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Abstract

In this paper, we make use of the Sobolev space W 1,1 (R+, Rn) to

derive at once the Pontryagin conditions for the standard optimal

growth model in continuous time, including a necessary and sufficient

transversality condition. An application to the Ramsey model is given.

We use an order ideal argument to solve the problem inherent to the

fact that L1 spaces have natural positive cones with no interior points.
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1 Introduction

Typically, the first-order necessary conditions of optimization problems in

continuous time, the so-called Pontryagin conditions, are established using

variational methods. This kind of methods is for example used throughout

the textbooks of Hadley and Kemp (1973) and Kamien and Schwartz (1991),

but it is indeed at the basis of optimal control theory as initially designed

by Pontryagin et al (1962). For a finite time horizon, the set of Pontryagin

conditions include optimality conditions with respect to the control, state

and co-state variables, plus the corresponding transversality conditions which

depend on the assumptions on the time horizon and the terminal state. All

these conditions can be identified using standard variational methods.

When the optimization time horizon goes to infinity, things become much

more complicated. In particular, it turns out that while the usual Pontrya-

gin conditions obtained for finite horizons with respect to the control, state

and co-state variables are preserved, the transversality conditions cannot be

safely extrapolated. As the horizon gets to infinity, it is quite easy to show

(see for example Halkin, 1974) that taking the limits of the transversality

conditions obtained for finite time horizons is highly misleading. In partic-

ular, the traditional ”economic” condition according to which the shadow

price should go to zero as the time horizon goes to infinity was shown to be

clearly erroneous in the case of non-discounted problems.

This has lead to a kind of split in the optimal control treatment under infinite

horizons: while the Pontryagin conditions can still be obtained by variational

methods, the transversality condition is obtained using another type of ar-

gument. This is for example true in the seminal paper of Michel (1982), who

concentrates on the necessary transversality condition part. Michel provides

a fairly general inspection into this issue in the case of discounted problems

(without a priori sign or concavity assumptions on the objective and state
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functions). In such a framework, he proves that the right necessary transver-

sality condition when time tends to infinity is the limit of the maximum of

the Hamiltonian going to zero. This extends the property valid in a finite

horizon problem with free terminal time to the infinite horizon case. On the

other hand, he shows that this necessary condition implies the traditional

”economic” transversality condition, mentioned above, provided the objec-

tive function is non-negative and if ”enough possibilities of changing the

state’s speed exist indefinitely”. Ye (1993) extends this analysis by allowing

for the non-differentiability of the problem data and obtains the maximum

principle in terms of differential inclusions in analogy to the finite horizon

problem.

Unfortunately the resulting characterization of the cases where the ”eco-

nomic” transversality condition holds reveals unpractical. Alternative duality-

based theories for discounted problems were developed starting with Ben-

veniste and Scheinkman (1982). Under some concavity conditions (needed to

apply an envelop condition), Benveniste and Scheinkman (1982) establishes

the necessity of the transversality condition, limt→∞ [−v2 (x (t) ,
.
x (t) , t)] x =

0 for the continuous time reduced form model:

max
∞∫
0

v (x (t) ,
.
x (t) , t) dt

subject to

x (0) = x0, (x (t) ,
.
x (t)) ⊂ (Rn)2 .

when the assumptions of non-negativity and integrability of v for all feasible

paths are verified. Kamihigashi (2001) generalizes this analysis by allowing

for unbounded v with the assumptions of local boundedness of v1 and v2

and the existence of an open set that the optimal pair
(
x∗ (t) ,

.
x
∗
(t)
)

be-

longs to and under which v (., ., t) is continuously differentiable. Long and

Shimomura (2003) prove the necessity of a transversality condition of the
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form limt→∞ [x∗ (t)− x0] [v2 (x (t) ,
.
x (t) , t)] = 0 under the assumption that v

is twice differentiable and the optimal pair belongs to the interior of a set

under (Rn)2 .

