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Abstract:

Many time series reflecting the economic activity are affected by a strong
seasonal behavior as well as by long-range dependence characterized, in the
spectral domain, by peaks at the seasonal frequencies. In recent years, frac-
tionally integrated seasonal models have been proposed in the statistical liter-
ature to take those stylized facts into account, see for instance Porter-Hudak
(1990) or Hassler (1994). Generalized long memory models introduced by
Gray, Zhang and Woodward (1989, 1994), based on Gegenbauer polynomi-
als, have been proved to be an attractive alternative to such models when
dealing with real data (see Ferrara and Guégan, 2001a, 2001b). In this paper,
we recall some concepts on seasonal long memory, we review the diverse frac-
tionally integrated seasonal time series models and we discuss their statistical
properties. Then, we compare the empirical performances of those models on
euro area economic data and we show that generalized long memory models
offer competitive alternatives to classical SARIMA models, avoiding over-
differentiation and providing a better goodness of fit.
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1 Introduction

Many economic time series display seasonal fluctuations inherent to the eco-
nomic activity. Therefore, models allowing to describe the seasonal compo-
nents of the data are essential to accurately analyse and forecast business
quantities.

During a long time, in economic time series, the seasonal and / or cyclical
movements have been modelled using non-stationary short memory processes,
like the classical SARIMA model, which includes seasonal unit roots in its
expression. Those models have the specificity to exhibit peaks at seasonal fre-
quencies in the spectral density. Now, several kinds of non-seasonal processes
with a cyclical movement have been proposed in the literature. They simi-
larly produce peaks in the spectral density at frequencies but no necessarily
equal to the seasonal ones.

A first generation of those processes referred to as fractionally differenced
ARMA models has been developed to take into account infinite cycle. Thus,
the first fractional model (FARMA) introduced by Granger and Joyeux (1980)
and Hosking (1981) uses a differencing operator of the form (I −B)d, where
d is allowed to take non-integer values. When the fractional differencing
parameter d is greater than zero, the process exhibits long memory in the
sense that observations, a long time-span apart, have non-negligible depen-
dence. The process is also referred to as strongly dependent, see Guégan
and Ladoucette (2001) for further details. This is in contrast to a weakly
dependent or a strong mixing process, in which the maximal dependence
between two observations becomes almost non-existent as the time span be-
tween them increases. Thus, FARMA models are useful for describing data
which have both short-term correlation (ARMA component) and correlation
between observations a long time-span apart (fractional component). The
FARMA models are characterized by a slow decay of the auto-correlation
function (ACF) at an hyperbolic rate. In the spectral domain, FARMA
processes present a peak for very low frequencies, close to the zero frequency.
However, those models do not permit to take presence of seasonality inside
the data into account.

Thus, a second generation of models dedicated to take seasonal or cycli-
cal components with persistence has been developed. Those models include
generalized long memory processes and seasonal long memory processes (see
the review in the next section). Such kinds of models are well appropriate
for data with short term-dependent (seasonal or non-seasonal) ARMA com-
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ponents and slowly decaying auto-correlation at periodic lags. The use of
fractional seasonal degrees allows to take seasonal fluctuations into account
while avoiding over-differentiation. The ACF of a seasonal fractionally in-
tegrated model displays an hyperbolic decay at seasonal lags, rather than
the slow linear decay characterizing the conventional seasonal differencing
model. Indeed, we generally observe on the ACF of real data a superposition
of hyperbolically damped sin waves.

In the spectral domain, a peak in the spectral density at a given frequency
λ indicates a cycle of period 2π

λ
in the process. More general cases arise with

the presence of several peaks in the spectral density located at the seasonal
frequencies λh = 2πh

s
, h = 1, . . . , [s/2], where s is the number of observations

per year (s = 1 for annual data, s = 4 for quarterly data, s = 12 for monthly
data and s = 52 for weekly data), and [s/2] denotes the integer part of s/2.
Then a process (Xt)t with such a spectral density is referred to as a seasonal
process.

