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1 Introduction

So far, the in‡uence of taxes on job creation and destruction has been neglected to a large extent

by the economics of taxation (see Salanié, 2003, for a recent survey). Yet, many empirical studies

have shown that modern economies face dramatic job turnover that in‡uences employment and

growth. From this point of view it is important to analyze the impact of taxes on job creation

and destruction. In a seminal paper, Feldstein (1976) argued that payroll taxes used to …nance

unemployment bene…ts in most OECD countries induce too many layo¤s, because employers do

not take into account the cost of insurance provided by the state to the unemployed workers.

To avoid this excess of job destruction unemployment insurance has to be …nanced by layo¤

taxes. The experience rating system used in the United States is an example of layo¤ taxes that

induce …rms to internalize the cost associated with their layo¤ decisions (Burdett and Wright,

1989a, b, Anderson and Meyer, 1993, 2000, Blanchard and Tirole, 2004, Cahuc and Malherbet,

2004).

In this paper, it is argued that layo¤ taxes are not only a natural counterpart to the state

provision of unemployment bene…ts: they are also a natural counterpart to other public expen-

ditures. Indeed, when employers destroy a job, they do not take into account that workers who

are …red will continue to consume collective goods but may contribute to a much smaller extent

to …nance these goods. In this context, if individuals bring less in the budget of the state when

they are unemployed than when they are employed, the social value of jobs, that is their value

for the entire society, is larger than their private value, that is their value for the worker and

the employer. This phenomenon can lead to excessive job destruction in the absence of layo¤

taxes. Therefore, layo¤ taxes should not be only a part of the unemployment insurance system.

They should also be integrated as an instrument in the overall tax system used to …nance public

expenditures.

We explore this idea in the standard approach of optimal taxation models (Mirrlees, 1971)
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which analyzes the tax-subsidy schemes that implement second-best allocations when the state

has incomplete information about the preferences of individuals. More precisely, we follow the

approach of Diamond (1980) in which individuals, whose only decision is whether to work or not,

di¤er in their taste for leisure as well in ability (see also: Beaudry and Blackorby, 1997, Choné

and Laroque, 2005, Laroque, 2005, Saez, 2002). In Diamond’s model, the ability of employees,

which determines the market income and then the level of taxes, is observable, but taste for

leisure is private information. In our paper, Diamond’s model is enriched in order to account

for unemployment and job destruction. It is assumed that the productivity of each job depends

on the ability of the worker, that is common knowledge only when he participates in the labor

market, and a random job speci…c productivity shock, that is privately known by the …rm and

the worker once the worker has been recruited. Moreover, …rms are risk neutral, workers are risk

averse and it is assumed that unemployment insurance is provided by the state.1 In this context,

some workers who have decided to participate in the labor market are unemployed because jobs

whose productivity is too low are destroyed.

Our paper analyzes the optimal tax-subsidy schemes that implement second-best allocations

when there is job destruction. The main result is that optimal tax schemes comprise both

payroll and layo¤ taxes when the state provides public unemployment insurance and aims at

redistributing income. It turns out that the optimal layo¤ tax is equal to the social cost of job

destruction, which amounts to the discounted value of the sum of the unemployment bene…ts

(that the state pays to unemployed workers) and payroll taxes (that the state does not get when
1 The “implicit contract literature” has shown that risk neutral …rms fully insure workers against income

‡uctuations by giving constant wages to the employees and unemployment bene…ts to the workers they layo¤
(Baily, 1974, Azariadis, 1975, Rosen 1985, Pissarides, 2001), However, in the real world, unemployment insurance
is not provided by …rms. Some rare exceptions are presented and discussed by Chui and Karni (1998) who stressed
that the failure of the private sector to provide unemployment insurance can be explained by the interaction of
adverse selection and moral hazard problems: an isolated …rm that would o¤er private insurance would attract
workers with strong work aversion, who would try to be …red as soon as they become eligible to the unemployment
bene…ts. If work aversions are not observable and the level of e¤ort of the employees not veri…able, it can be
the case that private unemployment insurance cannot emerge. In our paper, we assume, like Burdett and Wright
(1989a,b) and Blanchard and Tirole (2004) among many others, that unemployment insurance is provided by the
state.
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workers are unemployed).

This result is obtained in two steps. In the …rst step, we consider a static framework which

allows us to get a set of intermediary results. More precisely, if the state does not aim at redis-

tributing income across individuals with di¤erent abilities, it is shown that …rst-best allocations

can be reached thanks to unemployment bene…ts that are entirely …nanced by layo¤ taxes. This

is a simple generalization of the result obtained by Blanchard and Tirole (2004) in a model

without participation decision and heterogeneity of workers. If the state aims at redistributing

income across individuals with di¤erent abilities, …rst-best allocations cannot be reached because

the taste for leisure is private information. In that case, it is shown that second-best allocations

are obtained thanks to tax-subsidy schemes that comprise layo¤ taxes equal to the sum of the

unemployment bene…ts and the payroll tax raised on the production of the employees.

Then, in the second step, the properties of optimal tax-subsidy schemes are derived in a

dynamic version of the static model. This dynamic version is useful to give quantitative insights

on the optimal amount of layo¤ taxes and on their impact on employment, unemployment, GDP,

welfare and the budget of the state.

The paper is organized as follows. The preferences, the technology and the …rst-best allo-

cations of the static benchmark economy are presented in section 2. Section 3 is devoted to

the analysis of the tax-subsidy schemes that allow the state to reach second-best allocations.

Section 4 provides a dynamic extension of the benchmark model. The dynamic model is utilized

to yield quantitative evaluations of the impact of layo¤ taxes in section 5. Section 6 concludes.

2 The Benchmark Model

2.1 Preferences and technology

We consider a static economy with a continuum of individuals whose size is normalized to one.

There are two goods: labor and a marketable good produced thanks to labor. Individuals outside
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the labor force do not produce the marketable good. Individuals inside the labor force can be

either employed or unemployed.

An individual is described by a set of exogenous characteristics, denoted by s = (y;z); where

y stands for his ability and z for his taste for leisure. We assume that (y; z) has a joint density

h(y; z) with h > 0 over the support S ½ [ymin;+1)£R; h is continuous. The preferences of the

type-s individual are represented by the utility function v(c + z`), twice derivable, increasing

and strictly concave, where c ¸ 0 denotes consumption, ` 2 f0;1g denotes leisure that amounts

to zero if the individuals is active (either employed or unemployed) and to one if he is not in the

labor force. The set of inactive individuals is denoted by SI and the set of active agents (which

comprises employed and unemployed workers) is denoted by SA:

Creating a job for a type-(y; z) individual entails a …xed cost denoted by k(y) > 0: When

such an individual gets a job, he can produce x ¢ y units of the marketable good where x 2 R

is an idiosyncratic shock drawn in a distribution with a continuous di¤erentiable cumulative

distribution function denoted by G. Each individual can occupy at most one job.

An allocation de…nes the consumption and the employment status of all the agents of the

economy. It is a mapping that associates to each type-s individual, conditional on the realization

of the productivity shock x for active individuals, his consumption: c(s); if s 2 SI, c(s;x) if

s 2 SA; and his employment status: inactive (`(s) = 1), employed (`(s) = 0 and marketable

production = x ¢ y) or unemployed (`(s) = 0 and marketable production = 0): The choice

between employment and unemployment amounts to de…ne the set of values of the productivity

parameter x; denoted by W (y) ½ R; for which the type-(y; z) individuals who belong to SA

work.

All allocations have to satisfy the feasibility constraint:
Z

SA

·
Y (y)¡

Z

R
c(y; z; x)dG(x)

¸
h(y; z)dydz =

Z

SI
c(y;z)h(y;z)dydz; (1)

where Y (y) = y
R
W (y)xdG(x) ¡ k(y) stands for the average net production of employees with
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ability y.

2.2 First-best allocations

First-best allocations are chosen by a fully informed planner who has complete information

on the pair s = (y;z) describing each agent’s characteristics and on the productivity shocks

x. First-best allocations are such that there are no other feasible allocations that can improve

the welfare of at least one agent without worsening the welfare of the others. When an agent

faces risky outcomes – this will be the case for the active agents –, it is assumed that feasible

allocations are ranked according to the expected utility criterion conditional on characteristics

(y; z). The time sequence of events that describes the decision of the planner runs as follows:

1) The planner decides which set of agents s 2 SI are inactive (`(s) = 1), and which set of agents

s 2 SA are allowed to participate in the production of the consumption good (`(s) = 0). The

planner also announces the consumption of the marketable good of every type-s individuals.

The consumption can be conditional on the realization of the productivity shocks for active

individuals.

2) Every individual in SA makes a draw x from the cdf function G that raises his potential

production to the level x ¢ y: After observing x; the planner decides whether each individual

in SA actually produces or not (this is the job destruction decision). Individuals produce and

consume according to the plan announced at step 1).

The …rst-best allocations can be obtained by backward induction.

At step 2), once x has been drawn, it is worthwhile keeping employed the individuals who

produce more on-the-job than in unemployment, i.e. it is worthwhile keeping employed the type-

(y; z) workers such that x ¢ y ¸ 0. Therefore, the choice of the set of values of the productivity

parameter x; denoted by W (y) ½ R; for which the type-(y;z) individuals who belong to SA work,

boils down to the choice of the reservation productivity below which the type-(y;z) individuals

belonging to SA are unemployed. The …rst-best reservation productivity, denoted by X¤; satis…es
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the productive e¢ciency condition:

X¤ = 0: (2)

Since it costs k(y) to assign the type-(y; z) individual to SA, the average net …rst-best produc-

tion of an individual with ability y belonging to SA amounts to Y ¤(y) = ¡k(y)+ y
R+1
0 xdG(x):

At step 1) the planner has to choose the consumption of the marketable good for every indi-

vidual. The consumption of inactive individuals can only depend on their type s. For the active

individuals, the assumption of risk aversion implies that the certainty equivalent income of the

lottery fc(s;x)g is smaller than the expected consumption
R

R c(s; x)dG(x): Accordingly, a social

planner whose decisions are based upon the expected utility criterion can always save resources

by providing to the type-s individuals belonging to SA the certainty equivalent associated with

the lottery fc(s;x)g : It follows that the …rst-best allocations necessarily insure all individuals

in SA against productivity shocks and give them the same consumption whether employed or

unemployed.

At step 1), the planner also chooses the set of individuals who participate in the labor market.

It can easily be understood that the set SA of active agents only comprises type-s individuals

such that Y ¤(y) ¸ z: Imagine that we can …nd in SA an agent with Y ¤(y) < z: This agent

can get the same utility level when he is inactive if his consumption of the marketable good is

decreased by z. This allows the social planner to win z and lose Y ¤(y) as forgone production,

which yields a positive net gain equal to z ¡ Y ¤(y): Thus, it is not optimal to have an active

individual whose taste for leisure is larger that his expected production. An analogous reasoning

shows that the set SI comprises type-s individuals such that Y ¤(y) < z. In other words, the

participation decision reads:

`¤(y; z) =
½

0 if z · Y ¤(y) = ¡k(y) + y
R+1
0 xdG(x)

1 otherwise.
(3)

The properties of the …rst-best allocations are summarized in the following proposition:
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Proposition 1 A feasible allocation is a …rst-best allocation if and only if:

1. Active individuals are employed when x ¸ 0 and unemployed otherwise.

2. Every agent with the same type s belonging to the set SA of active individuals gets the

same consumption level whatever the value of x:

3. The set SA of active individuals comprises all the type-s individuals such that Y ¤(y) ¸ z;

and the set SI of inactive individuals comprises all the agents such that Y ¤(y) < z:

Proof. see appendix A.

