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Abstract

We propose an extension of Harsanyi’s Impartial Observer Theorem based on the rep-

resentation of ignorance as the set of all possible probability distributions over individuals.

We obtain a characterization of the observer’s preferences that, under our most restrictive

conditions, is a convex combination of Harsanyi’s utilitarian and Rawls’ egalitarian criteria.

This representation is ethically meaningful, in the sense that individuals’ utilities are car-

dinally measurable and fully comparable. This allows us to conclude that the impartiality

requirement cannot be used to decide between Rawls’ and Harsanyi’s positions.

Keywords: Impartiality, Justice, Utilitarianism, Egalitarianism, Decision under igno-
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1 Introduction

According to a long tradition among moral philosophers, moral judgements have to be made from

the point of view of a rational, impartial and sympathetic observer. This idea is at the core of

two prominent economic models of justice, namely Harsanyi’s (1953, 1977) “utilitarianism"1 and

Rawls’ (1971) egalitarianism. The fundamental insight put forward by Harsanyi and Rawls (and,

independently, by Vickrey (1945)), is that impartiality can be ensured if the observer is placed

under appropriate conditions of ignorance (the “veil of ignorance", in Rawls’ (1971) terms). In

particular, the observer should “not know in advance what his own social position would be

in each social situation" (Harsanyi, 1977, p. 49).2 A strong link is hence established between

the theory of morality and the theory of decision making under ignorance. However, although

∗We thank D. Bouyssou, A. Chateauneuf, M. Cohen, M. Fleurbaey, E. Karni, J.-F. Laslier, P. Mongin, J.
Moreno-Ternero and especially J. Weymark, as well as seminar audiences at University Pompeu Fabra, University
of Cergy-Pontoise, the Roy Seminar and RUD 2006 for useful comments. Comments by two anonymous referees
have been extremely useful to improve the paper. Financial support from an ACI grant by the French Ministry
of Research is gratefully acknowledged.

†CNRS–CES, gajdos@univ-paris1.fr
‡CERC, f_kandil@hotmail.com
1Here and in all the sequel, “utilitarianism” refers to the preference utilitarianism, as in Harsanyi’s work, and

not to the doctrine of classical utilitarians.
2See Mongin (2001) for a thorough comparison of Vickrey’s and Harsanyi’s approaches.
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Rawls and Harsanyi agree on the idea that fair rules are those chosen by rational individuals

from behind the veil of ignorance, they strongly disagree on what these rules should actually be.

Starting from similar assumptions, they end up with opposite conclusions: according to Rawls,

the impartiality requirement leads to the egalitarian (or maxmin) criterion, whereas according

to Harsanyi, the same requirement leads to utilitarianism.

Our aim is to determine if the impartiality requirement, viewed as ignorance, implies Harsanyi’s

or Rawls’ conclusion. There are two main difficulties here. First, whereas Harsanyi (1977) pro-

posed a formal model of decision making from behind the veil of ignorance (his celebrated “Im-

partial Observer Model"), Rawls only proposed informal arguments.3 We therefore need to build

a model that can accommodate Rawls’ views on impartial decisions. The second difficulty is

related to a well-known weakness of Harsanyi’s model: as shown by Sen (1976) and Weymark

(1991), the weights attributed to individuals’ utilities in Harsanyi’s Impartial Observer Theorem

are not meaningful if these utilities are not cardinally comparable. We extend Harsanyi’s model

so that (i) Rawls’ argument can be formalized and (ii) the conclusions we obtain are meaningful,

i.e., make use of cardinally measurable and fully comparable individual utility functions.4

To make our approach clear, let us briefly present Harsanyi’s (1953, 1977) Impartial Observer

Model. Let N be the set of individuals and X be the set of social alternatives (both finite). Each

individual has a preference relation �i on the set Y of lotteries over X (social-alternative lotter-

ies). Furthermore, these preferences are assumed to obey the axioms of expected utility theory.