In this paper, we are interested in reviewing some models allowing to de-
scribe jointly these phenomena and we apply them to real data of economic
activity in the euro area. As regards applications to real data, the simul-
taneous presence of long memory and seasonality in business and economic
data has received some attention in the literature. For instance, Carlin and
Dempster (1989) consider monthly unemployment rate of US males; Porter
Hudak (1990) deals with the US money supply and monetary aggregates and
Ray (1993) proposes models for monthly IBM revenue data. Monthly UK in-
flation rates have been considered by Franses and Ooms (1997), Arteche and
Robinson (2000) and Arteche (2003). Other applications deal with time series
on food and tobacco and non-durable consumer goods (Darné, Guiraud and
Terraza, 2004), public transportation (Ferrara and Guégan, 2000), exchange
rates (Ferrara and Guégan, 2001a) and spot prices (Ferrara and Guégan,
2001b), German electricity prices (Diongue and Guégan, 2004). For all those
applications, a specific model has been proposed. Generally the choice of the
model correspond to a specific problematic and in most cases no comparison
has been done with different seasonal long memory models. In this paper,
our approach is slighty different insofar as we compare competitive models
for the same data set.

The plan of the paper is the following: in section two we review the dif-
ferent models taking long memory ans seasonality into account. Section
three presents two applications showing that the generalized long memory
approach through Gegenbauer filters appears to be a very interesting tool in
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some cases. Last, section four concludes.

2 The models: A review

This section describes commonly used parametric models inside the class of
stochastic seasonal processes whose spectral density has a singularity or a
zero at any frequency ω, 0 < ω ≤ π, such that:

f(ω + λ) ∼ C|λ|−2d, as, λ → 0, |d| < 1/2, (1)

where C is a positive constant. Thus f(λ) has a pole at λ = ω if d > 0
and a zero if d < 0. When f(λ) satisfies the equation (1) for every seasonal
frequency ω = ωh, h = 1, 2, · · · , [s/2], possibly with the memory parameter,
d, varying across h, we say that the process has a seasonal long memory
behavior. However, for non seasonal time series, like annual data, equation
(1) holds for a single ω ∈ (0, π] as well as ω = 0.

Processes with a seasonal long memory behavior can also be described in
terms of their autocovariances function γ. A characteristic of autocovariances
of such processes is the oscillating slow decay such that often γh = O(h2d−1),
as h → ∞, but with oscillations whose amplitude depends on ω instead of
the eventual monotonic decay describes like γh ∼ Kh2d−1, as h → ∞, for
standard long memory processes at frequency zero.

The models traditionally used for seasonal and cyclical time series are either
stationary short memory processes or non-stationary processes, due to a de-
terministic component (seasonal dummies) or to a stochastic trend (seasonal
unit roots). We do not consider this approach in this section.

In order to allow for different persistence parameters across different frequen-
cies, we can consider the following general representation for a seasonal long
memory process. We will see how it nests all the particular models intro-
duced from the nineties in the literature to take both the seasonal and /or
cyclical behaviors and the long memory component of the data into account.

Without loss of generality, we assume that (Xt)t is a zero mean process
and for the moment we assume that (Xt)t is a stationary process. The
Seasonal/Cyclical Long Memory (SCLM) filter is defined as follows:

F (B) = (I − B)d0

k−1
∏

i=1

(I − 2Bcosλi + B2)di(I + B)dk , (2)
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B is the backshift operator, for i = 1, · · · , k − 1, λi can be any frequency
between 0 and π and di ∈ R. Now we can apply the filter F (B) described in
(2) to the process (Xt)t to take into account its main characteristics, thus:

(I − B)d0

k−1
∏

i=1

(I − 2Bcosλi + B2)di(I + B)dkXt = εt, (3)

where (εt)t has continuous and positive spectrum. We say that the process
(Xt)t is integrated of order di at frequency λi, Iλi

(di), for i = 0, 1, 2, · · · , k
where λ0 = 0 and λh = π.

This model has been first discussed by Robinson (1994) in order to test
whether the data stem from a stationary or a non-stationary process. In
that latter case the representation of the model is the following:

(I − B)d0+θ0

k−1
∏

i=1

(I − 2Bcosλi + B2)di+θi(I + B)dk+θkXt = εt, (4)

where for i = 0, 1, · · ·k, θi ∈ [−1, 1] and |di| < 1/2. Robinson tests the null of
the parameter θi, i = 0, 1, · · ·k. Gil-Alana (2001) and Arteche (2003) test for
the model (3), the constancy of the parameters across the different frequen-
cies. Chan and Palma (2005) study the asymptotic behavior of the estimated
parameters of model (3) using the pseudo-maximum likelihood method.