Claim 3 of proposition 1 is a particular case of a more general result established in Laroque

(2005) stating that in an economy with labor supply choice at the extensive margin, where the

agents choose whether to work or not to work, it is Pareto optimal that someone works if and

only if his productivity is larger than the extra necessary income to compensate him for the

hardship of work. In our economy, the agents are perfectly insured against unemployment risks

and the extra necessary income to compensate an individual, with taste for leisure z, for being

active is simply equal to z while his expected productivity amounts to Y ¤(y):

3 Second-best allocations and optimal tax-subsidy schemes

This section is devoted to the design of optimal …scal policies in a framework in which the state

is committed to a tax-subsidy scheme and where the marketable good is produced on a perfectly

competitive market. Contrary to the …rst-best environment, the state does not observe the

characteristics of the agents. Namely, the taste for leisure z always remains private information

of the worker. The ability y and the idiosyncratic productivity shock x are observed by the …rm

and the worker but are not veri…able. The distributions of x;y and z are common knowledge.

The state only observes the labor contracts and whether individuals work. This implies that

the state knows who has been …red and is able to distinguish unemployed workers from inactive
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individuals. In this situation, the tax-subsidy scheme can only depend on the elements of the

labor contracts and on the employment status (employed, unemployed, inactive).

First, the decentralized equilibrium is studied. Then, we analyze the optimal policies.

3.1 Decentralized equilibrium

The marketable good is produced by …rms on a competitive market with free entry. As the

labor contracts only stipulate wages, the state can use tax-subsidy schemes conditional on three

elements: 1) the wage, denoted by w; 2) the employment status (employed, unemployed or

inactive); 3) the job destruction decision. Accordingly, the tax-subsidy scheme can comprise a

payroll (or income) tax, ¿(w); a layo¤ tax, f(w); unemployment bene…ts b(w); and a income

guarantee ½ paid to the inactive persons. In this framework, the overall consumption of the

individual who has signed a labor contract that stipulates a wage w amounts to w if he is

employed and to b(w) if he is unemployed. The type-(y;z) individual that does not participate

in the labor market gets a utility level v(z+½). The wage w entails labor costs equal to w+¿(w)

if workers remain employed and to f(w) if they are …red.

The time sequence of events runs as follows:

1) The state announces a balanced budget tax-subsidy scheme f¿(w); f(w); b(w); ½g.

2) Individuals decide whether they belong to the labor force or stay inactive.2

3) Employers enter into Bertrand competition to hire workers.

4) The speci…c productivity shocks x occur and employers decide whether they keep the workers

or they destroy the jobs. Then, employers pay the wage and the payroll tax for every continuing

job. Every destroyed job gives rise to the payment of layo¤ taxes. Employed workers get a

wage w, unemployed workers get unemployment bene…ts b(w) and inactive individuals get the

garantee income ½:
2 It is assumed that individuals who decide to belong to the labor force reveal their true productivity. If they

have the possibility to behave as agents of lower productivity without cost, thruthful revelation would only obtain
under the condition that their wage w be non decreasing in y; a condition that will be satis…ed in equilibrium.
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In this subsection, we characterize the existence and the properties of the competitive equi-

librium of the labor market for the tax-subsidy scheme announced at step 1). This problem can

be solved by backward induction.

At step 4) …rms destroy jobs if and only if their pro…ts, x ¢y¡w¡ ¿(w); are lower than their

destruction costs, ¡f(w): The job destruction decision boils down to the choice of a reservation

value of the productivity parameter x; denoted by X(w;y); below which job are destroyed.3 The

reservation productivity reads:

X(w;y) = [w + ¿(w) ¡ f(w)]=y: (4)

For individuals with ability y; the job destruction rate (or equivalently the unemployment

rate), denoted by q(w;y); is equal to G(X(w; y)):

At step 3), the expected pro…t of an employer o¤ering a contract w to a type-(y;z) worker,

denoted by J(w;y); reads:

J(w; y) = ¡k(y) +
Z +1

X(w;y)
[x ¢ y ¡w ¡ ¿(w)] dG(x)¡ q(w; y)f (w) : (5)

Existence and unicity of the Bertrand equilibrium depend on the properties of the functions

k(¢) and G(¢) and of the functions ¿(¢); b(¢); f(¢) describing the tax-subsidy schedule. We shall

assume that all these functions are such that the expected pro…t J(w;y) satis…es the properties

summarized in Assumption 1:

Assumption 1

1.i) 8y; fw ¸ 0 j J(w;y) = 0g 6= ;:

1.ii) 8y; limw!+1 J(w;y) < 0:
3 This behavior comes from the assumption that the reservation value of the productivity parameter x is not

contractable and that the …rm cannot commit ex-ante to this reservation value by keeping aside funds to be paid
to a third party in case of layo¤. See the discussion in Blanchard and Tirole (2004).
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Conditions 1.i) and 1.ii) are necessary and su¢cient conditions to obtain a unique Bertrand

equilibrium with positive …nite wages.4 More precisely, condition 1.ii) prevents employers from

o¤ering unbounded wages, thus Bertrand competition between the employers drives expected

pro…ts to zero and condition 1.i) states that for any y there exists at least one positive wage

giving an expected pro…t equal to zero. Then the Bertrand equilibrium wage is the highest

value of w that solves the zero pro…t condition J(w;y) = 0: In other words, conditions 1.i) and

1.ii) imply that there exists a unique equilibrium wage contract w(y) o¤ered to the type-(y;z)

workers, which reads:

w(y) = sup fw ¸ 0g j J(w; y) = 0g: (6)

Furthermore, we can obtain a precise result concerning the monotonicity of the equilibrium

wage function w(y) if we add the following (reasonable) assumption.

Assumption 2

2.i) 8y; J(w;y) is continuous in w:

2.ii) 8w; J(w;y) is strictly increasing with respect to y:

Proposition 2 When Assumptions 1 and 2 are satis…ed there exists a unique equilibrium wage

function w(y) which is strictly increasing with respect to the ability level y:

Proof. According to 2.ii), for any y0 > y the Bertrand equilibrium wage w(y) corresponding

to the ability level y satis…es J(w(y); y0) > 0: The limit condition 1.ii) and the continuity condi-

tion 2.i) then imply that there exists (at least) one …nite wage w > w(y) such that J(w; y0) = 0:

Finally, the de…nition (6) of the Bertrand equilibrium wage entails that the Bertrand equilibrium

wage w(y0) corresponding to the ability y0 > y is such that w(y0) ¸ w > w(y):
4 In our model the possibility of negative wages is ruled out for the agents cannot borrow and do not have any

initial resources. Thus, they cannot pay for having a job.
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At step 2), the type-(y;z) individuals decide to enter into the labor market if and only if

the participation constraint5

[1 ¡ q(w; y)]v(w)+ q(w; y)v [b(w)] ¸ v(z + ½)

is ful…lled. This condition implies that only individuals whose taste for leisure z is smaller than

the threshold value, Z(w;y); de…ned by

v [Z(w; y)+ ½] = [1 ¡ q(w; y)] v(w) + q(w;y)v [b(w)] ; (7)

belong to the labor force. Z(w; y) can be interpreted as the …nancial incentives to work provided

to type-(y;z) individuals.

In other words, the participation decision for a type-(y; z) worker receiving a wage o¤er w

reads:

`(y; z) =
½

0 if z · Z(w;y)
1 if z > Z(w;y): (8)

Eventually, given any tax-subsidy scheme f¿(w); f(w); b(w); ½g that satis…es Assumptions 1 and

2, there exists a single decentralized equilibrium that de…nes an allocation entirely characterized

by three functions of y : the wage w(y) (equation (6)) which accrues to type-(y; z) employees, the

…nancial incentives to work Z(w(y); y) (equation (7)) and the reservation productivity X(w(y); y)

(equation (4)) below which jobs are destroyed.

3.2 Optimal tax-subsidy schemes

At decentralized equilibrium, the welfare of each individual is in‡uenced by the tax-subsidy

scheme chosen by the state. We shall use a Pareto criterion to de…ne the optimal policies. By

de…nition, a tax-subsidy scheme is optimal if it is feasible (i.e. satis…es the budget constraint of

the state) and if there is no other feasible tax-subsidy scheme that can improve the welfare of at

least one agent without worsening the welfare of the others. In other words, optimal tax-subsidy
5 It should be noted that when Proposition 2 is satis…ed, any active worker has interest to reveal his true ability.
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schemes implement second-best allocations. Like in the …rst-best environment, second-best

allocations must satisfy e¢ciency conditions concerning the insurance against unemployment

risk, the job destruction decisions, and the choice between activity and inactivity. In the sequel,

we characterize more intuitively than rigorously the properties of second-best allocations. A

formal proof of all these properties is given in Appendix B.

Insurance

It can easily be understood that e¢ciency requires that the state, which provides the unem-

ployment bene…ts b(w), must insure the active agents against unemployment risks. The expected

utility of an agent who accepts a contract o¤ering a wage w amounts to (1¡ q)v(w)+ qv(b(w)):

Risk aversion implies that the certainty equivalent income of the lottery fw;b(w); qg is smaller

than the expected consumption (1¡ q)w+ qb(w): Therefore, the state can always save resources

by designing a tax-subsidy scheme that provides to any active agent the certainty equivalent of

his income whether he is employed or unemployed. Hence, any optimal policy satis…es:

b(w) = w: (9)

Job destruction

Alike what happens in the …rst-best environment, e¢ciency requires the productive e¢ciency

condition (2) to be satis…ed. The reason is that it is not worth having an individual employed

and producing x ¢ y < 0: As individuals are fully insured against the unemployment risk, they

get the same utility level whether employed or unemployed, but the overall production is larger

when jobs producing x ¢ y < 0 are destroyed (because the production of an unemployed is equal

to 0). Looking at the market value of the reservation productivity given by equation (4), it

follows that any optimal policy has to satisfy:

w + ¿(w) ¡ f(w) = 0: (10)
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In such circumstances, one has X(w(y); y) = X¤ = 0 and the equilibrium job destruction rate

is equal to q(w(y); y) = G(0); and the average net production of an active individual of ability

y is worth Y ¤(y) = ¡k(y)+ y
R +1
0 xdG(x):

Participation decisions

The e¢ciency requirement on participation decisions amounts to impose constraints on the

…nancial incentives to work Z(w(y); y) that will be denoted as Z(y): The simple idea here,

recently put to the fore by Laroque (2005), is that feasible allocations can be second-best if and

only if individuals are not overtaxed. This result can be understood by looking at the relation

between the budget of the state and the …nancial incentives to work. The net surplus that the

state gets from individuals of ability y; denoted by B(y); is equal to the production of active

individuals minus their …nancial incentives to work, minus the cost of the income guarantee.

