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Abstract

Multichoice games, as well as many other recent attempts to generalize the no-
tion of classical cooperative game, can be casted into the framework of lattices. We
propose a general definition for games on lattices, together with an interpretation.
Several definitions of the Shapley value of a multichoice games have already been
given, among them the original one due to Hsiao and Raghavan, and the one given
by Faigle and Kern. We propose a new approach together with its axiomatization,
more in the spirit of the original axiomatization of Shapley, and avoiding a high
computational complexity.

1 Introduction

The field of cooperative game theory has been enriched these recent years by many new
kinds of game, trying to model in a more accurate way the behaviour of players in a real
situation. In the classical view of cooperative games, to each coalition of players taking
part into the game, an asset or a power (voting games) is associated, and participation is
assumed to be of a binary nature, i.e., either a player participates or he does not. From
this point, many variations have been introduced, let us cite games with precedence
constraints among players (Faigle and Kern [6]) where not all coalitions are valid, ternary
voting games (Felsenthal and Machover [7]) where abstention is permitted, bi-cooperative
games (Bilbao [2]) where each player can choose to play either in favor, against, or not
to play, multichoice games (Hsiao and Raghavan [14]) where each player has a set of m
possible ordered actions, fuzzy games (Butnariu and Klement [4], Tijs et al. [18]) which
can be seen as a continuous generalization of multichoice games, global games (Gilboa
and Lehrer [8]) where coalitions are replaced by partitions of the set of players, etc.

All the above examples of games can be casted into the general framework of games
defined on a lattice, i.e., functions v : (L,≤) −→ R, where (L,≤) is a lattice, and such
that v(⊥) = 0, ⊥ denoting the bottom element of L. We mention at this point that
one can define games on other structures of discrete mathematics, such as matroids and
convex geometries; this has been extensively studied by Bilbao [1].

A central question in game theory is to define a value or solution concept for a game,
i.e. how to individually reward players supposing that all players have joined the grand
coalition. A famous example for classical games is the Shapley value, based on rational
axioms for sharing the total worth of the game v(N). A different approach is to consider
the core of the game, i.e., the set of imputations such that no subcoalition can do better
by itself.

The aim of this paper is first to provide a general approach to games on lattices, giving
an interpretation in terms of elementary actions, and second to provide a definition for
the Shapley value together with an axiomatization. As it will be discussed, other previous
definitions of the Shapley value have been given. We will focus on the works of Faigle
and Kern [6], and Hsiao and Raghavan [14]. Previous works of the authors around this
topic can be found in [12, 11, 10].
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2 Mathematical background

We begin by recalling necessary material on lattices (a good introduction on lattices can
be found in [5]), in a finite setting. A lattice is a set L endowed with a partial order
≤ such that for any x, y ∈ L their least upper bound x ∨ y and greatest lower bound
x ∧ y always exist. For finite lattices, the greatest element of L (denoted ⊤) and least
element ⊥ always exist. x covers y (denoted x ≻ y) if x > y and there is no z such
that x > z > y. The lattice is distributive if ∨,∧ obey distributivity. An element j ∈ L,
j 6= ⊥, is join-irreducible if it cannot be expressed as a supremum of other elements.
Equivalently j is join-irreducible if it covers only one element. Join-irreducible elements
covering ⊥ are called atoms, and the lattice is atomistic if all join-irreducible elements
are atoms. The set of all join-irreducible elements of L is denoted J (L).

An important property is that in a distributive lattice, any element x can be written
as an irredundant supremum of join-irreducible elements in a unique way (this is called
the minimal decomposition of x). We denote by η∗(x) the set of join-irreducible elements
in the minimal decomposition of x, and we denote by η(x) the normal decomposition of
x, defined as the set of join-irreducible elements smaller or equal to x, i.e., η(x) := {j ∈
J (L) | j ≤ x}. Hence η∗(x) ⊆ η(x), and

x =
∨

j∈η∗(x)

j =
∨

j∈η(x)

j.

Let us rephrase differently the above result. We say that Q ⊆ L is a downset of L if
x ∈ Q and y ≤ x imply y ∈ Q. For any subset P of L, we denote by O(P ) the set of all
downsets of P . Then the mapping η is an isomorphism of L onto O(J (L)) (Birkhoff’s
theorem).