Remark that this general representation (3) nests a lot of seasonal or cyclical
fractional models introduced in the literature and which can be competitive
in order to take those specific behaviors into account. Below, we specify
those models.

• If (εt)t is a stationary invertible ARMA(p,q) process, Giraitis and Lei-
pus (1995) used the terminology ARUMA for such process (Xt)t verify-
ing the equation (3) when |di| < 1/2, for i = 0, 1, · · · , h. In that latter
case the filter F (B) is equal to F (B) = 1 − u1B − · · · ,−udB

d and it
has a finite number of zeros or singularities of order di, (|di| < 1/2) on
the unit circle allowing to model seasonal periodicities. Parameter es-
timation has been considered by Anderson (1979) and Huang and Anh
(1993). This model is not very useful in practice in terms of a modelling
strategy, thus the following model (5) appears more interesting.

• A simple case of the model (3), assuming d0 = 0 gives the classical
k-factor Gegenbauer process whose representation is given by:

k
∏

i=1

(I − 2νiB + B2)diXt = εt, (5)
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with, for i = 1, . . . , k, νi = cos(λi), the frequencies λi = cos−1(νi)
being the Gegenbauer frequencies or the G-frequencies. This model,
introduced by Giraitis and Leipus (1995), see also Woodward, Cheng
and Gray (1998) takes different kinds of waves in the ACF and describes
jointly k persistent periodicities in the data. With this model we do
not consider the existence of an infinite cycle. In the presence of a short
memory component, the model (5), assuming |di| < 1/2, i = 1, · · · , k,
is referred to as a k-factor GARMA process and Giraitis and Leipus
(1995) estimate the parameters of this model using a Whittle estimation
procedure. Its spectral density is given by :

fX(λ) =
σ2

ε

2π

|θ(eiλ)|2

|φ(eiλ)|2

k
∏

i=1

|2(cos(λ) − νi)|
−2di (6)

=
σ2

ε

2π

|θ(eiλ)|2

|φ(eiλ)|2

k
∏

i=1

∣

∣

∣

∣

4 sin(
λ + λi

2
) sin(

λ − λi

2
)

∣

∣

∣

∣

−2di

, (7)

where 0 ≤ λ ≤ π and for i = 1, . . . , k, the frequencies λi = cos−1(νi) are
the G-frequencies, and φ(.) and θ(.) are respectively the autoregressive
and moving-average polynomials of the short memory part.

• When k = 1 in (5), we get, under the same assumptions as before,
the GARMA model, introduced by Gray, Zhang and Woodward (1989)
whose representation (without short memory terms) is:

(I − 2 cosλB + B2)dXt = εt, (8)

where (εt)t is an ARMA process and 0 ≤ λ ≤ π, 0 < d < 1/2. This
model exhibits a long memory periodical behavior at a given frequency
0 ≤ λ ≤ π of the spectrum, thus, it contains only one persistent cycli-
cal component. The parameter d determines the degree the memory
persists and the G-frequency λ controls the persistent cyclical behavior
of the process. To estimate the parameters of the model, Gray, Zhang
and Woodward (1989) use the Whittle approach and Chung (1996) the
conditional sum of squares.

• Now if we want to take into account a fixed seasonal periodicity s,
supposed to be even, we are going to use the filter (2) which reduces
to:

F (B) = (I − Bs) = (I − B)(I + B)

s/2−1
∏

v=1

(I − zvB)(I − z
−vB), (9)
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where
zv = e

i2πv
s , z

−v = e−
i2πv

s , v = 0, 1, · · · , s − 1.

For instance, if s = 4, the expression (9) becomes:

(I − Bs) = (I − B4) = (I − B)(I + B2)(I + B). (10)

Now, to take the persistence of this seasonality into account, we allow
to each polynomial in (10) a specific long memory parameter as follows
and we get the filter:

F (B) = (I − B)d0(I + B2)d1(I + B)d2 . (11)

This filter introduced by Hassler (1994) is called the flexible filter and
is motivated by factorizing I−B4 according to its unit roots. This filter
allows to model stationary fractional seasonalities and can be seen as
a particular case of filter F (B) introduced in equation (2), with k = 2
and λ0 = 0, λ1 = π/2 and λ2 = π.

