]
η−1

+ η (η − 1)
h
ψ
′
(ξ)
i2
ψ (ξ) [1− ψ (ξ)]

η−1−

−η [1− ψ (ξ)]
η−1

h
ψ
′
(ξ)
i2

+ ψ (ξ)ψ
′′

(ξ)

ff
.

From H6 and H7, h is strict concave and then, H and Vh∗ are a strict concave
functions.

One can easily prove that:
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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL WITH ENDOGENOUS LEISURE15

(8) 0 ≤ Vh∗ (h0) ≤ (h∗0)
γµ
hαµ0

+∞∑
t=0

[
β (1 + λ)(α+γ)µ

]t
<∞,

with:

ψ

(
ht+1

ht

)
≤ 1

and:

1− ψ

(
ht+1

ht

)
≤ 1.

Moreover, V
′

h∗ (h0) exists and: ( see [12], Benveniste-Scheinkman)

V
′

h∗ (h0) = F1 (h0, h1) ,

with:

F (ht, ht+1) = (h∗t )
γµ
hαµt F

(
ht+1

ht

)
.

So:

(9) V
′

h∗ (h0) = (h∗0)
γµ
hαµ−1

0

[
αµF

(
h1

h0

)
− h1

h0
F
′
(
h1

h0

)]
.

From the concavity of Vh∗ , we have:

Vh∗ (h∗t ) = Vh∗ (h∗t )− Vh∗ (0) ≥ V
′

h∗ (h∗t )h
∗
t .

From relation (9), we get:

Vh∗ (h∗t ) ≥ (h∗t )
(α+γ)µ−1

[
αµF

(
h∗t+1

h∗t

)
−
h∗t+1

h∗t
F
′
(
h∗t+1

h∗t

)]
h∗t ≥ 0,

because:

−
h∗t+1

h∗t
F
′
(
h∗t+1

h∗t

)
= −

h∗t+1

h∗t
ψ
′
(
h∗t+1

h∗t

) [
ψ

(
h∗t+1

h∗t

)]αµ−1 [
1− ψ

(
h∗t+1

h∗t

)]−µ
·

·
{
αµ

[
1− ψ

(
h∗t+1

h∗t

)]
− (1− µ)

[
ψ

(
h∗t+1

h∗t

)]}
≥ 0.

From relation (8) and assumption H5b, we have:

lim
t→+∞

βtVh∗ (h∗t ) = 0,

so the previous inequality yields:

lim
t→∞

βt (h∗t )
(α+γ)µ

[
αµF

(
h∗t+1

h∗t

)
−
h∗t+1

h∗t
F
′
(
h∗t+1

h∗t

)]
= 0.

2. The proof that these conditions are sufficient are standard since, given the
externality h∗, we have a concave optimal growth problem.(see [12] ) �

PROPOSITION 7. Assume H1-H2-H3-H4-H5b-H6-H7-H8. Then, there exists a
unique equilibrium h∗. It grows at constant rate ν∗. This rate is smaller than the
one in the social planner problem.
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16 MARIUS VALENTIN BOLDEA

Proof. From the previous proposition, h∗ satisfies the three conditions of the pre-
vious proposition.

Our strategy of proof is to show that:
(1) the Euler equation admits a solution h∗ which grows at the constant rate

ν∗ ∈ (1, 1 + λ). Moreover, this solution satisfies the three conditions of the
previous proposition and thus, is optimal,

(2) any other solution h to Euler equation does not satisfy the transversality
condition. Hence, again from the previous proposition, it is not optimal.
From that, one concludes that there exists a unique equilibrium.

We will show that there exists a solution h∗ to Euler equation which grows at
constant rate ν∗. Indeed, from Euler equation, ν∗ must solve the following equation:

ν1−(α+γ)µ − νβ = −βαµ F (ν)
F ′ (ν)

,

where:
F (ν) = [ψ (ν)]αµ [1− ψ (ν)]1−µ .

Let:
L (x) = x1−(α+γ)µ − xβ

and:

H (x) = −βαµ F (x)
F ′ (x)

.