Speci…cally:6

B(y) = [Y ¤(y) ¡ Z(y)]H [y; Z(y)] ¡ ½
Z +1

¡1
h(y;z)dz;

where H(y;Z) =
R Z
¡1h(y;z)dz denotes the distribution of the tastes for leisure conditional on

the ability y of individuals, or, in other words, the labor force participation rate of the individuals

with ability y when the …nancial incentives to work amount to Z:

In this context, the set of agents of ability y is overtaxed at …nancial incentives to work Z(y)

if there is some Z > Z(y) such that [Y ¤(y) ¡ Z]H [y;Z] ¸ [Y ¤(y) ¡Z(y)] H [y; Z(y)] : If agents

of ability y are overtaxed at Z(y), the state can provide them a higher level of utility, equal

to max [v(Z + ½); v(z + ½)], with at least the same income [Y ¤(y) ¡Z] H [y; Z] : Accordingly,

overtaxation cannot be optimal. More precisely, Laroque (2005, theorem 3) has shown that

feasible …nancial incentives to work Z(y); such that Z(y) · Y ¤(y);7 support a second-best
6 Using equations (5), (9) and (10), the free entry condition J(w; y) = 0 implies that taxes levied on an employed

worker of ability y are equal to ¿ (y) = Y ¤(y) ¡w(y): When active individuals are perfectly insured, equations
(7) and (9) imply that Z (y) = w(y) ¡ ½. Therefore; one gets ¿ (y) = Y ¤(y) ¡Z(y)¡ ½: Moreover, every inactive
individual costs ½:

7 Following Laroque, we restrict the analysis of necessary and su¢cient conditions to tax-subsidy schemes
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allocation if and only if no category of ability y is overtaxed at Z(y). Let us denote by ~Z(y)

any function8 that belongs to the set of second-best …nancial incentives to work and such that

~Z(y) · Y ¤(y). Then, the properties of the optimal tax-subsidy schemes are summarized in the

following proposition.

Proposition 3 When Assumptions 1 and 2 are satis…ed, a feasible tax-subsidy scheme f¿ (w); f(w); b(

such that ¿(w) + ½ ¸ 0 is optimal if and only if:

1. b(w) = w

2. f(w) = b(w) + ¿ (w)

3. The payroll tax schedule ¿(w) is de…ned by:

¿(w) = Y ¤
h

~Z¡1(w ¡ ½)
i

¡w with ½ =
Z +1

ymin

h
Y ¤(y) ¡ ~Z(y)

i
H

h
y; ~Z(y)

i
dy

Proof. see appendix B.

This proposition shows that second-best optimal policies necessarily include layo¤ taxes.

More precisely, its condition 2. states that the optimal tax-subsidy schemes comprise layo¤ taxes

that cover the social cost of job destructions, which amounts to the sum of the unemployment

bene…ts and the payroll tax. In other words, the social cost of job destructions is equal to the

loss imposed to the state, which comprises the unemployment bene…ts, b(w); that are obtained

by the unemployed worker, but not by the employee, plus the payroll tax, ¿(w); that is payed

when the job is …lled, but not any more when it is destroyed.

such that Z(y) · Y ¤(y): Looking at more general tax-subsidy schemes is interesting but is not central to our
analysis. Since ¿(y) = Y ¤(y) ¡Z (y)¡ ½ and ½ ¸ 0; the assumption Z(y) · Y ¤(y) is equivalent to ¿(y) + ½ ¸ 0:
This condition simply states that net taxes payed by active individuals have to be positive. Net taxes are
equal to the taxes levied on the production of the employees, ¿ (y)(1¡ q(y)) + q(y)f(y); minus unemployment
bene…ts, q(y)b(y), plus the income guarantee ½: Using the condition f(w(y)) = b(w(y)) + ¿ (w(y)) one gets
¿ (y)(1¡ q(y)) + q(y)f (y)¡ q(y)b(y) + ½ = ¿(y) + ½:

8 It should be noticed that Z(y) is necessarily increasing as equations (7) and (9) imply that Z (y) = w(y) ¡ ½,
where w(y) is an increasing function according to Proposition 2.
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From this point of view, it is worth stressing that the social cost of job destruction only

amounts to the unemployment bene…ts when the aim of the state is to provide insurance to

active individuals without cross-subsidization among individuals with di¤erent types s: This

case is characterized by the following Corollary:

Corollary 1 The single …rst-best allocation attainable through the market allocation is imple-

mented by the following tax-subsidy scheme:

f(w) = b(w) = w; ½ = ¿(w) = 0 (11)

The allocation is characterized by:

c(s) =
½

Y ¤(y) if z · Y ¤(y)
0 otherwise ; `(s) =

½
0 if z · Y ¤(y)
1 otherwise

Proof. Condition 1 of Proposition 1 is satistied if b(w) = w: Equations (2) and (4) imply

that condition 2 of Proposition 1 is satis…ed if f(w) = b(w) and ¿(w) = 0: According to condition

3 of Proposition 1, a …rst-best allocation requires that Z(y) = Y ¤(y): According to equation

(7), one gets Z(y) = w(y) = b(w(y)) if ½ = 0 and b(w) = w: Then, equations (5) and (6) imply

that Z(y) = Y ¤(y) if Z(y) = w(y) = b(w(y)) = f(w(y)) and ¿(w) = 0:

Corollary 1 indicates that, in the …rst-best, unemployment bene…ts should not be …nanced by

income taxes because there is no cross-subsidization across di¤erent types-s individuals. Unem-

ployment bene…ts should be …nanced by layo¤ taxes only. When there is no cross-subsidization

among individuals with di¤erent types s, every type-(y;z) individual gets the amount of mar-

ketable good that corresponds to his expected production, Y ¤(y), when he participates in the

labor market and zero otherwise. In other words, the …nancial incentives to work take their max-

imum value: Z(y) = Y ¤(y): This implies that the decentralized equilibrium yields a …rst-best

allocation.

Corollary 1 generalizes the result of Blanchard and Tirole (2004) – obtained in a framework

with a single type s – according to which e¢ciency requires that layo¤ taxes be equal to un-
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employment bene…ts. Our approach, that takes into account the heterogeneity of individuals

in the tradition of Mirrlees (1971), allows us to analyze how layo¤ taxes should be integrated

in optimal tax-subsidy schemes when there is redistribution of income across individuals with

di¤erent types in the presence of endogenous job destruction.

From this point of view, it is worth noting that Proposition 3 implies that the layo¤ tax

is necessarily larger than unemployment bene…ts for at least some type-(y; z) workers, because

positive ¿(w(y)) are needed for at least some type-(y; z) when there is a positive income guarantee

½ or redistribution of income across individuals with di¤erent types. It is the presence of payroll

taxes that distorts the participation decisions. The negative impact of income taxation on

labor supply is at the basis of the problem tackled by the research on optimal taxation à la

Mirrlees (1971) and Diamond (1980) in which the state faces a trade-o¤ between the degree of

redistribution of income and the degree of participation in the labor force. When job destruction

decisions are taken into account, layo¤ taxes belong very naturally to any optimal tax-subsidy

scheme. In other words, layo¤ taxes are not only useful to …nance unemployment bene…ts, as it

is usually acknowledged, they are also useful to induce individuals to internalize the impact of

their job destructions decisions on the budget of the state when there is income redistribution

across individuals with di¤erent abilities y and di¤erent tastes for lesure.

It has just been claimed that layo¤ taxes should be integrated in optimal tax-subsidy schemes.

However, most actual tax schemes9 do not comprise layo¤ taxes. So, the question that naturally

arises is: what is the loss induced by the absence of layo¤ taxes in actual tax schemes? In

other words, what supplementary public budget can we raise by introducing layo¤ taxes in a

tax-subsidy scheme without layo¤ tax? A related issue is the optimal level of the layo¤ tax.

Unfortunately, our static model is of little help to address such issues. It only indicates that the
9 There are some exceptions, such as the Contribution Delalande in France for instance, according to which

employers must pay layo¤ taxes to …re workers who are more than 50 years old. The aim of this tax is to induce
the employers to take into account the social cost of the layo¤ of senior workers whose probability to …nd a job
once …red is very small in France.
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layo¤ tax should be equal to the social cost of job destructions, which amounts to the sum of

the payroll tax and the unemployment bene…ts in a static framework. However, the social cost

is obviously related to unemployment and job durations. From this point of view, a dynamic

model, that accounts for labor market ‡ows, is essential to evaluate the quantitative impact of

layo¤ taxes.

4 A dynamic version of the benchmark model

The economy is basically the same as in the benchmark model except that time is continuous

and individuals live forever.

An individual is still described by a pair of constant exogenous characteristics s = (y; z) where

y stands for his ability and z for his taste for leisure. We assume that (y;z) has joint density

h(y; z) with h > 0 over the support S ½ [ymin; +1) £ R; h is continuous. The preferences of

the type-s individuals are represented by the discount rate r > 0 and the instantaneous utility

function v(c + z`), twice di¤erentiable, increasing and strictly concave, where c ¸ 0 denotes

instantaneous consumption, ` 2 f0; 1g denotes instantaneous leisure that amounts to zero if the

individual is active (either employed or unemployed) and to one if he is not in the labor force.

Individuals who look for a job get o¤ers at an exogenous Poisson rate :̧ Once a worker has

gotten an o¤er, he can immediately start to produce. Creating a job for a type-(y; z) individual

entails a …xed cost denoted by k(y) > 0:

A starting job occupied by an individual with ability y produces xU ¢ y units of the mar-

ketable good per unit of time, where xU is the upper bound of the time invariant cumulative

distribution10 G(:): Occupied jobs face idiosyncratic productivity shocks with constant arrival

rate ¹: When a productivity shock occurs, a new value of the idiosyncratic productivity, denoted

by x; is drawn from the distribution G(:); and the productivity of the job amounts to x ¢ y: In
10 The assumption that all jobs start at at the maximum possible production is familiar in matching models

with endogenous job destructions (see Mortensen and Pissarides, 1994). This assumption simpli…es the model
without substantialy changing the results that could be achieved with other, perhaps more realistic, assumptions.
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this context, it turns out that jobs are destroyed if x is below a reservation value, denoted by

X(y):

An allocation de…nes, for each date t ¸ 0; the consumption and the employment status of

all the agents of the economy. Namely, it is a mapping that associates to each type-s individual,

conditional on the realization of productivity x for active individuals, his consumption and his

employment status at every date. All allocations have to be feasible, i.e. the overall consumption

of the marketable good cannot exceed the global resources at the disposal of the social planner.

For the sake of simplicity, we consider the case of a “small open economy” within which the

state can borrow and lend on a perfect market at an exogenous interest rate denoted by r. This

assumption allows us to focus only on stationary allocations.

4.1 First-best allocations

Let us begin to analyze the case in which the allocation is chosen by a social planner who

has the same information set as in the …rst-best case of the static model – see § 2.2) –, which

means that the planner has complete information on the pair s = (y; z) describing each agent’s

characteristics. As in the static environment, …rst-best allocations are such that there are no

other feasible allocations that can improve the welfare of at least one agent without worsening

the welfare of the others. It is assumed that feasible allocations are ranked according to the

expected utility criterion conditional on characteristics (y; z); but not on the employment status

of type-(y; z) individuals at date t = 0:

The planner chooses an allocation at date t = 0: At this date, the state of the economy is

described by the function l0(y) ¸ 0 that de…nes the number of jobs occupied by individuals

with ability y: For the sake of simplicity, we consider initial conditions in which only individuals

belonging to the (…rst-best) set SA of active individuals may be employed at date t = 0:11 The
11 Looking at initial conditions in which the social planner destroys jobs at t = 0 because some employees

belong to the (…rst-best) set of inactive individuals at t = 0 would complicate the presentation without adding
any interesting insight for our purpose.
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time sequence of events runs as follows:

1) At date t = 0; the social planner announces the consumption of the marketable good of every

type-s individuals, conditional on the productivity x for active individuals, that will prevail

at every date t ¸ 0. The social planner decides which set of agents s 2 SI will be inactive

(`(s) = 1), and which set of agents s 2 SA will be allowed to search for a job (`(s) = 0) at every

date t ¸ 0. The social planner also announces which …lled jobs will be destroyed once hit by a

productivity shock at every date t > 0.