The observer is assumed to be a rational individual and to be able to make judgements such as:

“social-alternative lottery y is better for individual i than social-alternative lottery z for individ-

ual j". To formalize this idea, Harsanyi (1977) assumes that the observer has preferences on the

set ∆(X×N) of probability distributions over X×N . Elements of ∆(X×N) are called extended

lotteries. The observer’s preferences on extended lotteries are assumed to satisfy the axioms of

expected utility theory. Harsanyi then adds two axioms. The first, known as the acceptance

principle, states that whenever the observer has to rank two extended lotteries in which he is

the same individual for sure, he does it the same way as that individual ranks the corresponding

social-alternative lotteries. This axiom is intended to capture the observer’s sympathy towards

individuals. The second axiom, which is intended to capture the observer’s impartiality, states

3Nevertheless, Rawls clearly thought that his conclusions could be derived from formal arguments. For instance,
in Rawls (1974b), he argues that Arrow and Hurwicz’s (1972) model of decision making under ignorance (which is
a combination of the maximin and the minimax utilities) can be viewed as a step in that direction. This argument
is precisely formalized in Maskin (1979) (Maskin uses a multiprofiles approach).

4Our conclusions are thus meaningful in the sense that the decision rules we obtain cannot be manipulated.
However, we do not claim that the utility functions that are used to represent individual preferences coincide with
individual utilities (in the utilitarian sense), because we use the von Neumann-Morgenstern theory to represent
individual preferences. In this respect, the Sen (1976) and Weymark (1991) analysis also applies to our results.
See Weymark (2005) for an illuminating investigation of this point.
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that the observer ranks two social-alternative lotteries as he would rank the extended lotteries in

which there is an equal chance of being any individual and all individuals face the same social-

alternative lottery. In other words, Harsanyi represents ignorance by equiprobability. As a result,

he obtains that the observer’s preferences over social-alternative lotteries can be represented by

the arithmetic mean of some adequately chosen individual von Neumann-Morgenstern utility

functions.

Harsanyi’s theorem presents the following problem, raised by Sen (1976) and Weymark (1991):

even if one assumes that individual von Neumann-Morgenstern utilities have a cardinal meaning

(which is not the case in the standard expected utility theory), the choice of a specific repre-

sentation of individual von Neumann-Morgenstern utilities implies that the weights that appear

in Harsanyi’s theorem are not meaningful. The reason for this is that in Harsanyi’s model,

individual utilities are not cardinally comparable.

Karni (1998) and Mongin (2001) proposed a nice solution to escape both problems: they

assume that the observer’s preferences conform to the subjective expected utility theory. There-

fore, provided that one can identify the observer’s subjective probabilities, the weights would be

determined.5 An important feature of these approaches is that they remain inside the Bayesian

theory. But Rawls (1971) explicitly rejected such an assumption. Therefore, if we want to take

into account Rawls’ arguments, we need a model that does not assume Bayesianism from the

outset.

Note that Harsanyi and Rawls agree that probabilities should be taken into account whenever

they have some objective basis. This suggests that the decision maker’s knowledge can be

represented by a set of probability distributions that describes all probability distributions that

are possible according to the decision maker’s factual or logical knowledge. The first step in

our reconstruction of Harsanyi’s impartial observer model is therefore to provide an axiomatic

foundation for the observer’s preferences when her information about who she is to be in the

society takes the form of a set of probability distributions. Several axiomatizations of such

preferences have been recently proposed.6 Among these models, the one considered by Gajdos,

Hayashi, Tallon and Vergnaud (2007) is the closest to the one we provide here. However, their

model cannot be used for the observer’s preferences because it assumes state-independence (as do

all models of this kind that we are aware of), which would force all individuals to have the same

5Karni (1998) obtains this result through a sophisticated construction that can be interpreted in terms of
impartiality, whereas Mongin (2001) proposes axioms of an epistemic nature related to those introduced by Karni
and Schmeidler (1981).

6The idea of modeling information as a set of probability distributions seems to have been first proposed by
Jaffray (1989) in a model where preferences are defined over belief functions. Wang (2003) and Gajdos, Hayashi,
Tallon and Vergnaud (2004) considered information as a set of probability distributions together with an “anchor",
i.e., a probability distribution that has particular salience.
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preferences.7 Furthermore, the axiomatization proposed by Gajdos, Tallon and Vergnaud (2007)

requires an infinite state space, which would be difficult to justify in the present framework.

Finally, their article is mainly concerned with a formulation of uncertainty aversion directly

related to comparisons of sets of information, instead of the classical formulation in terms of

randomization. However, in the present context, randomization has a natural interpretation

from an ethical point of view and we will therefore keep it explicitly in our model.