In a finite setting, Boolean lattices are of the type 2N for some set N , i.e. they are
isomorphic to the lattice of subsets of some set, ordered by inclusion. Boolean lattices
are atomistic, and atoms corresponds to singletons. A linear lattice is such that ≤ is a
total order. All elements are join-irreducible, except ⊥.

Given lattices (L1,≤1), . . . , (Ln,≤n), the product lattice L = L1×· · ·×Ln is endowed
with the product order ≤ of ≤1, . . . ,≤n in the usual sense. Elements of x can be written
in their vector form (x1, . . . , xn). We use the notation (xA, y−A) to indicate a vector z
such that zi = xi if i ∈ A, and zi = yi otherwise. Similarly L−i denotes

∏
j 6=i Lj . All join-

irreducible elements of L are of the form (⊥1, . . . ,⊥i−1, ji,⊥i+1, . . . ,⊥n), for some i and
some join-irreducible element ji of Li. A vertex of L is any element whose components
are either top or bottom. We denote Γ(L) the set of vertices of L. Note that Γ(L) = L
iff L is Boolean, since in this case, denoting the trivial lattice {⊥,⊤} by 2, we have
L = 2 × · · · × 2︸ ︷︷ ︸

n times

= 2n.

3 Games on lattices

We denote by N := {1, . . . , n} the set of players.

Definition 1 We consider finite distributive lattices (L1,≤1), . . . , (Ln,≤n) and their prod-
uct L := L1 × · · · × Ln endowed with the product order ≤. A game on L is any function
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v : L −→ R such that v(⊥) = 0. The set of such games is denoted G(L). A game is
monotone if x ≤ x′ implies v(x) ≤ v(x′).

Lattice (Li,≤i) represents the (partially) ordered set of actions, choices, levels of partic-
ipation of player i to the game. Each lattice may be different.

First, let us examine several particular examples.

• (L,≤) = (2N ,⊆). This is the classical notion of game. Each player has two possible
actions (participate, not participate), hence Li = {0, 1}. L is a Boolean lattice.

• (L,≤) = (3N ,≤). This case comprises ternary voting games and bi-cooperative
games (each Li can be coded as Li = {−1, 0, 1}, where 0 means “no participation”,
−1 means voting or playing against, and 1 means voting or playing in favor), as
well as multichoice games with m = 2, letting Li = {0, 1, 2}, with 0 indicating no
participation, and 1,2 participation (low and high). In fact, Grabisch [10] distin-
guishes these two cases, the first one being called bipolar game since the Li’s have
a symmetric structure around 0.

• (L,≤) = (mN ,≤), with Li = {0, 1, . . . , m}. This corresponds to multichoice games
as introduced by Hsiao and Raghavan. In this paper we will call them m-choice
games, and call multichoice game the case where each Li is a linear lattice Li :=
{0, 1, . . . , li} (i.e., the number of levels may be different for each player).

• (L,≤) = ([0, 1]n,≤). This corresponds to fuzzy games.

Note that the case of global games cannot be recovered by our definition, since the lattice
of partitions is not a product lattice.

Let us turn to the interpretation of our definition. We assume that each player i ∈ N
has at his/her disposal a set of elementary or pure actions j1, . . . , jni

. These elementary
actions are partially ordered (e.g. in the sense of benefit caused by the action), forming
a partially ordered set (Ji,≤). Then by virtue of Birkhoff’s theorem (see Sec. 2), the set
(O(Ji),⊆) of downsets of Ji is a distributive lattice denoted Li, whose join-irreducible
elements correspond to the elementary actions. The bottom action ⊥ of Li is the action
which amounts to do nothing. Hence, each action in Li is either a pure action jk or a
combined action jk ∨ jk′ ∨ jk′′ ∨ · · · consisting of doing all actions jk, jk′, . . . for player i.

For example, assume that players are gardeners who take care of some garden or
park. Elementary actions are watering (W), light weeding (LW), careful weeding (CW),
and pruning (P). All these actions are benefic for the garden and clearly LW<CW, but
otherwise actions seem to be incomparable. They form the following partially ordered
set:

W P LW

CW

which in turn form the following lattice of possible actions:

4



W

P

LW

LW,CW

Let us give another interpretation of our framework, borrowed from Faigle and Kern
[6]. Let P := (N,≤) be a partially ordered set of players, where ≤ is a relation of
precedence: i ≤ j if the presence of j enforces the presence of i in any coalition S ⊆ N .
Hence, a (valid) coalition of P is a subset S of N such that i ∈ S and j ≤ i entails j ∈ S.
Hence, the collection C(P ) of all coalitions of P is the collection of all downsets (ideals)
of P . A game on P is any function v : C(P ) → R such that v(∅) = 0.