2) At any date t ¸ 0; the individuals participate in the labor market, produce and consume

according to the plan announced at t = 0.

The properties of the …rst-best allocations are derived in appendix C.1. They are summarized

in the following Proposition:

Proposition 4 A feasible stationary allocation is a …rst-best allocation if and only if:

1. Filled jobs whose productivity is below the reservation value X¤(y) de…ned by

X¤(y) =
¸ [xUy ¡ (r + ¹)k(y)] ¡ ¹y

R xU
X¤(y)xdG(x)

y [¸ + r + ¹G(X¤(y))]

are destroyed.

2. Every individual with the same type s belonging to the set SA of active individuals gets the

same consumption level whether employed of unemployed.

3. The set SA of active individuals comprises all the type-s individuals whose taste for leisure

z is below the expected production ‡ow of a job seeker, Y ¤
U (y); de…ned by:

rY ¤
U (y) =

¸ [xU ¡X¤(y)] ¡ (r + ¹)k(y)
r + ¹

and the set SI of inactive individuals comprises all the agents such that z > rY ¤
U(y):
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Proposition 4 shows that the …rst-best allocations of the dynamic model look like those of the

static model (described in Proposition 1). First, all jobs whose discounted expected production

is below the value of the discounted expected production of a job seeker are destroyed. Second,

it is always optimal to insure individuals. Accordingly, consumption is conditional on the type-s

of individuals, but does not hinge on the realization of productivity shocks. Third, type-(y;z)

individuals participate in the labor market only and only if their taste for leisure z is smaller

than rY ¤
U (y); which is their discounted expected production ‡ow in unemployment.

However, it is worth noting that, contrary to the static case, employment is not constant

over time. At t = 0; there are l0(y) job …lled by individuals with productivity y; and the law

of motion of the number of jobs …lled by individuals with productivity y, denoted by l(y), is

de…ned by

_l(y) = ¸ [H(y;rY ¤
U(y)) ¡ l(y)] ¡¹G(X¤(y))l(y);

where H(y; rY ¤
U (y)) =

R rY ¤U(y)
¡1 h(y;z)dz denotes the …rst-best labor force participation rate of

individuals with ability y.

4.2 Second-best allocations

Let us now consider the design of optimal …scal policies in a second-best environment in which

the state does not observe the characteristics of the agents, as in section 3.

The state is committed, at date t = 0; to a time invariant tax-subsidy scheme f¿(w); f(w); b(w); ½g :

Individuals evolve in a decentralized economy in which …rms enter into Bertrand competition

to hire workers. Namely, it is assumed that when a job seeker has met a …rm, the information

is instantly known to other …rms that can make job o¤ers. We shall use the same Pareto cri-

terion to de…ne the optimal policies as in the static environment of section 3. By de…nition, a

tax-subsidy scheme is optimal if it is feasible and if there is no other feasible tax-subsidy scheme

that can improve the welfare of at least one agent without worsening the welfare of the others.

In other words, optimal tax-subsidy schemes implement second-best allocations. Like in the
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…rst-best, it is assumed that feasible allocations are ranked according to the expected utility

criterion conditional on characteristics (y;z); but not on the employment status of type-(y;z)

individuals at date t = 0:

At t = 0, the state of the economy is described by the function l0(y) ¸ 0 that de…nes

the number of …lled jobs for every productivity level y: As in the …rst-best, we consider initial

conditions in which only individuals belonging to the (second-best) set SA of active individuals

may be employed at date t = 0: The time sequence of events runs as follows:

1) At date t = 0; the state chooses a time invariant tax-subsidy scheme f¿(w); f(w); b(w); ½g :

2) At dates t > 0;

- individuals decide whether they search for a job or stay inactive.12

- employers enter into Bertrand competition to hire workers.

- the idiosyncratic productivity shocks x occur and employers decide whether they keep

the workers or they destroy the jobs. Then, employers pay the wage and the payroll tax for every

continuing job. Every destroyed job gives rise to the payment of layo¤ taxes. Employed workers

get a wage w, unemployed workers get unemployment bene…ts b(w) and inactive individuals get

the garantee income ½:

Then, like in the static case, we focus on stationary tax-subsidy scheme f¿(w); f(w); b(w); ½g

that satisfy some properties. These properties, which replicate Assumptions 1 and 2 in a dynamic

framework, are presented in Assumptions A1 and 12 in Appendix C.2. Once the state has

announced a stationary tax-subsidy scheme f¿(w); f(w); b(w); ½g that satis…es these properties,

there exists a unique stationary equilibrium value of the wage w(y); the …nancial incentives

to work Z(y) and the reservation productivity X(y): These three variables, which are forward

looking, jump on their stationary value at t = 0. Therefore, the number of individuals with
12 This step di¤ers from the static case, because it takes time to search for a job. Hence, knowing the tax-subsidy

scheme, the workers must …rst decide if they engage in searching for a job. Notwithstanding, alike the static case,
it is assumed that individuals who decide to belong to the labor force reveal their true productivity (see foonote
2).
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ability y who participate in the labor market, denoted by n(y) =
R Z(y)
¡1 h(y; z)dz; also jumps

on its stationary equilibrium value at t = 0. The same holds true for the job destruction

rate ¹G(X(y)): In this framework, employment of workers with ability y; denoted by l(y); is a

predetermined variable whose dynamics is de…ned by the equation

_l(y) = ¸ [n(y) ¡ l(y)] ¡ q(y)l(y); (12)

and by the initial value of l(y) at date t = 0; denoted by l0(y):

The properties of the optimal tax-subsidy schemes are characterized for any second-best

…nancial incentives to work ~Z(y) such that ~Z(y) · rY ¤
U (y); where Y ¤

U (y) denotes the present

value of the discounted life time production of an unemployed worker13 . These properties,

analyzed in details in appendix C.2, are closely related to those highlighted in the static model:

there is perfect insurance against unemployment risk and layo¤ taxes are needed to obtain

e¢cient job destructions. These properties are summarized in the following proposition:

Proposition 5 When Assumptions A1 and A2 are satis…ed, a feasible tax-subsidy scheme

f¿(w); f(w); b(w); ½g such that ¿(w) + ½ ¸ r [b(w) ¡ ½] =¸ is optimal if and only if:

1. b(w) = w

2. (r + ¸)f(w) = b(w)+ ¿(w); f 0(w) > 0
13 Like in the static model, we restrict the analysis of necessary and su¢cient conditions to tax-subsidy schemes

such that ~Z(y) · rY ¤U (y) which is equivalent to restrict the analysis to the cases in which net taxes payed by
active individuals are positive. It is shown, in Appendix C.2, equation (C24), that the discounted value of taxes,
minus unemployment bene…ts, payed by an individual with abililty y who enters into the labor force, denoted by
BU(y); solves

rBU(y) = ¡ r + q(y)
r + ¸+ q(y)

b(y) +
¸

r + ¸+ q(y)
[¿ (y) + qf(y)] :

Discounted net taxes payed by an individual with ability y who enters into the labor market are equal to BU(y)
plus the discounted value of the income guarantee, ½=r: Using the condition (r + ¸)f(w(y)) = b(w(y)) + ¿(w(y)),
it is easy to check that BU (y) + (½=r) ¸ 0 is equivalent to ¿ (w) + ½ ¸ r [b(w)¡ ½]=¸:
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3. The payroll tax schedule ¿(w) is de…ned by:

¿(w) =
r +¸

¸
rY ¤
U

h
~Z¡1(w ¡ ½)

i
¡ w

with ½ =
Z +1

ymin

·
rY ¤
U (y)

[n(y)¡ l0(y)]¸ + rl0(y)
¸

¡ ~Z(y)n(y)
¸

dy

Proposition 5 allows us to shed some light on the interpretation of the social cost of job

destruction in a dynamic context. According to claim 2., it turns out that the social cost of job

destruction amounts to the discounted value of the loss borne by the state. During the spell in

which the worker who has been …red is unemployed, the state losses the unemployment bene…ts

and the tax that the worker would pay if he was employed. As the exit rate from unemployment

is ,̧ the discounted cost of the destruction of a job with a wage w; denoted by C(w); satis…es

the Bellman equation

rC(w) = b(w) + ¿(w) ¡¸C(w); (13)

which yields a value of the social cost of job destruction equal to the layo¤ tax de…ned in

Proposition 5.

5 Quantitative analysis

The quantitative analysis aims at analyzing the potential loss entailed by tax-subsidy schemes

that do not utilize layo¤ taxes.

5.1 The benchmark calibration

The values of the parameters are chosen to represent the main features of a typical Continental

European economy with high level of redistribution of income and high unemployment rate.

Laroque (2005) suggests that the French economy is close to the La¤er bound, which corre-

sponds to the tax schedule that maximizes the income guarantee. Accordingly, our benchmark

calibration assumes that the economy is on its La¤er bound and that there are payroll taxes

but no layo¤ taxes. Then the impact of the introduction of layo¤ taxes is analyzed.
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The annual discount rate, r; is equal to 0:05. The abilities, y; and the tastes for leisure, z;

have independent Log Normal Distributions. The distribution of the idiosyncratic productivity

shocks, x, is uniform over the interval [xinf ; xU] : The upper bound of the idiosyncratic produc-

tivity shocks, xU ; is normalized to 1: The job creation cost is a linear function of the ability:

k(y) = c ¢ y: The value of the hiring cost parameter c is set to 0:15 in line with the calibrations

of Mortensen and Pissarides (1999, p. 2605) based on empirical evidence. When f(w) = 0 and

k(y) = c ¢ y; the threshold value X(y) below which jobs are destroyed does not depend on the

ability (see equation (C16) in appendix B) and can be denoted X. Thus the ‡ows equilibrium

on the labor market reads ¸u = ¹G(X)(1¡u); where u stands for the aggregate unemployment

rate.

The average unemployment spell is assumed to be equal to one year (¸ = 1) and the aggregate

unemployment rate u amounts to 10 percent. Thus the ‡ows equilibrium on the labor market

implies that the annual job destruction rate ¹G(X) amounts to 11.11 percent. From an empirical

perspective, there is no way to distinguish the arrival rate of shocks ¹ from the reservation

productivity X and thus from the lower bound of the productivity xinf . In the benchmark

calibration, it is assumed that xinf = 0:5 which implies that ¹ = 0:117:14

Then, the properties of the distributions of the abilities and the taste for leisure have been set

to reach an aggregate employment rate of 60 percent. Namely, the mean and standard deviation

of z are normalized to zero and 1 respectively. The lower bound of z is equal to ¡1. The lower

bound of y is zero and its standard deviation is also equal to 1. The average of y has been set

to 1.977 in order to get an employment rate of 60 percent.