A particular case of the filter (11), called the rigid filter and introduced
by Porter-Hudak (1990) is obtained with d0 = d1 = d2 = D. For a
process (Xt)t, we get the following representation:

(I − Bs)DXt = εt, (12)

with (εt)t a white noise. This model is generally used for quarterly
(s = 4) or monthly data (s = 12). The contribution of half-yearly and
yearly oscillations and of the long-run behavior to the variance of the
corresponding process is governed by one common long memory para-
meter D.

Now in order to take into account the presence of an infinite cycle as
well as a given seasonality with a certain persistence, Porter-Hudak
(1990) has introduced another particular case of the filter (2) which is:

F (B) = (I − B)d(I − Bs)D, (13)

with d, D ∈ R and then she has proposed the ARFISMA model :

(I − B)d(I − Bs)DXt = εt, (14)

whose spectral density is given by, for −π ≤ λ ≤ π:

f(λ) =
σ2

2π
(2 sin(λs/2))−2D(2 sin(λ/2))−2d. (15)

7



For the flexible model of Hassler (1994) defined through the filter (11)
and the rigid model of Porter-Hudak (1990) defined in (12), the para-
meter estimation is generally done with the Geweke and Porter-Hudak
(1983) method, or GPH method. Porter-Hudak (1990) points out the
issue of non-identifiability of the parameters d and D when using the
GPH estimation method at low frequencies for the ARFISMA model
(14).

Now, it is possible to generalize the filter (13) and a general writting
for the ARFISMA model is given by:

(I − B)d

k
∏

i=1

(I − Bsi)DiXt = εt, (16)

allowing to different seasonalities si a long memory parameter Di. An
example of this model, called the SFARMA model, has been studied
by Ray (1993):

(I − Bs1)D1(I − Bs2)D2Xt = εt, (17)

with s1 = 3 and s2 = 12. This model is used with monthly data. From
a empirical data set, the memory parameters D̂1 and D̂2 have been
estimated using GPH method under the constraint that D̂1 + D̂2 = 1.
Thus, assuming this constraint, only D̂1 is computed deducing D̂2 by
subtraction to unity. We refer to Ray (1993) for an explanation of the
rationale of this constraint.

• Remark that all the filters (10)-(16) are particular cases of the filter
(2). Indeed, the Gegenbauer polynomial (I−2 cos λB +B2) is replaced
by the polynomials (I − Bs). For instance, if s = 4, this means that
ν0 = cos(λ0) = 1, ν1 = cos(λ1) = 0 and ν2 = cos(λ2) = −1.

• The SCLM filter (2) can also be generalized by adding asymmetry.
This has been done by Arteche and Robinson (2000) who introduce the
Seasonal/Cyclical Asymmetric Long Memory model, or SCALM. They
consider a semi-parametric approach using spectral density defined in
the following way:

f(ω + λ) ∼ C1λ
−2d1 as λ → 0+,

f(ω − λ) ∼ C2λ
−2d2 as λ → 0−, (18)

where ω ∈ (0, π] and for i = 1, 2,

0 < Ci < ∞, |di| < 1/2, (19)
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permitting
d1 6= d2, and/or C1 6= C2. (20)

Since the spectrum is symmetric about frequencies zero and π, the pos-
sibility of conditions (20) is excluded for ω = 0, π, but, for ω ∈ (0, π),
any values of Ci and di satisfying (19) are possible. The conditions (18)
- (19) nest the condition (1) as a special case. Arteche and Robinson
(2000) propose an estimate of d1 and d2 based on a trimming approach
of the log-periodogram. A complementary approach for parameter es-
timation is considered in Olhede, McCoy and Stephens (2004).

• Now, when we consider the general model (3), we have assumed only
a continuous and positive spectrum for the process (εt)t. This permits
to include for this process a large class of short memory processes. In
the literature, two classes of such processes have been considered:

1. The ARMA processes (including white noise), then the models
(3) correspond to the k-factor GARMA Gegenbauer processes and
then we refer mainly to Giraitis and Leipus (1995) or Woodward,
Cheng and Gray (1998).

2. The ARCH and GARCH models, then the models (3) correspond
to the k-factor GIGARCH processes and then we refer mainly to
Guégan (2000, 2003).