Viewing complete ignorance as equivalent to considering that all probability distributions

are possible, we are then in position to reconstruct Harsanyi’s impartial observer’s theorem in an

extended framework that does not assume Bayesianism from the outset. We obtain our “Ignorant

Observer" Theorem which, in its most precise formulation, asserts that the observer’s preferences

on social-alternatives lotteries can be represented by:

V (y) = θmin
i∈N

Vi(y) + (1 − θ)
∑

i∈N

1

n
Vi(y)

for all y ∈ Y , where θ ∈ [0, 1] is uniquely determined (for a given observer) and the utility func-

tions Vi are cardinally measurable and fully comparable representations of individual preferences.

More precisely, the functions Vi (i ∈ N) are chosen such that Vi(Y ) = Vj(Y ) for all i, j ∈ N .

The above result can also be written as:

V (y) = θmin
i∈N

Vi(y) − minw∈Y Vi(w)

maxw∈Y Vi(w) − minw∈Y Vi(w)
+ (1 − θ)

∑

i∈N

1

n

Vi(y) − minw∈Y Vi(w)

maxw∈Y Vi(w) − minw∈Y Vi(w)

where again θ ∈ [0, 1] is uniquely determined (for a given observer), but where the Vi are arbitrar-

ily chosen von Neumann-Morgenstern utility functions representing the individuals’ preferences.8

We therefore conclude that the impartiality requirement is compatible with both Harsanyi’s

and Rawls’ views, for Harsanyi’s criterion is obtained for θ = 0, whereas Rawls’ criterion is

obtained for θ = 1. Considering under which conditions this model specializes into that of

Harsanyi or Rawls, one sheds some light on the debate between them. This leads us to defend

the view that a (strict) combination of Harsanyi’s and Rawls’ criteria (i.e., choosing θ ∈ (0, 1))

leads to a reasonable criterion for social decision making.

This article is organized as follows. First, we extend Harsanyi’s framework by considering

sets of probability distributions instead of lotteries on individual identities (Section 2). We then

provide an axiomatic characterization of the observer’s preferences in this extended framework

(Section 3). In Section 4, we formalize the impartiality requirement as complete ignorance, in

7We are grateful to Edi Karni for having drawn our attention to this point.
8This result seems, at first sight, very similar to the one obtained by Karni (1998). There are, however,

important differences between Karni’s approach and ours. We elaborate on this point in Sections 3 and 4.
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the sense that all lotteries on individual identities are considered as possible. We then recon-

struct Harsanyi’s impartial observer theorem under these hypotheses, assuming that individual

preferences satisfy the axioms of expected utility theory, and state our Ignorant Observer The-

orems. Finally, in Section 5, we defend the view that both Harsanyi’s and Rawls’ solutions are

unsatisfactory, whereas a mix of the two (i.e., with θ ∈ (0, 1)) is a reasonable criterion for social

decision making.

2 Modeling ignorance

We consider a society made up of a finite number of agentsN = {1, . . . , n}. LetX be a non-empty

finite set of social alternatives (or consequences) and Y be the set of probability distributions

over X (social-alternative lotteries). Following Harsanyi (1953, 1977), individuals are assumed

to have preferences on Y . These preferences are denoted �i (i ∈ N). As is customary, we denote

by ∼i and ≻i the symmetric and asymmetric components of �i.

An observer is someone able to make social judgements of the following kind: “social-

alternative lottery y is better for individual i than social-alternative lottery z for individual

j". In order to make such a statement formally, Harsanyi (1977) assumed that the observer has

preferences over the set of all extended lotteries, i.e., lotteries on X × N . We will denote by

E the set of such lotteries. An element of E is thus a function ρ : X × N → [0, 1] such that
∑

x∈X

∑

i∈N ρ(x, i) = 1, where ρ(x, i) is the probability of being individual i and getting x.