This paper provides a simple and unified functional analysis argument to

derive at once the Pontryagin conditions, including the transversality con-

dition in infinite horizon problems. More specifically, we make use of the

Sobolev space W 1,1 (R+, Rn), which appears to be quite natural to derive

not only the convenient transversality conditions, but also the whole set of

Pontryagin conditions. Our choice of the Sobolev space W 1,1 (R+, Rn) is rel-

evant for many optimal growth models, e.g. the Ramsey model, in which

the feasible capital paths are proved to belong to this space and the feasi-

ble consumption paths belong to L1 (see Askenazy and Le Van, 1999, page

42). In addition to this crucial topological choice, our setting is based on

an assumption (Assumption 4 in the text), which is close to the concept of

supported control trajectories traditionally used in the optimal control lit-

erature (see for example, Peterson, 1971). Combining this concept with the

Sobolev space W 1,1 (R+, Rn) turns out to be a powerful tool to get through

the problem very easily. In particular, we extract the usual transversality

conditions as necessary optimality conditions, together and at the same time

as the other Pontryagin conditions.

To our knowledge, the first analysis that uses Sobolev spaces in economics was

Chichilnisky (1977). She studies the problem of existence and the character-

ization of the solutions of optimal growth models in many sector economies.

In this context, the prices are continuous linear functionals defined on the

space of consumption paths. Mathematically, the question turns out to be

the existence of an appropriate continuous linear functional separating the

set of feasible paths from the set of paths which yield higher utilities than

the optimal one. In Chichilnisky (1977), the space of consumption paths on
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which the optimization is performed is the completion of L∞endowed with

L2 norms while the space of admissible capital paths is the completion of the

space C1
b of continuously differentiable and bounded functions endowed with

the norm given by the scalar product:

(f, g) =

∫ ∞

0

(
k∑
0

Dkf(t)Dkg(t)

)
e−rtdt.

The basic tool needed to prove the existence of competitive prices for optimal

programs, the Hahn-Banach theorem, requires one of the convex sets being

separated to have an interior or an internal point. However, all Lp spaces

with 1 ≤ p < ∞ have natural positive cones with no interior or internal

points. To overcome this problem, the objective function being maximized

is shown to be continuous in weaker L2 topology. Another inconvenient

feature of L2 spaces is related to the fact that their topology is weaker. It

creates a difficulty in having conditions on the utility function which yield

L2−continuity of nonlinear objective functional, the discounted social utility

of the stream of consumption.

As mentioned above, in contrast to the previous studies, we shall use Sobolev

space W 1,1 (R+, Rn) . Nonetheless, as in the alternative approaches listed

above, we still face the problem that the involved L1 spaces have natural

positive cones with no interior or internal points. In order to overcome this

problem, we shall use the concepts of properness and order ideal. The no-

tion of properness is proved to be very useful in analyzing the existence of

equilibrium in Banach lattices or Riesz spaces (see the excellent survey of

Aliprantis, Cornet and Tourky, 2002, and its references). The properness

is a notion weaker than continuity. A complete characterization for strictly

increasing separable concave functions in Lp
+ is given in Araujo and Mon-

teiro (1989). Le Van (1996) characterizes properness for separable concave

functions in Lp
+ without assuming monotonicity. Dana, Le Van and Mag-

nien (1997) provides an existence theorem when the consumptions sets being
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the positive orthant of a locally convex solid Riesz space has an empty inte-

rior. They use the approach of Mas-Colell and Zame (1991) by considering

an economy restricted to the order ideal generated by the total resource,

which is dense in the initial consumption space. This suffices to obtain a

quasi-equilibrium price which can be extended to a linear form in the initial

topology by the properness of the every utility function.

The paper is organized as follows. Section 2 presents the considered opti-

mization problem, and gives some preliminary definitions and assumptions

needed to derive our necessary and sufficient transversality condition. Sec-

tion 3 proves the latter condition in the described mathematical framework,

yielding the main result in Theorem 1. Section 4 is an application to the

Ramsey model.

2 Preliminaries

Let C1
c (R++, Rn) denote the set of continuously differentiable functions from

R++ to Rn with compact support. We have the following general definitions

and notations.

Definition 1 The space W 1,1 (R+, Rn) is the space of functions, x ∈ L1 (R+, Rn)

such that there exists a function x′ ∈ L1 (R+, Rn) that satisfies

∞∫
0

xφ′ dt = −
∞∫

0

x′φ dt, ∀φ ∈ C1
c (R++, Rn) .