As regards the fractional filters, as we have seen before, from an empiri-
cal data set, several estimation procedures are available. In this paper, we
use the Whittle’s approximation of the maximum likelihood to estimate the
parameters, which provides theoretically smaller mean-squared errors than
semi-parametric procedures based on the log-periodogram approach intro-
duced by Geweke and Porter-Hudak (1983). We refer for example to Reisen,
Rodrigues and Palma (2004) for a comparative Monte Carlo simulation study.
As regards the ARFISMA process (equation (14)), the Whittle estimate al-
lows to estimate simultaneously both memory parameters d and D by using
the expression of the spectral density, while classical semi-parametric pro-
cedures are unable to identify separately parameters d and D. Indeed, the
GPH estimate combines the simultaneous effects of d and D at low frequen-
cies. Finally, parameter estimation in a non-stationary setting for models
allowing existence of seasonality and long memory behavior have been stud-
ied in the paper of Chan and Palma (2005). The asymptotic properties of
the estimators are also given in their paper.
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3 Empirical results

In this section, we propose two applications of some seasonal models pre-
sented in the previous section on real data relative to the economic activity
in the euro area and we study the accuracy of each model.

Let’s denote (Xt)t the raw series that we consider below. First, we are going
to apply several filters F (B) proposed previously, fractional or not, such that
the filtered series (εt)t is given by F (B)Xt = εt. Those filters are intended
to take trend and seasonality into account, so that the filtered series (εt)t is
supposed to be governed by a covariance-stationary short memory process.
Then, in a second step, we try to model other aspects of the filtered series
(εt)t, like the short memory component and the conditional heteroscedastic-
ity.

Our aim is to propose different statistical time series models to take those
both stylized facts into account and to discuss their properties. We compare
the models according to classical goodness of fit criteria on the filtered series,
namely variance, Gaussianity and autocorrelation structure. To evaluate
those criteria, we use the empirical variance as well as the Portmanteau and
Jarque-Bera statistics respectively given by the following equations:

1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004
0

200000

400000

600000

800000

1000000

1200000

1400000

Figure 1: New car registrations in the euro area from Jan. 1960 to Dec. 2005 (raw series,
source ACEA.)
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Q(K) = T (T + 2)
K

∑

j=1

ρ̂2
j

T − j
, (21)

JB = T (
Ku2

24
+

Sk2

6
), (22)

where K ∈ N , Ku and Sk denote respectively the excess Kurtosis and the
Skewness, ρ̂j being the empirical autocorrelation function of the filtered se-
ries. Both statistics (21)-(22) are distributed according to a Chi-square dis-
tribution function.

3.1 New passenger car registrations in the euro area

We consider the monthly series of new passenger car registrations in the euro
area released each middle of month by the association of European automo-
bile manufacturers (ACEA, see the web site www.acea.be for further details).
The raw series will be analysed from January 1960 to December 2005 (see
figure 1). This series is of great interest for short-term economic analysis
because it reflects, on a monthly basis, information on manufacturing goods
consumption in the euro area, only available on a quarterly frequency through
the official quarterly accounts. Therefore, economists and market analysts
follow carefully the evolution of this series, as well as the retail sales series, to
have a monthly opinion of households consumption in the euro area. This se-
ries is also integrated in large macroeconomic models in order to predict the
euro area growth (see, for example, the European Commission DG-EcFin
model developed by Grassman and Keereman, 2001). However, it is well
known among practitioners that, due to its high volatility, the extraction of
a clear economic signal from this series is not an obvious task.

Two main stylized facts emerge strongly from this raw series, namely trend
and seasonality, as it can be seen on the empirical ACF of the series on fig-
ure 2. The empirical ACF is striking insofar it shows a slow decay, at an
hyperbolic rate, as well as a seasonal pattern with a period of 12 months,
corresponding to the sample frequency. If we look at the spectral density
of the series estimated by the raw periodogram (see figure 3), we identify 7
peaks corresponding to the frequencies λj = 2πj/12, for j = 0, . . . , 6. The
zero frequency partly represents the long-term cycle, while other frequencies
refer to the seasonal components of the series. Other features of this series
may be also of interest for statistical analysis, like high volatility, increase in
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Figure 2: ACF of the new car registration series in the euro area from Jan. 1960 to Dec.
2005.
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Figure 3: Raw periodogram of the new car registrations series in the euro area from Jan.
1960 to Dec. 2005.

the variance or outliers due to the legislation on catalytic converters in 1993.