Karni and Weymark (1998) proposed the following illuminating interpretation of an extended

lottery. Such a lottery can be viewed as a two stage lottery, where a first lottery on N determines

which individual the observer is to be and a second lottery on X then determines what the

social state is. Formally, Karni and Weymark (1998) defined a “personal identity lottery" as

a probability distribution p on N and an “allocation" f as an assignment of a lottery on X

to each individual. Let ∆(N) be the set of all probability distributions on N and A be the

set of allocations, i.e., the set of all functions from N to Y . Let Ac be the set of constant

allocations, i.e., allocations f such that f(i) = f(j) for all i, j ∈ N . As noted by Mongin and

d’Aspremont (1998) and Karni and Weymark (1998), interpreting individuals as states of the

nature, an allocation is an act in the Anscombe-Aumann (1963) model.

The following example illustrates the correspondence between E and A×∆(N). Assume that

N = {1, 2, 3}, X = {a, b} and consider the following extended lottery ρ:

1 2 3

a 3/8 1/12 1/8

b 1/4 1/12 1/12

p(ρ)(i) 5/8 1/6 5/24
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yi(ρ) is then:

1 2 3

a 3/5 1/2 3/5
b 2/5 1/2 2/5

Finally, (f, p) can be represented as follows:

5/8

3/5

a

2/5

b

1/6

1/2

a

1/2

b

5/24

3/5

a

2/5

b

Our formulation of the observer’s preferences will be based on this observation. Following

Karni and Weymark (1998), we will identify an extended lottery ρ with a couple (f, p) ∈ A×∆(N)

as follows. Let p(ρ)(i) =
∑

x∈X ρ(x, i), for all i ∈ N , and whenever p(ρ)(i) > 0, let yi(ρ)(x) =
ρ(x,i)

P

z∈X ρ(z,i) for all x ∈ X, with f(ρ)(i) = yi(ρ). If p(ρ)(i) = 0, let yi(ρ) be an arbitrary element of

Y . Finally, define p(ρ) ⊗ f(ρ) by (p(ρ) ⊗ f(ρ))(x, i) = p(ρ)(i)yi(ρ)(x). Clearly, ρ = p(ρ) ⊗ f(ρ).

Let P be the set of all non-empty, compact and convex sets of probability distributions on

N , where compactness is defined with respect to the Euclidean space R|N |. A generic element of

P will be denoted by P. Finally, δi is the probability distribution on N defined by δi(i) = 1.

The observer’s preferences � will be defined on the product A× P (∼ and ≻ will, as usual,

denote the symmetric and asymmetric components of �, respectively). The couple (f,P) can be

interpreted as follows: the observer knows that the allocation is given by f and he also knows

that the probability distribution on N according to which his identity will be chosen is in the

set P, but has no further information on the process assigning identities. It is important to note

that a set of probability distribution P ∈ P is here thought of as objective data of the decision

problem in hand.

Harsanyi assumes that the observer is Bayesian and that being completely ignorant about

the probability distribution that governs the individual lottery is equivalent to knowing for sure

that the individual lottery has a uniform distribution. Translated into our framework, these

assumptions are: (i) for all f ∈ A and all P ∈ P, there exists p ∈ P such that (f,P) ∼ (f, {p}),

and (ii) for all f ∈ A, (f,∆(N)) ∼ (f, {µ}), where µ is the uniform distribution on N . The first

assumption is a version of Bayesianism, whereas the second is what Harsanyi (1977) calls the

“Equal Chance Principle". These assumptions seem highly dubious and are actually related to

the decision maker’s attitude towards imprecise information and not to his supposed rationality:

they have a psychological meaning (namely: neutrality towards uncertainty). Note that, in this
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respect, Rawls’ approach is no more convincing, since he assumes from the outset that the decision

maker has an extreme aversion towards uncertainty. Our aim is therefore to propose a general

decision model on A × P that leaves open the decision maker’s attitude towards information

imprecision.

A crucial property of our framework is that ignorance is not assumed from the outset, as it

is the case in most theories of individual decision under uncertainty. This might seem strange,

insofar as the impartial observer eventually only compares allocations under complete ignorance.

In other words, the domain of the observer’s preference might seem to be in some sense too large.9

This choice was motivated by two reasons. First, because following Harsanyi and Rawls, we view

moral decisions as rational decisions under some special circumstances (namely, ignorance), it

is important to be sure that the decision rules we characterize are consistent with “rational”10

decision rules on the full domain. If this theory cannot be extended (in a consistent way) so

as to deal with all loteries, it is not sure that it would be thought of as a “good theory”. The

second reason for insisting on working with the large domain is more specific to the problem we

deal with. We said that both Rawls and Harsanyi viewed moral decisions as rational decisions

under appropriate conditions of ignorance. Thus there are two questions: (i) which decision rule

is rational when one has some possibly incomplete information, and (ii) what is the information

we should assume the observer has in order to implement impartial decisions. We believe that it

is conceptually important to separate these two issues, as only the second has a moral content.