In this case, x′ is called the derivative of x in the sense of distributions.

We recall some results that will be useful in our analysis (see Brezis, 1983,

for the proofs, pp 119-148) about Sobolev space W 1,1 (R+, Rn) :
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• W 1,1 (R+, Rn) is a Banach space for the norm: ‖x‖W 1,1 = ‖x‖L1 +

‖x′‖L1 .

• If x ∈ W 1,1 (R+, Rn) , there exists a unique continuous mapping
∼
x on

R+ such that x =
∼
x almost everywhere.

• For all τ, τ ′ ∈ R+,
∼
x (τ)− ∼

x (τ ′) =
τ∫

τ ′
x′ (t) dt and limt→∞

∼
x (t) = 0.

We consider a standard optimal control problem with an infinite horizon

arising in dynamic models in continuous time:

max
∞∫
0

u (x (t) , c (t)) e−rtdt

subject to
.
x (t) = f (x (t) , c (t))

x (0) = x0

where x (t) ∈ Rn
+ and c (t) ∈ Rm

+ .

We denote by E the space of functions from R+ to Rn such that xe−rt ∈
W 1,1 (R+, Rn) . Let ‖x‖E =

∞∫
0

‖x‖ e−rtdt +
∞∫
0

‖x′‖ e−rtdt. By L1 (e−rt) , we

define the set of functions such that xe−rt ∈ L1, for a given r > 0. Observe

that x ∈ E implies ‖x (t)‖ e−rt → 0 when t →∞.

Next we make the following assumptions.

Assumption 1 x ∈ E and c ∈ L1 (e−rt) .

Assumption 2 f and u are continuous and the derivatives fx, ux are con-

tinuous.

Assumption 3 If x∗, c∗ are optimal then fx (x∗, c∗) ∈ L1 (e−rt) and ux (x∗, c∗) ∈
L1 (e−rt) .
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The condition x (0) = x0 must be understood in the sense that the unique

continuous function
∼
x which is almost everywhere equal to x satisfies

∼
x (0) =

x0.

Lemma 1 Let L : E → R+ be defined by L (x) = x (0) . The mapping L is

Lipschitzian.

Proof. See Bonnisseau and Le Van (1996).

Lemma 2 Let D : x (t) → Dx (t) =
.
x (t) . D is continuous from E into

L1 (e−rt) .

Proof. It is easy.

Definition 2 A trajectory (x(t), c(t)), t ∈ [0, +∞) is admissible if x ∈ E, x ≥
0, c ∈ L1

+ (e−rt) , satisfy the constraints

.
x (t) = f (x (t) , c (t))

x (0) = x0

and if the integral in the objective function converges. A trajectory (x∗(t), c∗(t))

is an optimal solution if it is admissible and if the value of the objective func-

tion corresponding to any admissible trajectory is not greater than that of

(x∗(t), c∗(t)).

The optimization problem under consideration can be recast in the following

form (P):

max U(x, c) =
∞∫
0

u (x (t) , c (t)) e−rtdt

subject to

Dx = f (x, c)

Lx = x0

where U :
(
E ∩ L1

+ (e−rt)
)
× L1 (e−rt) → R∪{−∞} .

We now set an assumption, which is most crucial to our analysis:
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Assumption 4 The optimal path is supported in the following sense. Let

(x∗ (t) , c∗ (t)) be an optimal solution. There exist multipliers (a, q, λ) ∈ R+×
L∞ × Rn such that: ∀x ∈

(
E ∩ L1

+ (e−rt)
)
, ∀c ∈ L1

+ (e−rt) ,

aU (x∗, c∗)− q (Dx∗ − f (x∗, c∗))− λ (Lx∗ − x0) ≥

aU (x, c)− q (Dx− f (x, c))− λ (Lx− x0) . (1)

Notice that Assumption 4 is supposed to characterize the optimal paths:

to each optimal solution, we assume that we can always assign multipliers,

as usual associated with the objective function and constraints of the opti-

mization problem respectively, so that inequality (1) holds. Whether such

multipliers do exist when an optimal path exists is addressed in Section 4 for

the Ramsey case: We don’t argue here that such a property is inherent to

optimality whatever the characteristics of the optimal control problem under

study. Our first aim is to show that putting such an assumption in an appro-

priately defined Sobolev space very easily gives the Pontryagin conditions,

including the transversality condition, at once. Proving the existence of the

multipliers introduced in Assumption 4 is another task, which will be dealt

with later.