Let’s denote (Xt)t the raw series of new car registrations, for t = 1, . . . , T ,
with T = 552 observations. We discuss now the different models fitted to
this data set. The results of the different tests are given in Table 1, as the
values estimated for long memory parameters of the different models.
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• First, we consider the classical filter generally used in papers dealing
with applications of linear SARIMA processes, that is F (B) = (I −
B)(I−Bs), with s = 12 for monthly data. This filter has been proven to
be useful to make vanish trend and seasonality. However, there always
exists a risk of over-differenciation implying thus a loss of information.
In this respect, fractional filters avoid over-differenciation by allowing
to the differenciation degree to belong to the interval [0, 1].

• Secondly, we consider the ARFISMA filter F (B) = (I −B)d(I −Bs)D,
introduced previously in (14), d ∈ R, being the degree of integration of
the long-term cycle and D ∈ R being the degree of integration of the
seasonal part. All the results for different d and D, including d = 0 and
D = 0, are presented in table 1, as well as the values of the statistics
used to compare the models. Five different filters have been considered.
we compare their accuracy through the values obtained for the statistics
(21) and (22).

• Finally, we compare the previous fractional seasonal filters with a gen-
eralized long memory approach. That is, we start from the empirical
observation of the estimated spectral density exhibiting 7 peaks lo-
cated at the seasonal frequencies. Thus, we propose a 7-factor Gegen-
bauer process, described in the equation (5), the G-frequencies being
λGj

= 2πj/12, for j = 0, . . . , 6. The estimation step is thus reduced
to the estimation of the memory parameters dj for j = 0, . . . , 6. Here
again, the Whittle Pseudo-Maximum-Likelihood method is carried out
to estimate those parameters. The simplex algorithm is used first to
determine more precisely the initial values, then the BHHH algorithm

Filter F(B) d̂ D̂ σ̂ε JB stat Q(12) Q(24) Q(60) Q(120)
M1 = (I − B)(I − Bs) 78689 522 185 340 696 1362

M2 = (I − B)d(I − Bs) 0.3368 63556 268 71 162 366 735
M3 = (I − Bs)D(I − B) 0.6561 68133 214 161 311 712 1520
M4 = (I − B)(I − Bs)D 0.8924 76074 565 184 348 730 1454

M5 = (I − Bs)(I − B)d 0.6014 66749 506 114 239 526 1050

M6 = (I − B)d(I − Bs)D 0.6892 0.5894 62579 474 139 284 635 1332
M7 = GG7 58721 114 46 131 330 661

Table 1: Analysis of stochastic, ARFISMA and Gegenbauer filters applied on the new car
registrations series in the euro area from Jan. 1960 to Dec. 2005, using empirical variances,
JB and Portmanteau statistics. Estimation of the parameters d, D,for the stochastic and
the ARFISMA filters.
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i d̂i λ̂Gi

0 0.5823 0.0114
1 0.5357 0.5255
2 0.4322 1.0510
3 0.5010 1.5765
4 0.6395 2.0906
5 0.4613 2.6161
6 0.3365 3.1416

Table 2: Parameter estimation of parameters of the 7-factor Gegenbauer process adjusted
on the new car registrations series in the euro area from Jan. 1960 to Dec. 2005.

is employed. Parameter estimates of the GG7 model are presented in
table 2 significatively different from zero, but four of them imply a
non-stationarity in some G-frequencies (for j = 0, 1, 3, 4). In Table 1
we give also the results for the statistics (21) and (22).

Comparing those seven models through the results given in Table 1, we ob-
serve that the 7-factor Gegenbauer process provides the smallest residual
variance implying thus a better fit to the data. Note however that this

M7 M1 M6

φ̂0 16485
(7.31)

φ̂1 -0.2225 -0.6601 -0.0854
(-4.73) (-14.80) (-1.78)

φ̂2 -0.3715
(-8.31)

â0 0.8213 0.7499 0.7432
(13.63) (12.77) (12.62)

â1 0.1479 0.2350 0.2360
(3.63) (5.60) (4.89)