We know that L (1) = 1 − β > 0, L (1 + λ) = (1 + λ)1−(α+γ)µ − β (1 + λ) and
from H5b:

L
′
(x) = [1− (α+ γ)µ]x−(α+γ)µ − β > 0,

so L is a increasing function.
For H we know that H (1) = 0, H (1 + λ) = 0 and from H7 and H8:

H
′
(x) = −βαµ

[
1− F (x)F ′′

(x)

[F ′ (x)]2

]
< 0,

so H is a decreasing function.
But:

H (x) = −βαµ [ψ (x)] [1− ψ (x)]
ψ′ (x) [αµ+ (µ− αµ− 1)ψ (x)]

.

Because αµ + (µ− αµ− 1)ψ (x) 6= 0 must hold, if x ∈ (ξ, 1 + λ], then H is a
positive decreasing function; if x = ξ, then H is not well defined and if x ∈ [1, ξ),
then H is a negative decreasing function, where:

ξ = 1 + λφ

(
1− µ

αµ− µ+ 1

)
∈ (1, 1 + λ) ,

ξ solution for F ′
(x) = 0 and:

lim
x→ξ,x<ξ

H (x) = −βαµ lim
x→ξ,x<ξ

[ψ (x)] [1− ψ (x)]
ψ′ (x) [αµ+ (µ− αµ− 1)ψ (x)]

= −∞,

lim
x→ξ,x>ξ

H (x) = −βαµ lim
x→ξ,x>ξ

[ψ (x)] [1− ψ (x)]
ψ′ (x) [αµ+ (µ− αµ− 1)ψ (x)]

= +∞.

Therefore, there exists a unique solution ν∗ ∈ (1, 1 + λ) for equation L (x) = H (x).
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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL WITH ENDOGENOUS LEISURE17

It is easy to show that this rate is smaller than the one in the social planner
problem which solves L (ν) = K (ν), with:

K (ν) = −βµ (α+ γ)
F (ν)
F ′ (ν)

= −βαµ F (ν)
F ′ (ν)

− βγµ
F (ν)
F ′ (ν)

> H (ν) .

Let h∗ be defined by h∗0 = h0, h∗t+1 = ν∗h∗t , ∀t. Obviously, it satisfies interi-
ority condition and Euler equation. It remains to show that h∗ also satisfies the
transversality condition.

Since:

βt (h∗t )
(α+γ)µ

[
αµF

(
h∗t+1

h∗t

)
−
h∗t+1

h∗t
F
′
(
h∗t+1

h∗t

)]
≤

≤ (h0)
(α+γ)µ

[
αµF (ν∗)− ν∗F

′
(ν∗)

] [
β (1 + λ)(α+γ)µ

]t
,

then from H5:

lim
t→+∞

βt (h∗t )
(α+γ)µ

[
αµF

(
h∗t+1

h∗t

)
−
h∗t+1

h∗t
F
′
(
h∗t+1

h∗t

)]
= 0,

which is the transversality condition.
The proof of the uniqueness is rather long. It will be done in three steps. The

idea is to prove that for any solution to Euler equation different from the one which
grows at rate ν∗, the rate growth converges to 1 + λ. This property is crucial to
prove that this solution does not satisfy the transversality condition and, from the
previous proposition, is not optimal. One obviously concludes that the equilibrium
is unique and grows at rate ν∗.

Step 1. Let νt = ht+1
ht

and δ = 1
1−αµ . Euler equation can be written as:

(10) ν
1−(α+γ)µ
t [h (νt)]

αµ−1 h
′
(νt) = β

n
νt+1 [h (νt+1)]αµ−1 h

′
(νt+1)− [h (νt+1)]αµ

o
,

with:
h (x) = ψ (x) [1− ψ (x)]η

and:
1− µ

αµ
= η.

If:
δ =

1
1− αµ

,

then:

(11)
h (νt+1)

[h (νt+1)− νt+1h
′ (νt+1)]

δ
= βδ

h (νt)[
−ν1−(α+γ)µ

t+1 h′ (νt)
]δ ,

or:

(12) Φ (νt+1) = Ψ (νt) ,

with:

Φ (x) =
h (x)

[h (x)− xh′ (x)]δ
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18 MARIUS VALENTIN BOLDEA

and:

Ψ (x) = βδ
h (x)[

−x1−(α+γ)µh′ (x)
]δ .