Before showing this, some comments on Assumption 4 are necessary. As

to the originality of our approach, it is fair to mention that an assumption

like our Assumption 4 is not that far from the definition of supported control

trajectories used in Peterson (1971) and more recently applied to a class of

finite horizon optimal control problems by Carlson and Angell (1998). See for

example Definition 5, page 76, in Carlson and Angell. As in the pioneering

work of Peterson, the latter authors easily prove for a class of undiscounted

optimization problems with finite horizon that a control-trajectory which is

feasible and supported is necessarily optimal (Theorem 6, page 76). All these

papers assume the existence of multipliers supporting the optimal trajectories

in a sense fairly close to our inequality (1). However, beside the fact that
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the statement of inequality (1) depends on the optimization problem under

study,1 there are two main differences between this approach and ours. First

of all, the literature mentioned just above follows different optimality criteria,

namely overtaking optimality,2 which has a lot to do with the undiscounted

nature of the Ramsey problems under consideration. Moreover, we know

by the Halkin’s counter-example that these undiscounted problems may not

satisfy the usual transversality conditions. Therefore our framework and

the associated optimality criterion (see Definition 2 above) are much better

suited to the study of transversality conditions in economic problems.

Second, and more importantly, the treatment of the supporting function, q in

our case, is far from similar, and it can, by no way, be the same because the

involved functional spaces are completely different. Our application section

provides an insightful constructive method to get the supporting function q,

using the concept of order ideal in L1 topology.

The next section gives the main results of the paper.

3 Main results

In this section, we shall show how our approach allows to derive properly

and easily the Pontryagin conditions, and more importantly, it will be shown

how it settles in a simple and natural way the problem of the necessity and

sufficiency of the transversality condition for infinite horizon problems.

The next proposition can be viewed as a more accurate characterization of

the supporting function q under assumptions 1 to 4.

Proposition 1 Let Assumptions 1-4 be satisfied. Assume that x∗ (t) > 0,

1It depends notably upon the boundary conditions of the problem under study.
2see for example, Carlson and Angell, 1998, Definition 19, page 85.
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∀t. Then ∃ p ∈ L1 such that:

aux (x∗, c∗) e−rt +
.
p (t) + p (t) fx (x∗, c∗) = 0, (2)

in the sense of distributions.

Proof. It is clear from (1) that one can write: ∀x ∈
(
E ∩ L1

+ (e−rt)
)
,

a

∞∫
0

[u (x∗, c∗)− u (x, c∗)] e−rtdt−
∞∫

0

q (t) [Dx∗ −Dx] e−rtdt

+

∞∫
0

q (t) [f (x∗, c∗)− f (x, c∗)] e−rtdt− λ [x∗ (0)− x (0)] ≥ 0, (3)

Let h (t) ∈ C1
c (R+, Rn) . If x∗ (t) > 0, ∀t, as x∗ (t) can be assumed to be

continuous [recall that every element of the Sobolev space W 1,1 can be iden-

tified with a continuous function], we can choose µ sufficiently small such

that x (t) = x∗ (t) + µh (t) ∈ E. We obtain:

∞∫
0

aux (x∗, c∗) e−rth (t) dt−
∞∫

0

q (t) e−rt
.

h (t) dt+

∞∫
0

q (t) e−rtfx (x∗, c∗) h (t) dt = 0

and hence, with p (t) = q (t) e−rt ∈ L1,

aux (x∗, c∗) e−rt +
.
p (t) + p (t) fx (x∗, c∗) = 0,

in the sense of distributions.