Table 1 shows the consequence of the introduction of layo¤ taxes on the stationary values
14 With f (w) = 0 and k(y) = c¢y; equation (C16) in appendix C.2 givesX = xU¡c(r+¹). The distribution of the

idiosyncratic shocks, x; being uniform over the interval [xinf; xU ], the job destruction rate reads ¹G(X) = ¹ X¡xinf
xU¡xinf

;
which implies that the relation between xinf and ¹ is de…ned by:

¹
xU ¡ c(r + ¹) ¡ xinf

1¡ xinf = ¹G(X)

Setting ¹G(X) = 0:111; xU = 1; r = 0:05; c = 0:15; and xinf = 0:5 in this latter equation yields ¹= 0:117:
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Without layo¤ tax With layo¤ tax Di¤erence
Job destruction rate (%) 11.11 7.78 -29.27%
Unemployment rate (%) 10.0 7.21 -29%
Employment rate (%) 60.00 62.07 +3.45%
Output 24.30 24.77 +1.93%
Income guarantee 1.18 1.20 +1.64%

Table 1: The performance of the benchmark economy with layo¤ tax and without layo¤ tax.

of the job destruction rate, the unemployment rate, the employment rate, the output level and

the income guarantee.15 The …rst column yields the value of these variables in the benchmark

Rawlsian16 economy without layo¤ taxes. Then, the second column displays the stationary values

of the same variables when the state introduces an optimal layo¤ tax schedule (i.e. satisfying

Proposition 5) in such an economy.

It turns out that layo¤ taxes reduce unemployment, increase the employment rate, increase

ouput and allows the state to increase the income guarantee. There is a strong drop in the job

destruction rate and in the unemployment rate (around 29 percent for each). The employment

rate increases for two reasons: the drop in the unemployment rate and the slight increase

(+0.34 percent) in the participation rate. The increase in output is smaller than the increase

in employment because the introduction of layo¤ taxes induces …rms to keep jobs with lower

productivity.

In order to look at welfare issues, we analyze the consequences of the introduction of layo¤

taxes on the consumption index c+ z` of all type-(y; z) of individuals. Inactive individuals, with

z > Z(y); get a consumption index equal to z + ½ and active individuals, with z · Z(y); get

w(y) = Z(y) + ½: Figure 1 displays the relative consumption gains (c+z`)¤¡(c+z )̀
c+z` resulting from

the introduction of layo¤ taxes where (c + z`)¤ denotes the value of the consumption index in

the economy with layo¤ taxes and (c + z`) stands for the consumption index in the economy

without layo¤ taxes. It can be seen that all individuals are strictly better-o¤ in the economy
15 We compare steady states. Details are given in Appendix C.3.
16 An economy that reaches its La¤er bound is called ‘Rawlsian’ because the income guarantee is maximized.
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Figure 1: Consumption gains (in %) resulting from the introduction of layo¤ taxes in the
Rawlsian economy.

with layo¤ taxes than in the economy without layo¤ taxes. The maximal increase (measured

in percentages) in the consumption index is equal to 2.65 percent. The relative increase in the

consumption index is larger for the individuals with low productivity. It is also larger for the

individuals who participate in the labor market (because their wage increases more than the

garantee income) than for those who are inactive.

5.2 Robustness checks

The quantitative impact of layo¤ taxes on aggregate output, employment and welfare is closely

related to the job destruction and creation process. From this point of view, the arrival rate of

job o¤ers, ¸; and the arrival rate of productivity shocks, ¹; turn out to have a strong in‡uence

on the quantitative impact of layo¤ taxes. This issue is illustrated in Tables 2 and 3 where

di¤erent values of the arrival rates of job o¤ers and productivity shocks are considered. All the

other parameters remain unchanged.

Table 2 displays the magnitude of the change in output, employment and income guarantee
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¸ Emp rate ¢ Output (%) ¢ Emp (%) ¢ Income guarantee (%)
1 (benchmark) 60.00 1.93 3.45 1.64

2 63.88 0.52 0.94 0.45
3 65.27 0.23 0.44 0.21

Table 2: Robustness checks: changes in output, employment rate and guarantee income induced
by the introduction of layo¤ taxes for di¤erent values of the arrival rate of job o¤ers.

when optimal layo¤ taxes are introduced for di¤erent values of the arrival rate of job o¤ers.

As we have considered a low value of the arrival rate of job o¤ers in the benchmark economy,

corresponding to a typical Continental European country with long unemployment spells, we

look at higher values of :̧ As all the other parameters remain unchanged, the higher value of the

arrival rate of job o¤ers changes the employment rate, whose value is given in the …rst column of

Table 2. Table 2 shows that the gains induced by the introduction of layo¤ taxes decrease with

the arrival rate of job o¤ers. It is because the social cost of job destruction (de…ned in equation

(13)) increases with the length of the unemployment spell. Accordingly, the introduction of

layo¤ taxes yields higher returns in economies where the duration of unemployment is longer.

Table 3 shows what happens with di¤erent values of the arrival rate of productivity shocks.

Let us recall that the job destruction rate amounts to 11.11 percent in the benchmark, which

is a relatively low value. Therefore, we look at higher values of the arrival rate of productivity

shocks. These higher values lead to lower employment rates whose values are given in the …rst

column of Table 3.

It appears that the gains induced by the introduction of layo¤ taxes get larger when the ar-

rival rate of productivity shocks is raised. As unemployment increases with this parameter, these

results also suggest that layo¤ taxes become more e¢cient in economies where unemployment

is high.
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¹ Emp rate ¢ Output (%) ¢ Emp (%) ¢ Income guarantee (%)
0.117 (benchmark) 60.00 1.93 3.45 1.64
0.15 58.02 2.84 5.11 2.40
0.20 55.32 4.48 8.17 3.75

Table 3: Robustness checks: change in output employment rates and income guarantee induced
by the introduction of layo¤ taxes for di¤erent values of the arrival rate of productivity shocks.

6 Conclusion

This paper shows that optimal tax-subsidy schemes should comprise layo¤ taxes. It turns out

that optimal layo¤ taxes are linked to the intensity of the redistribution of income: the optimal

layo¤ tax is equal to the social cost of job destruction, which amounts to the discounted value of

the unemployment bene…ts paid to the …red worker plus the payroll taxes (used to redistribute

income across individuals with di¤erent abilities or di¤erent tastes for leisure) that the state

losses when the job is destroyed. Accordingly, layo¤ taxes should represent a larger share of the

wage when there are higher payroll taxes due to a more intensive redistribution of income.

Moreover, quantitative exercises suggest that the absence of layo¤ taxes found in most ac-

tual tax-subsidy schemes can give rise to signi…cant welfare losses. Our benchmark simulation

indicates that the introduction of layo¤ taxes may increase the employment rate by 3.5 percent

and increase GDP by 2 percent in economies in which the redistribution of income is close to

the La¤er bound.

Although we think that our result according to which optimal tax-subsidy schemes should

comprise layo¤ taxes is general and relevant, our analysis needs to be further developed in some

directions. First, our framework takes into account only some externalities induced by job de-

struction decisions. Actually, search and matching models stress that job destructions induce

search externalities which imply that the decentralized equilibrium does not yield enough job

destructions (Aghion and Howitt, 1998, Mortensen and Pissarides, 1999). From this perspective,

it would be worth introducing negative layo¤ taxes (Cahuc and Zylberberg, 2004, chapter 10).
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We need to know more on the interactions between externalities and on their relative magnitude

to know the optimal level of layo¤ taxes. Second, our framework assumes a very simple form of

labor contracts, without ex-post bargaining that gives rise to hold-up problems. Moral hazard

linked to unemployment insurance has also been neglected. Such issues, which have been ex-

plored by Blanchard and Tirole (2004) in a static framework without heterogenous individuals,

are worth studying. Third, our assumption of an exogenous arrival rate of job o¤ers does not

allow us to account for the reaction of job creation to changes in the tax-subsidy schemes. These

developments are on our research agenda.
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Appendix

A Proof of Proposition 1

Necessary conditions have been shown in the text. It remains to be proved that any feasible allocation

which satis…es conditions 1, 2 and 3 is Pareto optimal. Let us show that an allocation that makes every

agent as least as well o¤ and some strictly better o¤ than an allocation which satis…es conditions 1, 2

and 3 is not feasible.

The feasibility constraint for a …rst-best allocation which satis…es conditions 1, 2 and 3 and yields

consumptions denoted by c(y; z) reads
Z

SA

Y ¤(y)h(y;z)dydz =
Z

SA

c(y; z)h(y;z)dydz +
Z

SI

c(y; z)h(y; z)dydz;

where Y ¤(y) = y
R+1
0 xdG(x) ¡ k(y) stands for the average …rst-best net production of employees with

ability y.

Let us denote by ĉ(y;z; x) the consumption of type-(y; z) active individuals and by ĉ(y; z) the con-

sumption of type-(y; z) inactive individuals for a feasible allocation (called henceforth the alternative

allocation) that makes every individual at least as well o¤ and some strictly better o¤ than a …rst-

best allocation (called henceforth the initial allocation) which satis…es conditions 1, 2 and 3 and yields

consumptions denoted by c(y; z).

The feasibility constraint for the alternative allocation reads
Z

SÂ

Ŷ (y)h(y; z)dydz =
Z

SÂ

µZ

R
ĉ(y; z;x)dG(x)

¶
h(y; z)dydz +

Z

S Î

ĉ(y; z)h(y;z)dydz;

where Ŷ (y) = y
R

Ŵ (y) xdG(x) ¡ k(y) stands for the average net production of employees with ability y

and SÂ, SÎ denote the set of active and inactive individuals respectively.

Let us denote by SAÂ the set of agents who are active in both allocations, by SIÎ the set of those

who are inactive in both allocations, by SAÎ the set of those who are active for the initial allocation and

inactive for the alternative allocation, by SIÂ the set of those who are inactive for the initial allocation

and active for the alternative allocation. By de…nition one gets:
Z

SAÂ

µZ

R
ĉ(y; z; x)dG(x)

¶
h(y; z)dydz +

Z

SIÎ

ĉ(y; z)h(y; z)dydz ¸
Z

SAÂ[SIÎ

c(y; z)h(y; z)dydz

Z

SAÎ

[ĉ(y; z) + z] h(y; z)dydz ¸
Z

SAÎ

c(y; z)h(y; z)dydz

Z

SIÂ

µZ

R
ĉ(y; z; x)dG(x)

¶
h(y;z)dydz ¸

Z

SIÂ

[c(y; z) + z] h(y; z)dydz;
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with some strict inequality. Summing up the three previous equations yields
Z

SÂ

µZ

R
ĉ(y; z; x)dG(x)

¶
h(y; z)dydz +

Z

SÎ

ĉ(y; z)h(y; z)dydz >

Z

S
c(y; z)h(y; z)dydz +

Z

SIÂ

zh(y; z)dydz ¡
Z

SAÎ

zh(y; z)dydy: (A1)

From condition 3 it follows that

Z

SIÂ

zh(y; z)dydz ¸
Z

SIÂ

Y ¤(y)h(y; z)dydz

Z

SAÎ

zh(y; z)dydz ·
Z

SAÎ

Y ¤(y)h(y; z)dydz:

These two equations imply, together with (A1):

Z

SÂ

µZ

R
ĉ(y; z; x)dG(x)

¶
h(y; z)dydz +

Z

SÎ

ĉ(y; z)h(y; z)dydz >

Z

S
c(y; z)h(y; z)dydz +

Z

SIÂ

Y ¤(y)h(y;z)dydz ¡
Z

SAÎ

Y ¤(y)h(y; z)dydz:

As c(y; z) is feasible, it satis…es
Z

S
c(y; z)h(y; z)dydz =

Z

SAÎ[SAÂ

Y ¤(y)h(y; z)dydz;

which yields

Z

SÂ

µZ

R
ĉ(y; z; x)dG(x)