From this definition, it is possible to recover our structure. For each player i in N ,
let Ji := {j1, . . . , jni

} be the set of elementary actions of player i. Consider the set of
virtual players

N ′ :=
⋃

i∈N

Ji

equipped with the partial order ≤ induced by the partial orders on each Ji. Then
coalitions of (N ′,≤) correspond bijectively to elements of

∏
i∈N O(Ji).

4 Previous works on the Shapley value

We present in this section the Shapley value defined by Faigle and Kern, and the one
defined by Hsiao and Raghavan, together with their axiomatization. A good comparison
of these two values can be found in [3]. We present them with our notations, which are
rather far from the original ones.

The value introduced by Faigle and Kern is the average of the marginal vectors along
all maximal chains in L. A maximal chain in a (finite) lattice L is a sequence of elements
C = {⊥, x, y, z, . . . ,⊤} such that ⊥ ≺ x ≺ y ≺ z · · · ≺ ⊤. We denote by C(L) the set of
all maximal chains on L. Then the Shapley value of Faigle and Kern is defined by:

φv
FK(ji) :=

1

|C(L)|

∑

C∈C(L)

[v(xji
) − v(xji

)], (1)

for any join-irreducible element ji of Li, and for any i ∈ N . The element xji
is the first

in the sequence C containing ji in η(xji
), and xji

is its predecessor in the chain C. In
the vocabulary of Faigle and Kern, maximal chains correspond to what they call feasible
ranking of join-irreducible elements (players).

The axiomatic of Faigle and Kern is essentially based on linearity (L) and the unique
decomposition of a game on the basis of unanimity games. In this case, a unanimity
game ux is defined by, for any x ∈ L:

ux(y) :=

{
1, if y ≥ x

0, otherwise.
(2)
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Then the coordinates of any game v in this basis are given by the Möbius transform (or
dividend) of v [17]. It remains then to fix the Shapley value of any unanimity game by
some suitable axioms. They are indicated below.

An element c ∈ L is a carrier if v(x ∧ c) = v(x), for all x ∈ L.

Carrier axiom (C): If c is a carrier for V , then
∑

ji≤c φv
FK(ji) = v(c).

The hierarchical strength of a join-irreducible element ji ∈ Li with respect to some x ∈ L
is defined by the relative number of maximal chains in L where x is the first occurence
of ji in the chain, that is:

hx(ji) :=
1

|C(L)|

∣∣{C ∈ C(L) | xji
= x

}∣∣.

Hierarchical strength axiom (HS): For any x ∈ L and any join-irreducible
elements ji, j

′
i′ ∈ η(x),

hx(ji)φ
ux

FK(j′i′) = hx(j
′
i′)φ

ux

FK(ji)

Then, under axioms (L), (C) and (HS), the value of the unanimity game ux is uniquely
determined:

φux

FK(ji) =

{
0, if ji 6∈ η(x)

hx(ji)/
∑

k∈η(x) hx(k), otherwise.

We turn to the value proposed by Hsiao and Raghavan, which is limited to m-choice
games in our terminology. Its construction is similar to the one of Faigle and Kern because
it is based also on unanimity games. The main difference is that Hsiao and Raghavan
introduced weights for all possible actions of the players, leading to a kind a weighted
Shapley value. Let us denote by w1, . . . , wm the weights of actions 1, . . . , m; they are such
that w1 < · · · < wm. The first axiom is additivity (A) of the value, i.e. φv+w

HR = φv
HR+φw

HR.
The second axiom is the carrier axiom (C), as for Faigle and Kern. The remaining ones
are as follows.

Minimal effort axiom (ME): if v is such that v(x) = 0 for all x 6≥ y, then
for all players i, all action ki < yi, we have φv

HR(ki) = 0.

Weight axiom (W): If v := αux for some α > 0, then φv
HR(xi) is proportional

to wxi
, for all i ∈ N .