It is easy to see that equation (2) is indeed the Pontryagin condition with

respect to the state variable. Notice that the derivation of such a result

is done in a very elementary way within our functional framework. The

derivation of the necessary transversality condition is even more elementary:

Corollary 1 Under the assumptions of Proposition 1, if an optimal so-

lution (x∗ (t) , c∗ (t)) exists, then necessarily p (t) ert ∈ L∞, with p(t) =

q (t) e−rt, defined in Proposition 1. In particular, lim
t→∞

p (t) = 0 , and lim
t→∞

p (t) (x∗ (t)− x0) = 0.
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The proof is trivial. In particular, the result of Long and Shimomura can

be easily recovered. Indeed, knowing that p (t) x∗ (t) = q (t) e−rtx∗ (t) → 0

and p (t) → 0 as t→∞, we can derive directly lim
t→∞

p (t) (x∗ (t)− x0) = 0 , as

a necessary optimality condition. A further characterization of the multiplier

p(t) is also allowed.

Corollary 2 If c∗ (t) is piecewise continuous then
.
p (t) is piecewise contin-

uous.

Proof. Since p (t) ∈ L1, it follows from (2) that
.
p (t) ∈ L1 and hence,

p (t) is continuous. This implies that
.
p (t) is piecewise continuous.

The next proposition gives the Pontryagin condition with respect to the

control. Again, our approach allows for an almost immediate proof.

Proposition 2 Let Assumptions 1-4 be satisfied. Assume that c∗ (t) is con-

tinuous and hence,
.
x
∗
(t) is continuous. Then we have, for any c ∈ Rm

+ , any

t ≥ 0,

au (x∗ (t) , c∗ (t)) e−rt+p (t) f (x∗ (t) , c∗ (t)) ≥ au (x∗ (t) , c) e−rt+p (t) f (x∗ (t) , c) .

(4)

Proof. From (1), it can be noted that, ∀z ∈ L1
+ (e−rt) ,

a

∞∫
0

[u (x∗, c∗)− u (x∗, z)] e−rtdt +

∞∫
0

p (t) [f (x∗, c∗)− f (x∗, z)] dt ≥ 0. (5)

Assume on the contrary, by continuity,

au (x∗ (t) , c∗ (t)) e−rt+p (t) f (x∗ (t) , c∗ (t)) < au (x∗ (t) , c) e−rt+p (t) f (x∗ (t) , c)

in some interval I around t with some positive constant c ≥ 0. Let c′ (t) =

c∗ (t) , t /∈ I and c′ (t) = c when t ∈ I. Note that c′ (t) ∈ L1
+ (e−rt) . However,

(5) is not satisfied leading to a contradiction.
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We now move to the sufficiency part and prove among others that the previ-

ously derived transversality condition is sufficient for optimality under some

conditions which are known in the optimization literature (see for example,

Carlson, Haurie and Leizarowitz, 1991). To this end, we use the Hamiltonian

concept.

Assumption 5 Define the Hamiltonian

H (x, c, p, t) = u (x (t) , c (t)) e−rt + p (t) f (x (t) , c (t)) .

Suppose that , maxc≥0 H (x, c, p, t) is concave in x and H (x∗, c∗, p, t) ≥ H (x∗, c, p, t) ,

∀c ≥ 0.

The next proposition shows the sufficiency of the transversality condition

when Assumption 5 is added to our assumptions set.

Proposition 3 Under Assumptions 1-3 and Assumption 5, a sufficient con-

dition for (x∗ (t) , c∗ (t)) to be optimal is

p (t) ert ∈ L∞.

Proof. By Assumption 5, the following holds for every T > 0 :

T∫
0

u (x∗ (t) , c∗ (t)) e−rtdt−
T∫

0

u (x (t) , c (t)) e−rtdt ≥ p (T ) (x (T )− x∗ (T )) .

By assumption, p (t) ert ∈ L∞. We then have:

| p (T ) (x (T )− x∗ (T ))| ≤ ‖p (T )‖ erT
[
‖x (T )‖ e−rT + ‖x∗ (T )‖ e−rT

]
≤ K

[
‖x (T )‖ e−rT + ‖x∗ (T )‖ e−rT

]
.