¶
h(y; z)dydz +

Z

SÎ

ĉ(y; z)h(y; z)dydz >

Z

SAÎ [SAÂ

Y ¤(y)h(y;z)dydz +
Z

SIÂ

Y ¤(y)h(y; z)dydz ¡
Z

SAÎ

Y ¤(y)h(y; z)dydz =
Z

SIÂ[SAÂ

Y ¤(y)h(y; z)dydz:

As SÂ = SAÂ [ SAÎ ; one gets:
Z

SÂ

µZ

R
ĉ(y;z; x)dG(x)

¶
h(y; z)dydz +

Z

S Î

ĉ(y; z)h(y; z)dydz >
Z

SÂ

Y ¤ (y)h(y; z)dydz:

From the productive e¢ciency condition 1 one has Y ¤(y) ¸ Y (y); 8y. This condition implies, together

with the previous inequality:

Z

SÂ

µZ

R
ĉ(y; z; x)dG(x)

¶
h(y; z)dydz +

Z

S Î

ĉ(y; z)h(y; z)dydz >
Z

SÂ

Y (y)h(y;z)dydz;

which proves that the alternative allocation is not feasible. ¥
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B Proof of Proposition 3

Let us …rst notice that when the state implements the tax-subsidy scheme fb(w); ¿(w); f (w); ½g, the

equilibrium wage is an increasing function of y that is denoted by w(y). The equilibrium values of the

other variables can be denoted as b(y) = b(w(y)); ¿(y) = ¿ (w(y), f (y) = f (w(y)); X(y) = X(w(y); y);

q(y) = G (X(y)) and Z(y) = Z(w(y); y):

Proposition 3 is proved as follows. First, we de…ne the optimal value of fw(y); b(y); X(y); ½g for

any second-best …nancial incentives to work ~Z(y) · Y ¤(y). Then we …nd out how this solution can be

implemented by the appropriate choice of f¿(w); b(w); f (w); ½g :

The budget constraint of the state reads
Z +1

ymin

ÃZ Z(y)

¡1
f[1 ¡ G(X(y))] ¿(y) + G(X(y)) [f (y) ¡ b(y)]g h(y; z)dz

!
dy ¸ ½

·
1 ¡

Z +1

ymin

H [y; Z(y)] dy
¸

;

(B1)

where H [y; Z(y)] =
R Z(y)

¡1 h(y; z)dz. Using the free entry condition:
Z +1

X (y)
[x ¢ y ¡ w(y) ¡ ¿ (y)] dG(x) ¡ G(X(y))f (y) = k(y); 8y ¸ ymin ; (B2)

the budget constraint of the state (B1) can be rewritten as:
Z +1

ymin

fY (y) ¡ [1 ¡ G(X(y))] w(y) ¡ G(X(y))b(y)g H [y;Z(y)] dy ¸ ½
·
1 ¡

Z +1

ymin

H [y; Z(y)] dy
¸

(B3)

where Y (y) = y
R +1

X (y) xdG(x) ¡ k(y):

Accordingly, the maximization problem which de…nes the optimal value of fw(y); b(y); X(y); ½g for

any second-best …nancial incentives to work ~Z(y) · Y ¤(y) reads

max
fw(y);b(y);X(y);½g

½

sub ject to

v
h

~Z(y) + ½
i

= [1 ¡ G(X(y))]v (w(y)) + G(X(y))v(b(y)); 8y ¸ ymin (B4)

Z +1

ymin

fY (y) ¡ [1 ¡ G(X(y))] w(y) ¡ G(X(y))b(y)gH
h
y; ~Z(y)

i
dy ¸ ½

·
1 ¡

Z +1

ymin

H
h
y; ~Z(y)

i
dy

¸
: (B5)

Let us denote by ¸(y) and ¹ the Lagrange multipliers associated with constraints (B4) and (B5)

respectively. The Lagrangian reads

L=½ +
Z +1

ymin

¸(y)
n
[1 ¡ G(X(y))] v (w(y)) + G(X(y))v(b(y)) ¡ v

h
~Z(y) + ½

io
dy+

¹
·Z +1

ymin

fY (y) ¡ [1 ¡ G(X(y))] w(y) ¡ G(X(y))b(y)g H
h
y; ~Z(y)

i
dy ¡ ½

·
1 ¡

Z +1

ymin

H
h
y; ~Z(y)

i
dy

¸¸
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The …rst-order conditions can be written as

@L
@X(y)

= 0 , ¸(y) [v0(b(y)) ¡ v0(w(y))] = ¹ (yX(y) ¡ [w(y) ¡ b(y)])H
h
y; ~Z(y)

i
; 8y ¸ ymin ; (B6)

@L
@w(y)

= 0 , ¸(y)v0(w(y)) = ¹H
h
y; ~Z(y)

i
; 8y ¸ ymin; (B7)

@L
@b(y)

= 0 , ¸(y)v0(b(y)) = ¹H
h
y; ~Z(y)

i
; 8y ¸ ymin; (B8)

@L
@½

= 0 , 1 ¡
Z +1

ymin

¸(y)v0
h

~Z(y) + ½
i

dy = ¹
·
1 ¡

Z +1

ymin

H
h
y; ~Z(y)

i
dy

¸
: (B9)

Equations (B7) and (B8) imply that b(y) = w(y) = ~Z(y) + ½; 8y ¸ ymin. As w(y) = ~Z(y) + ½; equation

(B7) reads ¸(y)v0( ~Z(y) + ½) = ¹H
h
y; ~Z(y)

i
which yields in (B9): ¹ = 1: Thus, equation (B7) implies

that ¸(y) > 0; 8y ¸ ymin : Eventually, when b(y) = w(y); ¸(y) > 0; 8y ¸ ymin and ¹ > 0, equation (B6)

implies that X(y) = 0:

At this stage, it has been proved that the optimal value of fw(y); b(y); X(y); ½g satis…es b(y) = w(y)

and X(y) = 0 for any second-best …nancial incentives to work ~Z(y) · Y ¤ (y): Theses properties transform

our model into a particular version of Laroque’s (2005) model of labor supply decisions at the extensive

margin with no unemployment. Our model is now such that a type-(y; z) agent who decides to “work”

produces Y ¤(y) and earns an income equal to ~Z(y) + ½; if he decides to stay idle he produces nothing

and earns z +½: Theorem 3 in Laroque (2005) completely characterizes the second-best optimal …nancial

incentives to work ~Z(y) in this case. It is shown that feasible …nancial incentives to work ~Z(y); such that

~Z(y) · Y ¤(y); support a second-best allocation if and only if no category of ability y is overtaxed at

~Z(y):

The optimal value of ½ can be obtained by substituting the values of w(y) and b(y) which are equal

to ~Z(y) + ½ into the – binding – constraint (B5). One gets ½ =
R +1

ymin

h
Y ¤(y) ¡ ~Z(y)

i
H

h
y; ~Z(y)

i
dy: Let

us …nd out how this solution can be implemented by the appropriate choice of f¿(w); b(w); f (w); ½g :

The equality b(y) = w(y) is merely implemented by b(w) = w which proves condition 1. of Proposition

3.

The appropriate choice of ¿(w) and f (w) can be de…ned by noticing that there exists a bijection

between (¿(y); f (y)) and (w(y); X(y)) which is de…ned by two equations: namely the reservation produc-

tivity of the …rms (equation (4))

X(y) =
w(y) + ¿ (y) ¡ f (y)

y
; 8y ¸ ymin; (B10)

and the free entry condition (B2), which reads, using the de…nition of the reservation productivity of the

…rms (B10):

f (y) = ¡k(y) +
Z +1

X(y)
[x ¢ y ¡ X(y) ¢ y] dG(x); 8y ¸ ymin : (B11)
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The de…nition (B10) of the reservation productivity of the …rms implies, together with w(y) = b(y); that

X(y) = 0 is implemented by:

f (w) = b(w) + ¿(w);

which proves condition 2. of Proposition 3.

When X(y) = 0; equations (B10) and (B11) imply that w(y) + ¿(w(y)) = ¡k(y) + y
R +1
0 xdG(x) ´

Y ¤ (y): The function w(y) being increasing, it follows that ~Z(y) = w(y) ¡ ½ is an increasing function of

y: Thus, ~Z(y) = w(y) ¡ ½ can be written as y = ~Z¡1(w(y) ¡ ½); which de…nes, together with Y ¤(y) =

w(y) + ¿ (w(y)); the function ¿(w) that reads:

¿ (w) = Y ¤
h

~Z¡1(w ¡ ½)
i

¡ w with ½ =
Z +1

ymin

h
Y ¤(y) ¡ ~Z(y)

i
H

h
y; ~Z(y)

i
dy:

This proves claim 3. of Proposition 3. ¥

C Dynamic version of the benchmark model
C.1 First-best allocations

Proposition 4 is proved as follows. We …rst de…ne the discounted values of vacant and …lled jobs and the

discounted utilities obtained in stationary allocations. This allows us to apply the results obtained in

Proposition 1 to characterize the …rst-best allocations.

Let us …rst de…ne the discounted value of …lled and vacant jobs.

The discounted value of a job occupied by a worker with ability y, whose current productivity is x;

denoted by YE(x; y); satis…es the arbitrage equation:

rYE(x; y) = x ¢ y + ¹ [YE(y) ¡ YE(x; y)] ; (C1)

where YE(y) represents the unconditionnal (or ex ante) expected production of a …lled job. According to

claim 1 of Proposition 1, it is worthwhile keeping employed a type-(y; z) individual if his expected life

time production on that job, denoted by YE(x; y); is higher than the expected life time production of a

job seeker, denoted by YU (y); i.e. it is worthwhile keeping employed the type-(y; z) workers such that

YE(x; y) ¸ YU (y). Therefore, YE(y) =
R xU

¡1 max [YE(x;y); YU (y)] dG(x): The discounted present value of

the net production of a job seeker with ability y during his life time is given by:

rYU (y) = ¸ [¡k(y) + YE(xU ; y) ¡ YU (y)] : (C2)

The arbitrage equation (C1) implies that YE(x; y) is strictly increasing with respect to x: Therefore,

there is a unique threshold value, denoted by X¤(y); below which the jobs with idiosyncratic productivity
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x < X¤(y) are destroyed. This threshold value satis…es YE(X¤(y); y) = YU(y): Furthermore, the existence

of this unique threshold implies that:

YE(y) =
Z X ¤(y)

¡1
YU (y)dG(x) +

Z xU

X¤(y)
YE(x; y)dG(x): (C3)

Since productivity is changing at rate ¹; the job destruction rate, denoted by q¤(y); is equal to ¹G[X¤(y)]:

Let Q¤(y) = y
R xU

X¤(y) xdG(x) stand for the instantaneous average production of a worker with ability y;

equations (C1) and (C3) give:

YE(y) =
(r + ¹)q¤(y)YU (y) + ¹Q¤(y)

¹ [r + q¤(y)]
: (C4)

Setting x = X¤(y) in relation (C1) arrives at (r + ¹)YU (y) = X¤(y) ¢ y + ¹YE(y); and eliminating

YE(y) between this last equation and (C4) yields the value of the net production of a job seeker with

ability y when the productivity threshold takes its …rst-best value X¤(y); denoted by Y ¤
U (y) :

rY ¤
U (y) =

[r + q¤(y)] X¤(y) ¢ y + ¹Q¤(y)
r + ¹

: (C5)

From (C1) one gets YE(xU; y) ¡ Y ¤
U (y) = [xU ¡ X¤(y)] ¢ y=(r + ¹); and importing this expression into

(C2) obtains:

rY ¤
U (y) = ¸

[xU ¡ X¤(y)] ¢ y ¡ (r + ¹)k(y)
r + ¹

: (C6)

Finally, eliminating Y ¤
U (y) between the two last equations (C5) and (C6) gives the following e¢ciency

condition de…ning implicitly the optimal threshold value X¤ (y):

X¤(y) =
¸ [xU ¢ y ¡ (r + ¹)k(y)] ¡ ¹Q¤(y)

y [¸ + r + q¤(y)]
(C7)

Substituting this value of X¤(y) in (C6) yields another expression for the expected production of a job

seeker:

rY ¤
U (y) =

¸
r + ¹

[r + q¤(y)] [xU ¢ y ¡ (r + ¹)k(y)] + ¹Q¤(y)
¸ + r + q¤(y)

; (C8)

which will be useful in the sequel.