Using these axioms, it can be shown that, ji denoting action j for player i:

φux

HR(ji) =

{
wj

P

i∈N wxi

, if j = xi

0, otherwise.
(3)

Let us discuss these values. As remarked by Faigle and Kern, since the problem of
computing the number of maximal chains in a partially ordered set is a ♯P-complete
counting problem, it is doubtful whether an efficient algorithm could exist to compute
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exactly φFK. For multichoice games, the number of maximal chains is, with our notation
[3, 6]:

|C(L)| =

(∑
i∈N li

)
!∏

i∈N (li!)
=

(
l

l1

)(
l − l1

l2

)(
l − l1 − l2

l3

)
· · · 1,

with l :=
∏

i∈N li. For 5 players having each 3 actions (3-choice game), this gives already
(15)!/65 = 168, 168, 000. The same remark applies to φHR, since its explicit expression
given in [14] is very complicated. In [3], Branzei et al. have shown that φFK and φHR

do not coincide in general. Even more, one can find examples where for no system of
weights the two values can coincide.

Concerning the axiomatic, the one of Faigle and Kern is very simple, although the
meaning of the (HS) axiom is not completely clear, at least in our framework of games
on lattices (recall that this axiomatic was primarily intended for games with precedence
constraints). The axiomatic of Hsiao and Raghavan is simple and clear, but they need
weights on action, which are necessarily all different, so one could ask about what if no
weight is wanted, and what do precisely mean these weights (in particular, what is the
exact difference between wj and v(ji) ?).

In the next section, we present an alternative view.

5 Axiomatic of the Shapley value for multichoice games

Our approach will take a different way. We do not use unanimity games, but introduce
axioms similar to the original ones of Shapley, adding them one by one as Weber in [19],
to see the exact effect of each axiom. Surprisingly, we will come up with a value which is
very near the classical Shapley value, and very simple to compute.

5.1 Notations, differential and cumulative values

We recall that for every player i, Li is a linear lattice denoted Li := {0, 1, 2, . . . , li}.
The set J (L) of join-irreducible elements (or virtual players in the framework of Faigle
and Kern) of L is {(01, . . . , 0i−1, ki, 0i+1, . . . , 0n) | i ∈ N, k ∈ Li \ {0}}; hence each join-
irreducible element corresponds to a single player playing at a given level. Since we use
them constantly in the following, we will often adopt the shorthand k̃i for
(01, . . . , 0i−1, ki, 0i+1, . . . , 0n).

Our aim is to define the Shapley value for each join-irreducible element k̃i. A first
approach would be to define the Shapley value for k̃i as a kind of average contribution of
player i playing at level k, compared to the situation where i plays at level k−1. We call
this a differential value, which we denote by φ(ki). A differential value obviously satisfies
what could be called a differential null axiom, saying that φ(ki) = 0 whenever player i is
such that v(x−i, ki) = v(x−i, (k − 1)i) for all x−i ∈ L−i, using our notation for compound
vectors (see Section 2).

A careful look at the previous axiomatizations of Faigle and Kern, and Hsiao and
Raghavan, show that their value are differential. This is due to the carrier axiom, which
could be implied by the differential null axiom and a suitable efficiency axiom (see also
formula (1), which obviously satisfies the differential null axiom).
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However, if we stick to the idea that the Shapley value for ki should be a reward for
player i having played at level k, it should express an average of the contribution of player
i playing at level k, but compared to the situation where k does not participate. Roughly
speaking, this amounts to sum all differential values from the first level to the kth level.
Hence, such a value could be called a cumulative value, and to our opinion, it is the only
one of interest, the differential value being merely an intermediate step of computation.
We denote by Φ(ki) the cumulative value for player i playing at level k.

Our position is to give directly an axiomatization of the cumulative Shapley value,
which in the sequel will be called simply “Shapley value”. It is possible however to derive
a similar axiomatization for the differential value (see [10] for the case of m-choice games).

5.2 The axiomatic of the (cumulative) Shapley value

Let us give first the following definitions generalizing the ones given for classical games.

• for some k ∈ Li, k 6= 0, player i is said to be k−null (or simply ki is null) for
v ∈ G(L) if v(x, ki) = v(x, 0i), ∀x ∈ L−i.

• for some k ∈ Li, k 6= 0, player i is said to be k−dummy (or simply ki is dummy)

for v ∈ G(L) if v(x, ki) = v(x, 0i) + v(k̃i), ∀x ∈ L−i.

• v ∈ G(L) is said to be monotone if v(x) ≤ v(y), for all x, y in L such that x ≤ y.