We will show that νt+1 = I (νt) with I
′
> 0. Indeed, tedious computations give:

Φ
′
(x) =

h
′
(x)

[
h (x)− xh

′
(x)

]
+ δxh (x)h

′′
(x)

[h (x)− xh′ (x)]δ+1
< 0

and:

Ψ
′
(x) = β

δ
h
′
(x)
h
−x1−(α+γ)µh

′
(x)
i

+ δh (x)
n

[1− (α+ γ)µ] x−(α+γ)µh
′
(x) + x1−(α+γ)µh

′′
(x)
o

ˆ
−x1−(α+γ)µh′ (x)

˜δ+1 < 0.

Hence, one can write νt+1 = I (νt) with I
′
> 0.

Observe that Euler equation (11) has only three fixed points which are 1, ν∗

and 1 + λ. We have shown that the sequence h∗ with h∗t = (ν∗)t h0, ∀t is an equi-
librium. The sequence h∗ with h∗t = h0 is obviously not optimal and ∀t and h∗

with h∗t = (1 + λ)t h0, ∀t, is not optimal since the associated consumptions equal
zero at every date.

Step 2. Consider a non-stationary sequence ν which satisfies Euler equation (11)
and ∀t, 1 ≤ νt ≤ 1 + λ. We will show that such a sequence converges to 1 + λ. In
view of the monotonicity of I, since ν1 ≤ ν0 implies that ν2 = I (ν1) ≤ I (ν0) = ν1
(respectively ν1 ≥ ν0 ν2 ≥ ν1), by an easy induction, the sequence ν is weakly
monotonous. Hence it is converging to a fixed-point of I: either ν∗, 1 or 1 + λ.

We will show that to assume that ν converges to ν∗ leads to a contradiction. Its
convergence to 1 is obviously not possible. Indeed, let εt = ν∗ − νt. First, observe
that ν0 6= ν∗ implies that for all t, εt 6= 0. When t → +∞, then εt+1 ∼ I

′
(ν∗) εt.

Let us compute I
′
(ν∗). We obtain, after tedious computations:

I
′
(ν∗) = lim

t→∞

ν∗ − νt+1

ν∗ − νt
= lim
t→∞

Ψ
′

1 (νt)
Φ′

1 (νt+1)
=

Ψ
′

1 (ν∗)
Φ′

1 (ν∗)
=

=
(1− αµ) ν∗

[
h
′
(ν∗)

]2

− h (ν∗)
{

[1− (α+ β)µ]h
′
(ν∗) + ν∗h

′′
(ν∗)

}
(1− αµ) ν∗ [h′ (ν∗)]2 − β (ν∗)1+(α+γ)µ

h (ν∗)h′′ (ν∗)
,

with:

Ψ1 (x) =
x1−(α+γ)µh

′
(ν∗)

h1−αµ (ν∗)
, Φ1 (x) =

xh
′
(ν∗)− h (ν∗)
h1−αµ (ν∗)

and:

Ψ
′
1 (x) = −x−(α+γ)µ

(1− αµ)x
h
h
′
(x)
i2
− h (x)

n
[1− (α+ β)µ]h

′
(x) + xh

′′
(x)
o

h2−αµ (x)
,

Φ
′

1 (x) = −β
(1− αµ)x

[
h
′
(x)

]2

− (1− αµ)h (x)h
′
(x)− xh (x)h

′′
(x)

h2−αµ (x)
,

(ν∗)1−(α+γ)µ
h
′
(ν∗) = β

[
ν∗h

′
(ν∗)− h (ν∗)

]
.
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ON THE EQUILIBRIUM IN A DISCRETE-TIME LUCAS MODEL WITH ENDOGENOUS LEISURE19

Since β (1 + λ)(α+γ)µ
< 1 and 1 < ν∗ < 1+λ, h

′′
(ν∗) < 0, we have−ν∗h′′ (ν∗) >

−β (ν∗)1+(α+γ)µ
h
′′

(ν∗). Hence, I ′ (ν∗) > 1. In particular, for t large enough, the
sequence (|εt|) is increasing, which contradicts νt → ν∗.