Since x ∈ E and x∗ ∈ E, we get K
[
‖x (T )‖ e−rT + ‖x∗ (T )‖ e−rT

]
→ 0 as

T →∞. That ends the proof.
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Along this section, we have shown how the Sobolev space topology choice

simplifies greatly the analysis of the necessary and/or sufficient transversal-

ity condition. While the sufficiency part of our analysis relies on standard

conditions, the necessary conditions part is not that standard, at least in the

literature of transversality conditions. Clearly, the crucial part of our analysis

is Assumption 4. We show in the next section how this assumption is checked

in the Ramsey-like models using common tools in general equilibrium theory.

4 Application to the Ramsey Model

We consider the following usual type of Ramsey model:

max
∞∫
0

u (c (t)) e−rtdt

subject to

c (t) +
.
x (t) ≤ f (x (t))− δx (t)

c (t) ≥ 0,∀t
x (t) ≥ 0,∀t
x (0) = x0 > 0, is given.

under the following assumptions.

Assumption 6 u is C1, strictly concave, increasing with u
′
(0) = +∞.

Assumption 7 f is C1, strictly concave, increasing with f
′
(0) > δ, f

′
(0) <

∞, f
′
(∞) = 0.

Proposition 4 The optimal solution (x∗ (t) , c∗ (t)) satisfy x∗ ∈ W 1,1 ∩ L1
+

and c∗ ∈ L1
+ (e−rt) .

Proof. See Askenazy and Le Van (1999).
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In accordance with this proposition, we can use W 1,1 ∩ L1
+ as the state

space and L1
+ as the control space. Let X =

(
W 1,1 ∩ L1

+

)
×L1

+. The problem

becomes:

max U(x, c) =
∞∫
0

u (c (t)) e−rtdt

subject to

g (x, c) ≥ 0

Lx = x0

where g (x, c) = f (x)−δx−c−Dx and Lx = x (0) . Note that g takes values

in L1 and L1
+ has an empty interior. Hence, the direct application of the

theorem V.3.1 of Hurwicz (1958) is not possible for proving the existence of

the multipliers (a, q, λ) ∈ R+ × L∞ × Rn associated with this problem. We

then use the same approach as Mas-Colell and Zame (1991) and Dana, Le

Van and Magnien (1997). We consider an order ideal which is dense in the

original space. There we have the positive orthant of the order ideal with a

nonempty interior for its lattice norm.

It is well known (see for example, Askenazy and Le Van, 1999, Proposition

5) that there exist α > 0, α′ > 0 such that the optimal consumption path

satisfies: α′ ≥ c∗ (t) ≥ α, ∀t ≥ 0, and there exist β > 0, β′ > 0 such that

the optimal capital path satisfies β′ ≥ x∗ (t) ≥ β, ∀t ≥ 0,Let c = c∗ and

I (c) = {y ∈ L1 : ∃µ > 0 s.t. |y| ≤ µc} .

The ideal I (c) is dense for both the L1 topology and for the weak topology

(see Aliprantis, Brown and Burkinshaw, 1989, pages 103,104). We define on

I (c) the norm ‖.‖c :

‖y‖c = inf {µ > 0 : | y| ≤ µc} .

One can verify that the positive orthant of I (c) , I+ (c) has nonempty interior

for the topology defined by ‖.‖c. More precisely, c ∈ int I (c) .

Similarly, one can define I(x̄) with x̄ = x∗ and x∗ ∈ int I(x̄). It is obvious

that I(c̄) = I(x̄).
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As u is increasing by Assumption 6, along an optimal path, we have

g (x∗, c∗) = 0, i.e. g (x∗, c∗) ∈ I+ (c) . Consider the problem:

max U(x, c)

subject to

g (x, c) ∈ I+ (c)

Lx = x0.

where one can now apply the Theorem V.3.1 of Hurwicz (1958) and obtain:

∃ (a, q, λ) ∈ R+ × I+ (c)
′
× R s.t.

aU (x∗, c∗)+qg (x∗, c∗)+λ (Lx∗ − x0) ≥ aU (x, c)+qg (x, c)+λ (Lx− x0) ,

(6)

∀x, ∀c, such that g(x, c) ∈ I(c).