This enables to introduce the following axioms:

Null axiom (N): ∀v ∈ G(L), for all null ki, Φv(ki) = 0.

Dummy axiom (D): ∀v ∈ G(L), for all dummy ki, Φv(ki) = v(k̃i).

As for classical games, the dummy axiom implies the null axiom. Indeed, assume ki

is null. Then v(k̃i) = v(0) = 0, so that v(x, ki) = v(x, 0i) + v(k̃i) holds, i.e. ki is dummy.

Then Φv(ki) = v(k̃i) = 0, which proves that (N) holds.

Monotonicity axiom (M): ∀v ∈ G(L), if v is monotone, then Φv(ki) ≥ 0,

for all k̃i ∈ J (L).

Linearity axiom (L): For all k̃i ∈ J (L), Φ(ki) is linear on the set of games
G(L), which directly implies

Φv(ki) =
∑

x∈L

aki
x v(x), with aki

x ∈ R.

Proposition 1 Under axioms (L) and (N), ∀v ∈ G(L), for all k̃i ∈ J (L),

Φv(ki) =
∑

x∈L−i

pki
x [v(x, ki) − v(x, 0i)], with pki

x ∈ R.
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Proof: It is clear that the above formula satisfies the axioms. Conversely, assuming ki

is null,

Φv(ki) =
∑

x∈L

aki
x v(x)

=
∑

x∈L−i

[
aki

(x,0i)
v(x, 0i) + · · ·+ aki

(x,li)
v(x, li)

]

=
∑

x∈L−i

v(x, 0i)[a
ki

(x,0i)
+ aki

(x,ki)
] +

∑

x∈L−i

∑

j 6=0,k

aki

(x,ji)
v(x, ji). (4)

Consider v′ ∈ G(L−i) and extend it to G(L):

v(x, ji) =

{
v′(x), if j = k, 0

0, otherwise.

Then ki is null for v, hence (4) applies and reduces to:

Φv(ki) =
∑

x∈L−i

v′(x)[aki

(x,0i)
+ aki

(x,ki)
] = 0.

This implies aki

(x,ki)
= −aki

(x,0i)
. Introducing this in (4) we get:

Φv(ki) = 0 =
∑

x∈L−i

∑

j 6=0,k

aki

(x,ji)
v(x, ji).

Since this must hold for any game, we deduce that aki

(x,ji)
= 0, ∀j 6= 0, k. Letting

pki
x := aki

(x,ki)
, the result is proven. �

Proposition 2 Under axioms (L) and (D), ∀v ∈ G(L), for all k̃i ∈ J (L),

Φv(ki) =
∑

x∈L−i

pki
x [v(x, ki) − v(x, 0i)], with pki

x ∈ R, and
∑

x∈L−i

pki
x = 1.

Proof: We consider the unanimity game uki
defined by

uki
(x) =

{
1, if x ≥ ki

0, otherwise.

ki is dummy since uki
(x, ki) = 1 = uki

(x, 0i) + uki
(k̃i). Hence

Φuki
(ki) = uki

(k̃i) = 1 =
∑

x∈L−i

pki
x .1

which proves the result. �
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Proposition 3 Under axioms (L),(N) and (M), ∀v ∈ G(L), for all k̃i ∈ J (L),

Φv(ki) =
∑

x∈L−i

pki
x [v(x, ki) − v(x, 0i)], with pki

x ≥ 0.

Proof: Let choose some y ∈ L and define by analogy with classical games

ûy(x) =

{
1, if x ≥ y, x 6= y

0, else.

By definition, ûy is monotone. Letting y = (x0, 0i) for some x0 ∈ L−i, and applying Prop.
1, we get:

Φû(x0,0i
(ki) =

∑

x∈L−i

pki
x [û(x0,0i

(x, ki) − û(x0,0i
(x, 0i)]

= pki
x0

≥ 0.

�

As a consequence, one can deduce from Propositions 2 and 3 that under axioms (L),(D)

and (M), for every join-irreducible k̃i, (pki
x )x∈L−i

will be a probability distribution.
The next axiom enables an easier computation of coefficients pki

x while reducing their
number:

Invariance axiom (I): Let us consider two games v1, v2 of G(L) such that
for some i in N ,

v1(x, ki) = v2(x, (k − 1)i), ∀x ∈ L−i, ∀k ∈ Li, k > 1

v1(x, 0i) = v2(x, 0i), ∀x ∈ L−i.