Q(3) 1.91 6.05 26.0
Q(6) 5.72 22.2 36.3
Q(12) 19.0 83.4 65.7

Skewness 0.0951 -0.2952 -0.2392
Kurtosis 0.6609 0.9724 0.8533
JB stat 8.51 23.29 17.23

Table 3: Estimates and standard errors of the parameters for the model (23) adjusted
on the residuals of the 7-Gegenbauer process proposed for the new car registrations series
in the euro area from Jan. 1960 to Dec. 2005.
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model contains 7 parameters, instead of maximum 2 for the others models.
Now, the Jarque-Bera statistics is also the smallest for the 7-factor Gegen-
bauer process, albeit significantly different from zero at the usual type I
risks, implying thus non-Gaussianity. The reduction of the JB statistics is
equally due to a reduction of both skewness and kurtosis for this last model.
Lastly, the Ljung-Box statistics is also strongly reduced for each K using the
7-factor Gegenbauer process. Consequently the 7-factor Gegenbauer process
improves all the criteria and reproduces correctly both the seasonality and
the persistence observed in the data.

For none of these models, the residuals are white. In order to whiten the
residuals of the filtered series, we apply short memory filter on the residuals
(εt)t. Thus, we fit a short memory process with conditional heteroscedasticity
(ARMA-GARCH type process) to the series (εt)t. We apply an ARMA(2,0)-
GARCH(1,0) process whose expression is given by:

εt = φ0 + φ1εt−1 + φ2εt−2 + ηt,

ηt = htδt, (23)

h2

t = a0 + a1ε
2

t−1, (24)

where (δt)t is a white noise process. We present the results for residuals ob-
tained through three of the previous models: the Models M1, M6 and M7.
We observe that the 7-factor GIGARCH model M7 for which we fit on the
filtered series a AR(1)-ARCH(1) process, is able to provide a Gaussian white
noise residuals time series (δt)t, while the two others are not.

In conclusion, to describe the evolution of the new car registrations series
in the euro area from January 1960 to December 2005, we retain the model
described by the three following equations (values of λ̂Gi

and d̂i are presented
in table 2):

7
∏

i=0

(I − 2 cos(λ̂Gi
)B + B2)d̂iXt = εt,

εt = 16485 − 0.2225εt−1 + ηt,

ηt = δt

√

0.8213 + 0.1479ε2
t−1,

and (δt)t is a Gaussian white noise.
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3.2 Sales in the intermediate goods sector

In this section, we consider the weekly sales of a big French company in
the intermediate good sector from January 1988 to the end of May 2004,
that is 854 observations, denoted (Yt)t=1,...,T . The series is presented in fig-
ure 4. We observe evidence of a strong seasonal pattern as well as a pretty
smooth trend. This pattern is confirmed by the graphs of the ACF in figure
5. The raw periodogram presented in figure 6 exhibits several peaks, specifi-
cally for frequencies lower than π/3. Those peaks are located at the null and
weekly seasonal frequencies, namely λh = 2πh/s, for h = 0, 1, 2, . . . , [s/2]
with s = 52. However, only the peaks associated to the first 7 frequencies
can be clearly seen on the raw periodogram.

As in the previous application, our first aim is to filter this series to get
a filtered series as white as possible and possibly Gaussian. We start by
comparing fractional and linear filters, as regards trend and seasonality.

• Linear filters. The first filter we apply is the seasonal differentiation
∆s = (I − Bs), with s=52. The ACF of the filtered series is presented
in figure 10. This ACF shows two stylized facts: a slow decay for the
first lags, indicating a strong degree of persistence, as well as a strong
correlation at lag number 52, indicating the need for a short memory
seasonal component.

1988 1990 1992 1994 1996 1998 2000 2002 2004
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50
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200
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Figure 4: weekly sales of a big French company in the intermediate good sector from
January 1988 to the end of May 2004.
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Figure 5: ACF of the weekly sales of a big French company in the intermediate good
sector from January 1988 to the end of May 2004.

1. To make vanish the slow decay, we consider first the classical linear
filter ∆ = (I − B) on the filtered series that is we use the filter
∆∆s on the raw data (Yt)t.:

(I − B)(I − Bs)Yt = νt (25)

2. Second, to avoid over-differentiation we fit a fractional filter to the
filtered series (εt)t, that is we use the filter ∆d∆s on the raw data
(Yt)t:

(I − B)d(I − Bs)Yt = δt (26)

We get the estimated memory parameter d̂ = 0.2834, implying
thus the presence of stationary long memory.