Making such a distinction is only possible if one considers a large domain.11 Moreover, we believe

that statements like: “the observer prefers being individual i for sure than being individual j for

sure when the social allocation is f ”, or “the observer prefers being individual i for sure than being

totally ignorant about his identity when the social allocation is f ” are relevant. Such statements

cannot be made if one restricts the domain to social allocations under complete ignorance. Thus,

our approach radically differs from the literature on decision making under complete ignorance

that imposes no probabilistic structure on the set of consequences (not even a state space), and

often allows for incomplete preference, a route we totally ignore here.12

9A similar objection can be made to Harsanyi: The observer’s preferences in Harsanyi’s Theorem are defined
over all extended lotteries, although only constant impartial lotteries are eventually considered by the impartial
observer. Restricting the domain raises some technical difficulties, that were pointed out and solved by Karni
and Weymark (1998) who provided an “informationally parsimonious” version of Harsanyi’s Impartial Observer
Theorem.

10Here, “rational” means “satisfy some well identified and acceptable axioms”
11Maybe part of the misunderstanding around the Rawls-Harsanyi debate can actually be explained by a

confusion between these two issues.
12Barberà, Bossert and Pattanaik (2004) provides an extensive survey on that literature, including application

to social choice.
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3 The Observer’s preferences

We now turn to the observer’s preferences on A × P. Our model is similar in spirit to the

one axiomatized by Gajdos, Hayashi, Tallon and Vergnaud (2007). However, their model is

state-independent, which would, in our framework lead to uniform individual preferences. We

therefore need to relax the state-independence assumption. Furthermore, the above mentioned

paper aimed at defining an imprecision aversion concept directly related to comparisons of sets

of information. But, as we will show, the classical definition of uncertainty aversion through

preference for randomization can be easily interpreted in the social choice framework. We will

therefore keep such a definition of uncertainty aversion. Finally, the Gajdos, Hayashi, Tallon

and Vergnaud (2007) axiomatization relies on operations on the state space that are difficult to

interpret in this framework, where states are individuals. We will therefore avoid them. Let us

note that Gilboa and Schmeidler’s (1989) maxmin model cannot be used here, for two reasons.

First, because it is state-independent, it would lead to uniform individual preferences. Second,

this model does not permit taking into account objective information. Indeed, in Gilboa and

Schmeidler’s (1989) model, objects of choice are acts (i.e., elements of A). There is therefore no

way to say, for instance, that the decision maker prefers the act f together with an information set

P over an act g together with an information set Q. The (unique) set of probability distributions

the decision maker uses to evaluate acts in Gilboa and Schmeidler’s (1989) model is fixed and of

purely subjective nature: it only depends on the decision maker’s preferences.

We start by three quite standard axioms, that require the preference relation � on A× P to

be complete, transitive, non-degenerate and continuous. As usual, convex combinations in A are

performed pointwise: for f, g ∈ A and α ∈ [0, 1], αf+(1−α)g = h where h(i) = αf(i)+(1−α)g(i)

for all i ∈ N .

Axiom 1 (Ordering). � is a reflexive, complete and transitive binary relation on A× P.

Axiom 2 (Non-degeneracy). For every P ∈ P, there exist f ,g ∈ A such that (f,P) ≻ (g,P).

Axiom 3 (Act Continuity). For all f , g, h ∈ A and all P ∈ P, if (f,P) ≻ (g,P) ≻ (h,P), then

there exists an α in (0, 1) such that :

(αf + (1 − α)h,P) ∼ (g,P).

The following notion of mixture of sets of probability distributions will be extensively used

in the sequel.

Notation 1. For all P,Q ∈ P and all α ∈ [0, 1], the α−mixture of P and Q is defined by:

αP + (1 − α)Q = {p ∈ ∆(N)|p = αp1 + (1 − α)p2, p1 ∈ P, p2 ∈ Q}.
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An element (f, αP + (1 − α)Q) of A× P can be interpreted as a compound lottery in which

in the first stage (P, f) and (Q, f) are obtained with probabilities α and (1 − α), respectively.