Then Φv1(ki) = Φv2((k − 1)i), 1 < k ≤ li.

The axiom says that when a game v2 is merely a shift of another game v1 concerning
player i, the Shapley values are the same for this player. This implies that the way of
computing v does not depend on the level k, as shown in the next proposition.

Proposition 4 Under axioms (L),(N) and (I), ∀v ∈ G(L), for all join-irreducible ki,

Φv(ki) =
∑

x∈L−i

pi
x [v(x, ki) − v(x, 0i)], with pi

x ∈ R.

Proof: We have for k > 1

Φv1(ki) =
∑

x∈L−i

pki
x

[
v1(x, ki) − v1(x, 0i)

]

=
∑

x∈L−i

pki
x

[
v2(x, (k − 1)i) − v2(x, 0i)

]

Φv2((k − 1)i) =
∑

x∈L−i

p(k−1)i
x

[
v2(x, (k − 1)i) − v2(x, 0i)

]
,
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which proves the result. �

Let us now introduce a symmetry axiom, which is an adaptation of the classical sym-
metry axiom. The difficulty here is that since the Li’s could be different, applying directly
the classical symmetry axiom may lead to meaningless expressions. In this purpose, we
introduce a subspace of G(L):

G0(L) := {v ∈ G(L) | v(x) = 0, ∀x 6∈ Γ(L)},

where we recall that Γ(L) = {01, l1} × {02, l2} × · · · × {0n, ln} is the set of vertices of L.
For any x in Γ(L) and any permutation σ on N , we define xσ := (xσ

1 , . . . , x
σ
n) by

xσ
i :=

{
0i, if xσ(i) = 0σ(i),

li, if xσ(i) = lσ(i).

Besides, for any v ∈ G0(L), we denote by vσ the game in G0(L) such that vσ(x) := v(xσ),
for any x in Γ(L). When all li’s are different, observe that xσ is a vertice of Γ(L), contrary
to σ(x) := (xσ(1), . . . , xσ(n)), as well as vσ is a game in G0(L) while v ◦ σ is not. Let us
take for example L := {0, 1, 2} × {0, 1, 2, 3, 4} × {0, 1, 2, 3}, and

i 1 2 3
σ(i) 2 3 1

Then (2, 0, 0)σ = (0, 0, 3), (2, 0, 3)σ = (0, 4, 3).

Symmetry axiom (S): Let σ be a permutation on N . Then for any game
v in G0(L), and any i in N ,

Φvσ−1

(lσi ) = Φv(li).

Thus, as for classical games, this axiom says that the computation of Shapley value
should not depend on the labelling of the players. Finally, we give the last axiom:

Efficiency axiom (E): ∀v ∈ G(L),
∑

i∈N Φv(li) = v(l1, . . . , ln).

Theorem 1 Under axioms (L),(D),(M),(I),(S) and (E), ∀v ∈ G(L), for all k̃i ∈ J (L),

Φv(ki) =
∑

x∈Γ(L−i)

(n − h(x) − 1)! h(x)!

n!
[v(x, ki) − v(x, 0i)],

where h(x) := |{j ∈ N \ i | xj = lj}|.

Proof: Let v be a game in G0(L) and let σ be a transposition of N , that is to say a
permutation which only exchanges two players i and j. This implies σ = σ−1. Then by
(S) we have Φv(li) = Φvσ

(lj), which writes, using axioms (L), (D), (M) and (I), and Prop.
3 and 4:

∑

x∈Γ(L−i)

pi
x [v(x, li) − v(x, 0i)] =

∑

x∈Γ(L−j)

pj
x [v((x, lj)

σ) − v((x, 0j)
σ)],

11



which can be rewritten as

∑

x∈Γ(L−i,j)

∑

xj∈{0,lj}

pi
x,xj

[v(x, li, xj) − v(x, 0i, xj)] =

∑

x∈Γ(L−i,j)

∑

xi∈{0,li}

pj
x,xi

[v((x, xi, lj)
σ) − v((x, xi, 0j)

σ)].

If x ∈ Γ(L−i,j), then (x, xi, lj)
σ = (x, li, x

′
j), and (x, xi, 0j)

σ = (x, 0i, x
′
j), where x′

j is of
the same nature than xi, (i.e. x′

j = 0 iff xi = 0, and x′
j = lj iff xi = li). Consequently,

as the above equalities are true for any v ∈ G0(L), we can identify the term of the first
member coefficient of which is pi

x,xj
, with the term of the second member coefficient of

which is pj
x,xi

, such that xi and xj are of the same nature. This gives equality between
these coefficients.