Now we shall prove that q is a continuous linear form on I (c) for the L1 −
norm topology. Since I (c) is dense in L1, it extends to a continuous form

on L1 for the L1 − norm topology. To this end, we follow Dana, Le Van and

Magnien (1997) and utilize the notion of properness.

Since c∗t ≥ α > 0, ∀t, it is clear that u
′
(c∗ (t)) ∈ L∞. From Le Van

(1996), U is proper at c∗. Hence, there exists an open solid neighborhood of

0, denoted by A and a vector v ∈ L1
+ such that ∀µ > 0, small enough,

U (x, c∗ + µ (v + z)) > U (x, c∗) if z ∈ A and if c∗ + µ (v + z) ∈ L1
+.

Actually, we can take v(t) = 1,∀t, and

A = {x ∈ L1 :

∫ +∞

0

u′(c∗t )|x(t)|e−rtdt <

∫ +∞

0

u′(c∗t )e
−rtdt}.

It is obvious that A is an open solid set of L1 and contains 0. Let c∗ + µ(1 +

z) ≥ 0 with µ > 0 and z ∈ A. We have

lim
µ→0

U(x, c∗ + µ(1 + z))− U(x, c∗)

µ
= lim

µ→0

∫ +∞

0

u(c∗ + µ(1 + z))− u(c∗)

µ
e−rtdt
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=

∫ +∞

0

u′(c∗)(1 + z)e−rtdt ≥
∫ +∞

0

u′(c∗)e−rtdt−
∫ +∞

0

u′(c∗)|z|e−rtdt > 0.

Thus U(x, c∗ + µ(1 + z)) > U(x, c∗) for any µ > 0 small enough.

Now, let y ∈ A∩ I+ (c) . There exists µ > 1 such that 0 ≤ y ≤ µ c = µc∗.

Define z = (1/µ) y. We have c∗ + 1
µ

(v − y) ≥ 0. By applying the inequality

(6):

aU (x∗, c∗) + qg (x∗, c∗) + λ (Lx∗ − x0) ≥

aU

(
x∗, c∗ +

1

µ
(v − y)

)
+ qg

(
x∗, c∗ +

1

µ
(v − y)

)
+ λ (Lx∗ − x0)

= aU

(
x∗, c∗ +

1

µ
(v − y)

)
+ q

(
g (x∗, c∗)− 1

µ
(v − y)

)
+ λ (Lx∗ − x0)

together with the properness condition lead us to obtain that

qv ≥ qy.

On the other hand, since c∗ + 1
µ

(v + y) ≥ 0, we have also

qv ≥ −qy.

Now, let y ∈ A ∩ I (c) . y+ and y− belong to A ∩ I+ (c) . We have qy+ ≤ qv

and −qy− ≤ qv so that qy ≤ 2qv. We have proved that the linear form q is

bounded from above in an open neighborhood of 0. Therefore, q is continuous

on I (c) with the initial topology. Since I (c) is dense in L1, q has a unique

extension in (L1)
′
= L∞.

We now show that inequality (6) also holds for g(x, c) ∈ L1.

First, since c∗ is in the interior of I+(c̄), we have one of the first order con-

ditions:

q(t) = au′(c∗(t)) (7)
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Since x∗ is also in the interior of I+(x̄) = I+(c̄), we have another first

order condition

λh(0) +

∞∫
0

q(t)(f ′(x∗(t))h(t)− δh(t)−Dh(t))e−rtdt = 0 (8)

for any C1 - function h with compact support in R such that there exists

ζ > 0 which satisfies x∗ + ζh ∈ I(c̄). Since h and Dh are bounded, we

have hence g(x∗ + ζh, c∗) ∈ I(c̄). From Brezis, 1983, Theorem VIII.6, if h

is in W 1,1 then there exists a sequence of functions {hn}, C1, with compact

support in R which converge to h in W 1,1. For any n, there exists ζn > 0

such that x∗+ζnhn ∈ I(c̄). Thus hn satisfies (8). From Lemma 1 and Lemma

2, Relation (8) holds therefore for any h ∈ W 1,1. Now, the two relations (7)

and (8) imply that inequality (6) holds whether g(x, c) is in I(c̄) or not.
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