Step 3. Because:

F
(
ht+1

ht

)
=

[
h

(
ht+1

ht

)]αµ
,

with:

h

(
ht+1

ht

)
= ψ

(
ht+1

ht

) [
1− ψ

(
ht+1

ht

)] 1−µ
αµ

,

then:

F
′
(
ht+1

ht

)
= αµ

[
h

(
ht+1

ht

)]αµ−1

h
′
(
ht+1

ht

)
and the transversality condition becomes:

lim
t→+∞

αµβt (ht)
(α+γ)µ

[
h

(
ht+1

ht

)]αµ−1 [
h

(
ht+1

ht

)
− ht+1

ht
h
′
(
ht+1

ht

)]
= 0.

Since ht+1
ht

→ 1 + λ when t→∞ and:

h
′
(1 + λ) = ψ

′
(1 + λ) > −∞,

the transversality condition is equivalent to:

lim
t→+∞

βt (ht)
(α+γ)µ

[
h

(
ht+1

ht

)]αµ−1

= 0.

Let us denote by νt = ht+1
ht

, εt = 1 + λ− νt and St = βt (ht)
(α+γ)µ [h (νt)]

αµ−1.
When t→∞, then νt → 1 + λ and εt → 0. Consequently:

h (νt) = h (νt)− h (1 + λ) ∼ −h
′
(1 + λ) (1 + λ− νt) = −h

′
(1 + λ) εt,

so:

[h (νt)]
αµ−1 ∼

[
−h

′
(1 + λ) εt

]αµ−1

.

It follows that St ∼ Ŝt

[
−h′ (1 + λ) εt

]αµ−1

with Ŝt = βt (ht)
(α+γ)µ (εt)

αµ−1. Hence,

in order to prove that the transversality does not hold, we will prove that limt→+∞ Ŝt >
0.

For this we have:
εt+1 = (1 + λ)− νt+1 = I (1 + λ)− I (νt) ∼ I

′
(1 + λ) (1 + λ− νt) = I

′
(1 + λ) εt.

Let us now remark that I
′
(1 + λ) < 1 and this implies in particular the summa-

bility of (εt). Indeed, we obtain, after tedious computations:

I
′
(1 + λ) =

[
β (1 + λ)(α+γ)µ

] 1
1−αµ

< 1.

I
′
(1 + λ) = lim

t→∞

1 + λ− νt+1

1 + λ− νt
=

Ψ
′
(1 + λ)

Φ′ (1 + λ)
,
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20 MARIUS VALENTIN BOLDEA

with:

Ψ
′
(1 + λ) = βδ

− (1 + λ)1−(α+γ)µ
[
h
′
(1 + λ)

]2

[
− (1 + λ)1−(α+γ)µ

h′ (1 + λ)
]δ+1

and:

Φ
′
(x) =

− (1 + λ)
[
h
′
(1 + λ)

]2

[− (1 + λ)h′ (1 + λ)]δ+1
.

Letting πt = Ŝt+1

Ŝt
, with classical notations, we can write:

πt = β (νt)
(α+γ)µ

„
εt+1

εt

«αµ−1

= β (1 + λ− εt)
(α+γ)µ

»
I
′
(1 + λ) +

1

2
I
′′

(1 + λ) εt + o (εt)

–αµ−1

.

In view of the computation of I
′
(1 + λ) ,

πt =
(

1 + λ− εt
1 + λ

)(α+γ)µ
[
1 +

I
′′

(1 + λ) εt
2I ′ (1 + λ)

+ o (εt)

]αµ−1

,

where o(εt)
εt

→ 0, when t→∞.

Therefore, the sequence
(

ln(πt)
εt

)
converges. The summability of (εt) implies

the summability of (lnπt) which is equivalent to the convergence of the infinite
product (π0π1 . . . πt) to a positive limit. Since Ŝt+1 = (π0π1 . . . πt) Ŝ0, we proved
that Ŝt 6→ 0. �
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