Let us consider (f,P1), (g,Q1), (f,P2) and (g,Q2) such that the Observer prefers (f,P1) to

(g,Q1) and (f,P2) to (g,Q2). Assume, now, that the observer faces a choice between (f, αP1 +

(1 − α)P2) and (g, αQ1 + (1 − α)Q2). He might reason as follows: with probability α, I would

obtain (f,P1) if I have chosen (f, αP1+(1−α)P2) and (g,Q1) if I have chosen (g, αQ1+(1−α)Q2).

Since I prefer (f,P1) over (g,Q1), it is better for me to choose (f, αP1 + (1−α)P2), conditional

on the realization of the event whose probability is α. Similarly, since I prefer (f,P2) over

(g,Q2), it is better for me to choose (f, αP1 + (1 − α)P2), conditional on the realization of the

event whose probability is (1 − α). Thus, I prefer unconditionally (f, αP1 + (1 − α)P2) over

(g, αQ1 + (1 − α)Q2). This leads us to the following axiom,which is a mere extension of the

“Constrained Independence Axiom" proposed by Karni and Safra (2000).13

Axiom 4 (Set-Mixture Independence). For all P1,Q1,P2,Q2 ∈ P, all α ∈ [0, 1] and for all

f, g ∈ A,

(f,P1) � (≻)(g,Q1)
(f,P2) � (g,Q2)

}

⇒ (f, αP1 + (1 − α)P2) � (≻)(g, αQ1 + (1 − α)Q2).

The next axiom concerns comparisons of information sets. It states that if an allocation f

is judged better than another allocation g according to any probability distribution in P, then

(f,P) is judged better than (g,P).

Axiom 5 (Dominance). For all P ∈ P, if for all p ∈ P, we have (f, {p}) � (g, {p}) ((f, {p}) ≻

(g, {p})) then (f,P) � (g,P) ((f,P) � (g,P)).

Now, because we do not want to impose state-independence (that would lead in our framework

to the conclusion that all individuals’ preferences on Y are identical), we need to construct

allocations that would play the role that constant allocations usually play. To do so, we define

the set Acv of constant-valued allocations. These allocations are characterized by the fact that

the observer is indifferent between being individual i or individual j for sure, for all pairs (i, j).

Formally,

Acv = {f ∈ A|(f, {δi}) ∼ (f, {δj}), ∀i, j ∈ N}.

Notions similar to that of constant-valued acts have appeared in Drèze (1987), Karni (1993,

2007) and Skiadas (1997a, 1997b).

The next axiom is a classical boundedness requirement with respect to the set of constant-

valued allocations. In particular, this axiom guarantees that Acv is not empty.

13The above interpretation is exactly the one proposed by Karni and Safra (2000), where sets of probability
distributions are considered instead of probability distributions.
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Axiom 6 (Boundedness). For all P ∈ P and f ∈ A, there exist f̄ and f in Acv such that:

(f̄ ,P) � (f,P) � (f,P).

A similar axiom can be found, for instance, in Luce and Krantz’s (1971) axiomatization of

state-dependent expected utility. Essentially, it amounts to assuming that from the observer’s

point of view, the range of utility over social lotteries conditionally on being individual i for

sure is the same as the range of utility over social lotteries conditionally on being individual j

for sure, for all i, j ∈ N . In other words, from the observer’s point of view (i.e., from behind

the veil of ignorance), all individuals face the same opportunity set in terms of well-being. Put

differently, this axioms implies that there is not a priori reason for the observer to prefer being

an individual or another. It thus conveys a notion of impartiality. In that sense, this axiom has

a strong ethical meaning. A similar idea can be found in Karni (1998). A natural objection to

Axiom 6 would be the following. Assume that individuals i and j are identical in all respects,

except that individual i is disabled, whereas individual j is not. In this case, one may reasonably

think that individual j can achieve a greater level of well-being than individual i. This is precisely

a case where one might not want to be impartial between i and j: The observer might want

to favor an individual from the outset. Now, assume that the set of social alternatives includes

a state in which individual i is not disabled. Then, it is reasonable to say that individuals i

and j can achieve the same level of well-being (observe that Axiom 6 doesn’t require that all

individuals actually achieve the same level of well-being). Thus Axiom 6 can be justified if one

adopts a restrictive definition of preferences and an extensive definition of social alternatives.