By taking into account all transpositions of N , for any x in Γ(L−i,j,l), we write

pi
x,xj ,xl

= pj

x,x′
i,xl

where x′
i of the same nature than xj ,

= pl
x,x′

i,x
′
j

where x′
j of the same nature than xl;

besides, pi
x,xj ,xl

= pl
x,x′′

i ,xj
where x′′

i of the same nature than xl and thus of x′
j .

As a result, for all l 6= i, j and for all x ∈ Γ(L−i,j,l), pl
x,x′

i,x
′
j
= pl

x,xi,xj
whenever xi and x′

j

have the same nature, as well as x′
i and xj . Consequently, for the computation of pl

x, x ∈
L−l, any permutation being a composition of transpositions, indices of components 0i

and li of x have no importance as long as the cardinality h(x) = |{i ∈ N \ l | xi = li}| is
the same. Therefore, we will use a new notation for pl

x:

pl
m := pl

x, where m = h(x).

Moreover, it is clear that for all i, j ∈ N , for all m ∈ {0, . . . , n− 1}, pi
m = pj

m, due to the
effect of the transposition i ↔ j. It follows that one can write pm instead of pi

m, i ∈ N .
Now, by efficiency axiom, we have

∑
i∈N

∑
x∈L−i

pi
x [v(x, li) − v(x, 0i)] = v(l1, . . . , ln).

Assuming v is a game in G0(L), this gives the following equation:

∑

i∈N

n−1∑

m=0

∑

x∈L−i,

h(x)=m

pm [v(x, li) − v(x, 0i)] = v(l1, . . . , ln). (5)

Le us denote G(2N) the set of classical games on N and v 7→ ṽ the canonical isomorphism
from G0(L) to G(2N), i.e. for all S ∈ 2N

ṽ(S) := v(s), with si =

{
li, if i ∈ S

0i, else
, ∀i ∈ N.

Observe that, through this mapping, Eq. (5) becomes

∑

i∈N

n−1∑

m=0

∑

S⊆N\i,

|S|=m

pm [ṽ(S ∪ i) − ṽ(S)] = ṽ(N). (6)

12



We recognize here the classical efficiency axiom, from which we deduce that coefficients
pm’s are nothing else that the well-known Shapley coefficients pm = α1

m(n) := (n−m−1)! m!
n!

for all m ∈ {0 . . . , n − 1}.
As a consequence, through inverse of the above isomorphism, we easily obtain the

expression of the previous pi
x when x ∈ Γ(L−i):

pi
x =

(n − h(x) − 1)! h(x)!

n!
.

Finally, as (pi
x)x∈L−i

is a probability distribution, and since we know that
∑

S⊆N\i α
1
|S| =∑

x∈Γ(L−i)
pi

x = 1, it follows that pi
x = 0 for all x ∈ L−i \ Γ(L−i). �

Remark 1: It is possible to give a rather different formulation suggested by
the proof of Th. 1 by introducing the following axioms:

Symmetry axiom for classical games (CS): Let σ be a permutation on
N . Then for any game ν in G(2N), and any i in N , Φν◦σ−1

(σ(i)) = Φν(i).

Full participation axiom (FP): For any game v in G0(L), and any i in N ,
Φv(li) = Φṽ(i).

Consequently, axiom (S) being equivalent to the pair ((CS), (FP)) under
axioms (L),(D),(M),(I),(E), the required theorem can also be proven with
these axioms and (CS),(FP) instead of (S).

6 Towards the general case

In this section, we present first ideas to define a Shapley value for the general case, where
the Li’s are finite distributive, as a basis for future research. Our aim is to obtain Φv(xi),
for any xi ∈ Li, xi 6= ⊥i, which should represent the contribution of doing action xi

instead of nothing for player i. We denote as usual the top and bottom elements of each
lattice Li by ⊤i,⊥i.