It remains to show that (C7) de…nes a unique value for the productivity threshold X¤(y): Integrating

by parts Q¤(y) = y
R xU

X ¤(y) xdG(x); one gets:

Q¤(y) = y

Ã
xU ¡ X¤(y)G [X¤(y)] ¡

Z xU

X¤(y)
G(x)dx

!
:

Importing this expression for Q¤(y) in (C7) and remembering that G [X¤(y)] = q¤(y)=¹; gives:

(r + ¸)X¤(y) = (¸ ¡ ¹)xU ¡ ¸(r + ¹)
k(y)

y
+ ¹

Z xU

X¤(y)
G(x)dx;
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which can be written, after some rearrangements, as:

X¤(y) =
¸ [xU ¢ y ¡ (r + ¹)k(y)]

y (r + ¹ + ¸)
¡ ¹

r + ¹ + ¸

Z xU

X¤(y)
[1 ¡ G(x)] dx: (C9)

The function Á(») = »+ ¹
r+¹+¸

R xU
» [1 ¡ G(x)] dx is increasing and satis…es Á(xU ) = xU > ¸[xU ¢y¡(r+¹)k(y)]

y(r+¹+¸)

and Á(¡1) = ¡1: Thus, X¤(y) is unique. This proves claim 1 of Proposition 4.

The planner has to decide who will be allowed to look for a job (s 2 SA) and who will be inactive

(s 2 SI). The argument runs the same way as in the static case. Imagine that we can …nd in SA an

agent with rY ¤
U (y) < z: This agent can get the same instantaneous utility level when he is inactive if his

stationary instantaneous consumption of the marketable good is decreased by z. In terms of discounted

present value, deciding that this agent becomes inactive instead of active allows the social planner to

win z=r and lose Y ¤
U (y) as forgone production, which yields a net gain equal to (z=r) ¡Y ¤

U (y): Therefore,

the set SA of active agents only comprises individuals such that rY ¤
U (y) ¸ z; and the set SI of inactive

agents comprises the individuals such that rY ¤
U (y) < z: In other words the participation decision reads,

for every date t ¸ 0:

`¤(y; z) =
½

0 if z · rY ¤
U (y)

1 otherwise :

This proves, together with equation (C6), claim 3 of Proposition 4.

Let us now look at discounted utilities in order to characterises the …rst-best properties of consump-

tions plans. The instantaneous consumption of a type-s individual in SA is denoted by c¤
E(s) and c¤

U (s)

when he is respectively employed or searching for a job. The instantaneous consumption of a type-s

individual belonging to the set SI of inactive persons is denoted by c¤
I(s). Inactive individuals achieve a

life time utility level equal to v [c¤
I(s) + z] =r, while the life time expected utility of the type-s individuals

assigned to the set SA of job seekers, denoted by VU(s); satis…es the arbitrage equation:

rVU (s) = v [c¤
U (s)] + ¸ [VE(s) ¡ VU (s)] ;

where the life time expected utility of an employed type-s individual, denoted by VE(s); ful…ls:

rVE(s) = v [c¤
E(s)] + q¤(y) [VU (s) ¡ VE(s)] :

From these two last equations, one obtains:

rVU (s) =
r + q¤(y)

r + ¸ + q¤(y)
v [c¤

U(s)] +
¸

r + ¸ + q¤(y)
v [c¤

E(s)] :

Alike the static case, applying a risk aversion argument to this expression of the expected utility of

an agent assigned to SA shows that the …rst-best allocations necessarily insure all individuals in SA

against unemployment risks. Hence, type-s individuals get the same consumption whether employed or
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unemployed. This consumption can be simply denoted by c¤(y; z) and the associated utility level is equal

to v [c¤(y; z)] =r: This proves claim 2 of proposition 4.¥

C.2 Second-best allocations

The optimal tax-subsidy schemes are derived as in the static case. First, the decentralized equilibrium is

analyzed. Second, the properties of the optimal tax-subsidy schemes are de…ned.

C.2.1 Decentralized equilibrium

The value of a continuing job occupied by a worker with ability y paid a wage w; with an idiosyncratic

productivity component x, denoted by JE(w; y; x); satis…es:

rJE(w; y; x) = x ¢ y ¡ w ¡ ¿(w) + ¹ [J¹(w; y) ¡ JE(w; y; x)] ; (C10)

where J¹(w; y) =
R xU

¡1 JE(w; y; x)dG(x) stands for the unconditionnal (or ex ante) value of a continuing

job occupied by a worker with ability y: Firms destroy jobs if and only if their value JE(w; y; x) is lower

than their destruction costs ¡f (w): Therefore, the productivity threshold below wich jobs are destroyed,

denoted by X(w; y); is given by:

X(w; y) =
w + ¿ (w) ¡ (r + ¹)f (w) ¡ ¹J¹(w; y)

y
:

It follows that the unconditional expected value J¹(w; y) solves:

J¹(w; y) =
Z X (w;y)

¡1
¡f (w)dG(x) +

Z xU

X (w;y)
JE(w; y; x)dG(x): (C11)

With the help of (C10), it is possible to eliminate JE(w; y; x) in the expression of J¹(w; y): Importing

this last expression of J¹(w; y) in (C12) gives the value of the productivity threshold as a function of the

wage and the tax schedule:

X(w; y) =
(r + ¹) [w + ¿ (w) ¡ rf (w)] ¡ ¹Q(w; y)

y [r + q(w; y)]
: (C12)

In this expression, q(w; y) designates the instantaneous job destruction rate, equal to ¹G [X(w; y)] ; and

Q(w; y) represents the average production of active persons with ability y at each date, that is equal to
R +1

X (w;y)(x ¢ y)dG(x): Given the wage w, the tax schedules ¿ (w) and f (w); equation (C12) determines a

unique value for X(w; y) – the proof is the same as for the unicity of X¤(y) given in appendix C.1.

The net expected pro…t of an employer o¤ering a contract w to a type-(y;z) worker on a newly opened

job, denoted by J0(w; y); is equal to ¦0(w; y) ¡ k(y); where the gross expected pro…t ¦0(w; y) satis…es

the arbitrage equation:

r¦0(w; y) = xU ¢ y ¡ w ¡ ¿ (w) + ¹ [J¹ (w;y) ¡ ¦0(w; y)] : (C13)
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The Bertrand competition between employers entails that the net expected pro…t on a new job is driven

to zero. Therefore, the equilibrium wage contract o¤ered to the type-(y; z) workers, denoted by w(y); is

determined by the free entry condition:

J0(w(y); y) = 0: (C14)

At this stage, we can replicate with minor changes what we have done concerning the existence and

uniquiness of the Bertrand equilibrium in the static model. Hence we shall assume that the expected

pro…t J (w; y) satis…es the following properties.

Assumption A1

A1.i) 8y; fw ¸ 0 j J0(w;y) = 0g 6= ;:

A1.ii) 8y; limw!+1 J0(w; y) < 0:

Alike in the static model, conditions A1.i) and A1.ii) imply that there exists a unique equilibrium

wage contract w(y) o¤ered to the type-(y; z) workers, which reads:

w(y) = sup fw ¸ 0g j J0(w; y) = 0g (C15)

We can obtain a precise result concerning the monotonicity of the equilibrium wage function w(y) if

we add the following assumption.

Assumption A2

A2.i) 8y; J0(w;y) is continuous in w:

A2.ii) 8w; J0(w;y) is strictly increasing with y:

As in the static model, when assumptions A1 and A2 are satis…ed the equilibrium wage w(y) is

a strictly increasing function of the ability level y (see Proposition 2). It follows that any worker has

interest to reveal his true ability. Furthermore, for any wage w, the productivity threshold X(w; y) satis…es

JE [w; y;X (w;y)] = ¡f (w): As the arbitrage equations (C13) and (C10) imply ¦0(w; y) = JE(w;y; x) +

yxU ¡x
r+¹ ; the equilibrium wage w(y) is characterized by:

X(w(y); y) = xU ¡ (r + ¹)
[f (w(y)) + k(y)]

y
; (C16)

where the function X(w; y); which de…nes the productivity threshold for any value of w and y; is given

by (C12).

The type-(y; z) individuals decide to enter into the labor force if and only if searching for a job yields

a higher expected utility than staying inactive. At a stationary state, the discounted expected utilities of

42

ha
ls

hs
-0

02
55

79
4,

 v
er

si
on

 1
 - 

14
 F

eb
 2

00
8



an employed worker and of a job seeker with characteristics (y; z) getting a wage w; respectively denoted

by VE(w; y; z) and VU (w; y;z); satisfy:

rVE(w; y; z) = v(w) + q(w; y) [VU (w; y; z) ¡ VE(w; y; z)] ; (C17)

rVU(w; y; z) = v [b(w)] + ¸ [VE(w; y; z) ¡ VU (w;y; z)] : (C18)

The discounted expected utility of an inactive person is always given by v(z + ½)=r: From (C17) and

(C18), one obtains:

rVU (w; y; z) =
r + q(w; y)

r + ¸ + q(w; y)
v [b(w)] +

¸
r + ¸ + q(w; y)

v(w): (C19)

It follows that a type-(y; z) individual decides to enter into the labor market if and only if the participation

constraint:
r + q(w; y)

r + ¸ + q(w; y)
v [b(w)] +

¸
r + ¸ + q(w; y)

v(w) ¸ v(z + ½) (C20)

is ful…lled. This condition implies that only individuals whose taste for leisure z is smaller than the

threshold value Z (w;y); de…ned by

v [Z(w; y) + ½] =
r + q(w; y)

r + ¸ + q(w; y)
v [b(w)] +

¸
r + ¸ + q(w; y)

v(w); (C21)

belong to the labor force. Therefore, at each date, the participation decision of an individual with

characteristics (y; z) who expects to get a wage w reads:

`(y;z) =
½

0 if z · Z(w; y)
1 if z > Z(w; y) :

The knowledge of Z(y) ´ Z(w(y); y) determines the number of individuals with ability y participating in

the labor market, i.e. n(y) =
R Z(y)

¡1 h(y; z)dz ´ H [y; Z(y)]. Among those participating individuals, l(y)

are actually working and u(y) are looking for a job, thus l(y)+u(y) = n(y): Denoting by q(y) = q(w(y); y)

the job destruction rate, the dynamics of employment is de…ned by the law of motion:

_l(y) = ¸ [n(y) ¡ l(y)] ¡ q(y)l(y); (C22)

where the initial value of l(y) at date t = 0 is l0(y):

The stationary state ‡ows equilibrium reads q(y)l(y) = ¸ [n(y) ¡ l(y)] ; which gives:

u(y) =
q(y)

¸ + q(y)
n(y) (C23)

Eventually, given any stationary tax-subsidy scheme f¿(w);f (w); b(w); ½g that satis…es Assumptions

A1 and A2, there exists a unique decentralized equilibrium entirely characterized by:

- the reservation productivity X(y) ´ X(w(y); y) below which jobs are destroyed (equation (C12)),
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- the wage w(y) (equation (C16)),

- the threshold value of the taste for leisure, Z(y) ´ Z(w(y); y) below which type-(y;z) individuals

participate in the labor market (equation (C21)),

- the initial values of employment l0(y);

- the law of motion (C22) of jobs …lled by workers with ability y.