Finally, from a technical point of view, it is probably possible to weaken Axiom 6, for instance

only assuming that there are non-trivial overlap of the ranges of conditional utilities (with some

obvious change in the results). This would, however, add to our analysis complications that are,

in our opinion, not worth the cost.

The next axiom is the analogue of the C−independence Axiom of Gilboa and Schmeidler

(1989), where the set of constant-valued allocations replaces the set of constant allocations. It

states that if (f,P) is judged better than (g,Q), then this relation is preserved if one mixes f

and g with some constant-valued allocation h.14

Axiom 7 (Acv-Independence). For all f, g ∈ A, h ∈ Acv, P,Q ∈ P and all α ∈ (0, 1),

(f,P) � (g,Q) ⇔ (αf + (1 − α)h,P) � (αg + (1 − α)h,Q).

The next axiom is a reduction axiom. Assume that f ∈ A and hi ∈ Acv (i ∈ N) are such that

(f, {δi}) ∼ (hi, {δk}), where k ∈ N is fixed. Let p ∈ ∆(N) be given. The pair (f, {p}) can be

14A similar axiom appears in Karni (2006).
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viewed as a lottery over the product Y ×N , where p(i) is the probability of being individual i and

getting f(i), for all i ∈ N . Let us denote this lottery by ℓ = ((f(1), 1), p(1); . . . ; (f(n), n), p(n)),

where (f(i), i) means “being individual i and getting f(i)".

Now, consider the pair (
∑

i∈N p(i)hi, {δk}). This pair can be viewed as a two-stage lottery

ℓ̃ = ((ℓ1, 1), 0; . . . ; (ℓk, k), 1; . . . ; (ℓn, n), 0), where ℓi = (h1(i), p(1); . . . ;hn(i), p(n)) are lotteries

over Y . If one accepts the reduction of compound lottery axiom, one should be indifferent

between ℓ̃ and ℓ∗ = ((h1(k), k), p(1); . . . ; (hn(k), k), p(n)). Because hi ∈ Acv for all i ∈ N ,

(hi, {δi}) ∼ (hi, {δk}). Thus, the decision maker is indifferent between being individual i and

getting hi(i) and being individual k and getting hi(k). But (hi, {δk}) ∼ (f, {δi}) and therefore the

decision maker is indifferent between being individual k and getting hi(k) and being individual

i and getting f(i). Hence, for each i, ℓ and ℓ∗ have, with probability p(i), consequences among

which the decision maker is indifferent. It is thus reasonable to assume that he is indifferent

between them. Thus, he should also be indifferent between ℓ̃ and ℓ and, therefore, between

(
∑

i∈N p(i)hi, {δk}) and (f, {p}). This leads us to the following axiom.

Axiom 8 (Reduction). For all f, g ∈ A, p ∈ ∆(N), and k ∈ N , if there exist h1, . . . , hn ∈ Acv

such that:
{

g =
∑

i p(i)hi
(hi, {δk}) ∼ (f, {δi})

then (f, {p}) ∼ (g, {δk}).

Now, consider a constant-valued allocation h. Axiom 8 (with hi = h for all i) implies that for

all p ∈ ∆(N) and any k ∈ N , (h, {p}) ∼ (h, {δk}). Thus, for any p, q ∈ ∆(N), (h, {p}) ∼ (h, {q}).

It is therefore reasonable to assume that the information set does not matter when the decision

maker faces constant-valued allocations. This is precisely the meaning of the next axiom.

Axiom 9 (Information indifference on Acv). For all h ∈ Acv and all P,Q ∈ P, (h,P) ∼ (h,Q).

We will also assume that only the part of the allocation on which there is a positive probability

for some probability distribution in the information set matters. Formally, let S(P) be the subset

of N defined by S(P) = {i ∈ N |∃p ∈ P s.t. p(i) > 0}. In other words, S(P) is the union of the

supports of all probability distributions in the information set. For any subset E of N and pair

of allocations (f, g), we define the allocation fEg as (fEg)(i) = f(i) if i ∈ E and (fEg)(i) = g(i)

is i ∈ N \ E.