Thus, comparing the models (25) and (26) and the value obtained for
d̂ , this last result points out the over-differentiation due to the linear
filter ∆.

• Fractional rigid filter.

1. We start by filtering first the raw series (Yt)t through the fractional
seasonal filter ∆D

s = (I − Bs)D introduced in (12). We get the
estimated value D̂ = 0.6671. The ACF (figure 11) of the filtered

series (∆D̂
s Yt)t is very similar to the one of the seasonally filtered

series (∆sYt)t.
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Figure 6: Raw periodogram of the weekly sales of a big French company in the interme-
diate good sector from January 1988 to the end of May 2004.

2. However, if we apply a fractional filter to the filtered series (∆D̂
s Yt)t,

the estimated memory parameter is higher than before and non-
stationary d̂ = 0.6111, that is we consider the following model:

(I − B)0.6111(I − Bs)0.6671Yt = εt. (27)

Note that the sum d̂+D̂ is very close using the previous fractional
models :

1 + 0.2834 = 1.2834 and 0.6111 + 0.6671 = 1.2782, (28)

but it is lower than the global degree of integration of the ∆∆s

filter (25) (equal to 2).

This phenomena is perhaps due to the Whittle estimation procedure
which includes all the frequencies in the maximization algorithm. A
non-parametric estimation procedure should be more appropriate for
this kind of data. It could be interesting to compare both estimation
procedures on this data set. Now, For the same last fractional filter
∆D

s ∆d, if we estimate simultaneously both fractional parameters, d and
D, we get the following results : D̂ = 0.4444 and d̂ = 0.5366. The val-
ues obtained are thus slightly lower, especially the seasonal fractional
part of the model is now stationary. This results underlines the impor-
tance of the parameter estimation method in the presence of both frac-
tional trend and seasonality: particularly, the allocation of the memory
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between those two parts has to be further investigated.

• According to the shape of the raw periodogram, it seems natural to
try to fit a k-factor Gegenbauer to the raw series (Yt)t. Therefore,
we estimate a 7-factor Gegenbauer process with the G-frequencies cor-
responding to the highest peaks in the raw periodogram, using the
Whittle estimation method. We observe that all memory parameters
are close to 0.1. However, after removing those components, there is
still a seasonality in the filtered data, as it can be seen in the peri-
odogram of the filtered series (see figure 12). Indeed, to remove all
the seasonality through a k-factor Gegenbauer process, we should have
used 53 factors, which is not reasonable, in particular with respect to
the parcimony principle.

This application shows that, in this latter case, an ARFISMA model seems
more appropriate to take the persistence in the seasonality, or in the cycle,
into account. Indeed, it is untractable in practice to use a k-factor Gegen-
bauer process as soon as the number of frequencies is too high. Moreover, we
pointed out that the use of fractional filters for both trend and seasonality
avoid over-differentiation.

4 Conclusion

Many economic time series display seasonal fluctuations linked to a kind of
persistence, but it does not exist a single way to model the seasonal compo-
nents and the long-term cycle. In this paper, we recall most of the different
seasonal fractionally integrated processes which model trend and seasonality.
We show that, on two applications on real data of the economic activity in
the euro area, ARFISMA and k-factor GARMA processes offer very compet-
itive alternatives to classical linear SARIMA processes, in the sense that they
avoid over-differentiation while providing a better goodness of fit. We raise
also the question of the "best" estimation procedure. This issue appears to
be further investigated.
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Figure 7: Raw periodogram of the filtered series from 7-factor Gegenbauer process.
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Figure 8: Estimated conditional variance from the AR(1)-ARCH(1) process applied to
the filtered series from the GG-7 process.
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Figure 9: Standardized residuals of the AR(1)-ARCH(1) process applied to the filtered
series from the GG-7 process.
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Figure 10: ACF of the seasonally differenced weekly sales of a big French company in
the intermediate good sector from January 1988 to the end of May 2004.
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Figure 11: ACF of the fractional seasonally differenced weekly sales of a big French
company in the intermediate good sector from January 1988 to the end of May 2004.
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Figure 12: Periodogram of the GG7-filtered series of weekly sales of a big French company
in the intermediate good sector from January 1988 to the end of May 2004.
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