The wage w(y); the …nancial incentives to work Z(y) and the reservation productivity X(y) are for-

ward looking variables which jump on their stationary value whereas employment l(y) is a predetermined

variable whose dynamics is de…ned by (C22).

C.2.2 Optimal tax-subsidy schemes

First, we de…ne the optimal stationary value of fw(y); b(y); X(y); ½g for any second-best …nancial incen-

tives to work ~Z(y): Then we …nd out how this solution can be implemented by the appropriate choice of

f¿ (w); b(w); f (w); ½g :

In order to characterize the optimal value of fw(y); b(y); X(y);½g it is useful to decompose the pro-

gramme of the state in two steps. First, one can de…ne the optimal insurance contract o¤ered to every

unemployed worker for any given value of
n

~Z (y); X(y); ½
o

: This optimal contract de…nes the values of

w(y) and b(y) that maximize the discounted present value of the net …scal gains that the state gets

from unemployed workers with ability y.17 Second, the optimal value of fX(y); ½g is de…ned, for any

second-best …nancial incentives to work ~Z(y):

1) Let us denote by BU (y) and BE(y) the discounted present values of the net …scal gain that the

state gets from unemployed workers and from employees of ability y respectively. These two present

values solve the Bellman equations

rBU (y) = ¡b(y) + ¸ [BE(y) ¡ BU (y)] ;

rBE(y) = ¿(y) + q(y) [BU (y) + f (y) ¡ BE(y)] :

These two equations yield

rBU (y) = ¡ r + q(y)
r + ¸ + q(y)

b(y) +
¸

r + ¸ + q(y)
[¿(y) + qf (y)] : (C24)

17 This presentation, which is useful to interpret our results, is in line with the literature on optimal unemploy-
ment insurance in a dynamic framework (see Hopenhayn and Nicolini, 1997, Ljungqvist and Sargent, 2000). It
is equivalent to assume that the state maximizes the expected utilities conditional on abilities y but not on the
employment status at date zero. In that case, the state maximizes the weighted sum of the discounted utilities of
the employed workers – with weight l0(y)=n(y) – and of the unemployed workers – with weight 1¡ l0(y)=n(y) –
with abitlity y; subject to a budget constraint.
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Eliminating X(w; y) between relations (C12) and (C16) arrives at

¿(y) + q(y)f (y) =
[r + q(y)] [xU ¢ y ¡ (r + ¹)k(y)] + ¹Q(w(y); y)

r + ¹
¡ w(y): (C25)

By analogy with (C8), let us de…ned YU (y) by

rYU (y) =
¸

r + ¹
[r + q(y)] [xU ¢ y ¡ (r + ¹)k(y)] + ¹Q(w(y); y)

¸ + r + q(y)
: (C26)

The quantity YU (y) represents the expected net production of a job seeker when the productivity

threshold is equal to X(w(y); y); while the quantity Y ¤
U (y) de…ned by (C8) represents the expected net

production of a job seeker when the productivity threshold takes its …rst best optimal value X¤ (y):

Equation (C25) can be rewritten as

¿(y) + q(y)f(y) =
¸ + r + q(y)

¸
rYU (y) ¡ w(y);

and the net …scal gain BU (y) takes the following form:

rBU (y) = rYU (y) ¡ ¸w(y) + [r + q(y)] b(y)
¸ + r + q(y)

:

Accordingly, the optimal contract o¤ered to the unemployed workers with ability y solves

max
fw(y);b(y)g

rYU (y) ¡ ¸w(y) + [r + q(y)] b(y)
¸ + r + q(y)

sub ject to
r + q(y)

r + ¸ + q(y)
v [b(y)] +

¸
r + ¸ + q(y)

v(w(y)) ¸ v
h

~Z(y) + ½
i

:

It can be easily checked that the solution of this program yields w(y) = b(y) = ~Z(y) + ½; 8y ¸ ymin :

2) Let us denote by p(y) =
R+1

¡1 h(y; z)dz the size of the population of individuals with ability y: The

budget constraint of the state reads
Z +1

ymin

[rBU (y) [n(y) ¡ l0(y)] + rBE(y)l0(y)] dy ¸
Z +1

ymin

½ [p(y) ¡ n(y)] ;

which can be rewritten as:
Z +1

ymin

·
rYU (y)

¸n(y) + rl0(y)
¸

¡ ~Z(y)n(y)
¸

dy ¸ ½: (C27)

For any second-best …nancial incentives to work ~Z(y); the optimal value of fX(y); ½g solves maxfX(y);½g ½

sub ject to (C27). As n(y) =
R ~Z(y)

¡1 h(y; z)dz depends on X(y) nor on ½; the optimal productivity threshold

must maximize the expected production YU (y) de…ned by relation (C26). It is straightforward to show

that such a maximization arrives at X (y) = X¤(y) – de…ned in equation (C7) –, i.e. the productivity
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threshold is the same as in the …rst best environment. Consequently, the expected production YU (y)

reaches the level Y ¤
U (y) de…ned by (C8). Finally, optimal values of ~Z(y) and ½ must be such that the

budget constraint (C27) is binding. Simple manipulations allows us to write this budget constraint a

follows: Z +1

ymin

h
rY ¤

U (y) ¡ ~Z(y)
i

H
h
y; ~Z(y)

i
dy = ½D with ½D = ½ ¡ rY ¤

U (y)
r
¸

l0(y): (C28)

At this stage, it has been proved that the optimal value of fw(y); b(y); X(y); ½g satis…es b(y) = w(y)

and X(y) = X ¤(y) for any second-best …nancial incentive to work ~Z(y) that satis…es the budget constraint

(C28). Formally, this latter constraint is equivalent to the budget constraint of the static model – see

condition 3 of Proposition 3 – where Y ¤(y) and ½ have been replaced respectively by rY ¤
U (y) and ½D :

As in the static model, Theorem 3 of Laroque (2005), which completely characterizes the second-best

optimal …nancial incentives to work ~Z(y); such that ~Z(y) · rY ¤
U (y); applies.

Let us …nd out how this solution fw(y); b(y); X(y); ½g can be implemented by the appropriate choice

of f¿(w); b(w); f (w); ½g : The equality b(y) = w(y) is merely implemented by b(w) = w which proves

condition 1. of Proposition 5.

Moreover, when X(y) = X¤(y); (C16) shows that:

(r + ¹)k(y) = y [xU ¡ X¤(y)] ¡ (r + ¹)f (w(y)): (C29)

Using this equation together with relation (C7) that de…nes the optimal productivity threshold arrives

at:

X¤(y) =
¸(r + ¹)f (w(y)) ¡ ¹Q¤(y)

y [r + q¤(y)]
:

Comparing this equation with (C12) yields

(r + ¸)f (w) = w + ¿(w) (C30)

which proves condition 2. of Proposition 5.

When X(y) = X¤(y); (r+¸)f(w) = w+¿(w) and b(w) = w; the wage equation (C16) implies, together

with the de…nition (C6) of Y ¤
U (y); that w(y) + ¿(y) = r+¸

¸ rY ¤
U (y): The condition ~Z(y) · rY ¤

U (y) is then

identical to ¿ (y) ¸ ¡w(y) + r+¸
¸

~Z(y); as ~Z(y) = w(y) ¡ ½ and w(y) = b(y) the condition ~Z(y) · rY ¤
U (y)

implies that optimal second best policies must satisfy ¸¿(w)+(r+¸)½ ¸ rb(w): Finally, the function w(y)

being increasing, it follows that ~Z(y) = w(y)¡½ is an increasing function of y: Thus, ~Z(y) = w(y)¡½ can

be written as y = ~Z¡1(w(y) ¡ ½); which de…nes, together with r+¸
¸ rY ¤

U (y) = w(y) + ¿ (y); the function

¿(w) that reads:

¿(w) =
r + ¸

¸
rY ¤

U

h
~Z¡1(w ¡ ½)

i
¡ w with ½ =

Z +1

ymin

·
rY ¤

U (y)
[n(y) ¡ l0(y)] ¸ + rl0(y)

¸
¡ ~Z(y)n(y)

¸
dy

This proves claim 3. of Proposition 5. ¥
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C.3 Computation of the loss induced by tax-subsidy schemes without layo¤
taxes

In the sequel we shall deal only with economies whose starting point corresponds to the stationary

equilibrium. When l0(y) is taken equal to its stationary value, ¸n(y)=(q + ¸), using equation (C27) one

arrives at the following expression of the intertemporal budget constraint of the state:
Z +1

ymin

[F (y) ¡ Z(y)] H [y; Z(y)] dy = ½;

with

F (y) =
¸ + r + q(y)

¸ + q(y)
rYU (y)

=
¸

¸ + q(y)

·
r + q(y)
r + ¹

xU ¢ y ¡ [r + q(y)] k(y) +
¹

r + ¹
Q(y)

¸
; (C31)

where q(y) = ¹G(X(y)) and Q(y) =
R xU

X(y)(x ¢ y)dG(x):

Under such circumstances, assuming that H(y; Z) is log-concave18 with respect to Z; the La¤er bound

is de…ned by a unique value of …nancial incentives to work for each ability type y, denoted by ~Z(y), such

that

~Z(y) = sup arg max
Z

[F (y) ¡ Z ] H(y; Z); (C32)

for any given …nite value X(y) < xU – see Laroque, 2005, Proposition 5. The La¤er bound is computed

in two di¤erent cases.

- First, it is assumed that there is no layo¤ taxes. In that case, equation (C16) implies that X(y) =

xU ¡ (r + ¹) k(y)
y : The …nancial incentives to work solve (C32) with this value of X(y): Let us denote by

~Z0(y) the solution, the income guarantee, denoted by ½0; satis…es

½0 =
Z +1

ymin

h
F (y) ¡ ~Z0(y)

i
H

h
y; ~Z0(y)

i
dy;

where F (y) is de…ned in equation (C31) and X(y) = xU ¡ (r + ¹) k(y)
y :

- Second, it is assumed that the layo¤ tax schedule is designed optimaly. This implies that X(y) =

X¤(y); de…ned in equation (C7). The …nancial incentives to work solve (C32) with this value of X (y):

Let us denote by ~Z¤(y) the solution, the income guarantee, denoted by ½¤ ; satis…es

½¤ =
Z +1

ymin

h
F (y) ¡ ~Z¤(y)

i
H

h
y; ~Z¤(y)

i
dy;

where F (y) is de…ned in equation (C31) and X(y) = X¤(y):

18H(y; Z) is log-concave with respect to y and Z since y and Z have independent Log Normal Distributions as
it is assumed in our calibration exercises.
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