A first approach is to adapt the previous axiomatization for multichoice games to the
general case. This can be done under the restriction that in each Li, the bottom element
⊥i has a unique successor, denoted by 1i (in other words, 1i is the unique atom of Li).
Also, for any xi ∈ Li, xi 6= ⊥i, xi :=

∧
{yi ∈ Li | yi ≺ xi}, i.e., xi is the infimum of all

predecessors of xi. The following axioms and definitions are direct generalizations of the
previous ones:

• For some xi ∈ Li \ ⊥i, player i is xi-null (or simply xi is null) for v ∈ G(L) if
v(x, xi) = v(x,⊥i), ∀x ∈ L−i.

• For some xi ∈ Li \ ⊥i, player i is xi-dummy (or simply xi is dummy) for v ∈ G(L)
if v(x, xi) = v(x,⊥i) + v(⊥−i, xi), ∀x ∈ L−i.

• Null axiom (N): ∀v ∈ G(L), for all null xi, φv(xi) = 0.

• Dummy axiom (D): ∀v ∈ G(L), for all dummy xi, φv(xi) = v(⊥−i, xi).

13



• Monotonicity axiom (M): ∀v ∈ G(L), if v is monotone, then Φv(xi) ≥ 0, for
every player i, xi 6= ⊥i.

• Linearity axiom (L): For all xi ∈ Li, xi 6= ⊥i, Φv(xi) is linear on G(L).

• Invariance axiom (I): Let us consider two games v1, v2 ∈ G(L) such that for some
i ∈ N ,

v1(y, xi) = v2(y, xi), ∀y ∈ L−i, ∀xi > 1i

v1(y,⊥i) = v2(y,⊥i), ∀y ∈ L−i.

Then Φv1(xi) = Φv2(xi), xi > 1i.

• Symmetry axiom (S): Let σ be a permutation on N . Then for any game v ∈
G0(L) and any i ∈ N ,

Φvσ−1

(⊤σ
i ) = Φv(⊤i),

with same notations as in previous section.

• Efficiency axiom (E): ∀v ∈ G(L),
∑

i∈N Φv(⊤i) = v(⊤).

Using the same schemata of proofs as for multichoice games, we come up with the fol-
lowing result:

Theorem 2 Under axioms (L), (D), (M), (I), (S) and (E), for all v ∈ G(L), for all
xi ∈ Li, xi 6= ⊥i,

Φv(xi) =
∑

y∈Γ(L−i)

(n − h(y) − 1)! h(y)!

n!
[v(y, xi) − v(y,⊥i)],

where h(y) := |{j ∈ N \ i | xj = ⊤j}|.

Although the result is appealing by its simplicity, it suffers from the restriction im-
posed on the Li’s, and by the fact the axiom (I) becomes questionable. Also, the role of
join-irreducible elements as a basic element of the construction has disappeared, which is
not in accordance with our interpretation of games on lattice, as given in Section 3.

Based on preceding remarks, we suggest an alternative approach, which goes in several
steps, and starts from join-irreducible elements.

1. For any join-irreducible element xi ∈ Li, we compute the differential Shapley value
φv(xi), expressing the contribution of doing action xi instead of the predecessor of
action xi for player i. Since the predecessor of xi is unique iff xi is a join-irreducible
element, this makes sense.

2. We compute φv(xi) for any xi ∈ Li, considering its unique irredundant decomposi-
tion into join-irreducible elements (see Sec. 2). This unique decomposition always
exists since L is distributive.

3. We compute Φv(xi) by cumulating the differential Shapley values between xi and
⊥i.

14



To bring this approach to an operational state, first an axiomatization is needed for
defining the differential Shapley value for join-irreducible elements. The second problem
is how to use the irredundant decomposition of xi to compute φv(xi). We suggest the
following:

φv(xi) =
∑

ji∈η(xi)

φv(ji) + Iv(η(xi)),

where Iv(S) is the interaction among elements of S ⊆ Li. The interaction represents the
effect of joining elements. For example, for two join-irreducible elements ji, ki:

• Iv({ji, ki}) = 0 if the worth of ji ∨ ki is the sum of the worths of ji and ki

• Iv({ji, ki}) > 0 (resp. < 0) if the worth of ji ∨ ki is greater (resp. smaller) than the
sum of the worths of ji and ki.

The first appearance of the notion of interaction for classical games is due to Owen [16]
under the name “co-value”. It was rediscovered in a different context by Murofushi and
Soneda [15], and generalized by Grabisch [9]. An axiomatization of interaction has been
done by Grabisch and Roubens [13], and a general definition for games on lattices has
been recently given by Grabisch and Labreuche [12].

We leave the complete setting of this approach for future research.
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