Axiom 10 (Equivalence). For all f, g ∈ A, P ∈ P, (f,P) ∼ (fS(P)g,P).

In particular, Axiom 10 implies that for all f ∈ A and i ∈ N , (f, {δi}) ∼ (h, {δi}) for all h

such that h(i) = f(i).
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Finally, our last axiom is a version of the uncertainty aversion axiom of Schmeidler (1984),

Chateauneuf (1991) and Gilboa and Schmeidler (1989). In the framework of decision making

under uncertainty, it simply stipulates that the decision maker exhibits a (weak) preference for

hedging. This axiom may also be interpreted from an ethical point of view. We defer this

discussion to Section 5.

Axiom 11 (Uncertainty aversion). For all f, g ∈ A, P ∈ P, α ∈ (0, 1), (f,P) ∼ (g,P) implies

(αf + (1 − α)g,P) � (f,P).

Let �̂i be the restriction of � to A× {δi}. We say that a function V̂i : Y → R represents �̂i

if for all f, g ∈ A:

(f, {δi}) � (g, {δi}) ⇔ V̂i(f(i)) ≥ V̂i(g(i)).

We can now state the following Theorem.

Theorem 1. Axioms 1 to 11 hold if, and only if, (a) there exist affine functions V̂i : Y → R,

i ∈ N , representing �̂i such that V̂i(Y ) = V̂j(Y ), for all i, j ∈ N and (b) there exists a function

F : P → P satisfying, for all P,Q ∈ P:

1. F(P) ⊆ P

2. For all α ∈ [0, 1], F(αP + (1 − α)Q) = αF(P) + (1 − α)F(Q)

for which for all (f,P), (g,Q) ∈ A× P,

(f,P) � (g,Q) ⇔ min
p∈F(P)

∑

i

p(i)V̂i(f(i)) ≥ min
p∈F(Q)

∑

i

p(i)V̂i(g(i)).

Furthermore, F is unique and the functions {V̂i}i∈N are unique up to a common positive affine

transformation.

Proof. See the Appendix.

To better understand the meaning of Theorem 1, it might be useful to compare and contrast

it with Gilboa and Schmeidler’s (1989) maxmin expected utility. This theory is stated in the

standard Anscombe-Aumann framework, i.e., without any explicit information concerning prob-

abilities. They thus only provide a representation theorem for preferences on A. Let D be a

binary relation on A, with f D g meaning “g is not strictly preferred to f ”. According to the

maxmin expected utility model, there exists a unique compact convex set of probability measures

12



C ∈ P and a linear utility function V (unique up to a strictly increasing affine transformation)

such that for all f, g ∈ A:

f D g ⇔ min
p∈C

∑

i

p(i)V (f(i)) ≥ min
p∈C

∑

i

p(i)V (g(i)).

This rule can be interpreted as follows: The decision maker has a subjective set of priors C, and

evaluates any allocation by computing its expected value with respect to the worst probability

distribution in that set. A key feature of that model is that the set of priors C is totally

subjective, and absolutely not related to any objective information. Now, consider Theorem

1. The decision rule characterized in that theorem looks quite similar in spirit to Gilboa and

Schmeidler’s representation result. However, the set of priors used to compute the minimum of

the expected utility is now explicitly related to the available information.

Observe, first of all, that because F(P) ⊆ P for all P ∈ P, it is the case that F({p}) = {p}

for all p ∈ ∆(N). Thus Vi(f(i)) may be interpreted as the utility obtained by the observer when

she is sure to be individual i and the allocation is f . In the particular case where the information

sets are reduced to singletons, Theorem 1 reduces to:

(f, {p}) � (g, {q}) ⇔
∑

i

p(i)Vi(f(i)) ≥
∑

i

q(i)Vi(g(i)),

for all p, q ∈ ∆(N) and all f, g ∈ A. In other words, when the information available to the

observer takes the form of a single probability distribution, she evaluates an allocation by com-

puting its expected value with respect to that probability distribution. Now, consider what

happens when the observer has to evaluate an allocation with a non-degenerated information

set.15

First consider the case where F(P) = P for all P ∈ P. Such a selection function obviously

satisfies all the conditions of Theorem 1, and we get:

(f,P) � (g,Q) ⇔ min
p∈P

∑

i

p(i)Vi(f(i)) ≥ min
p∈Q

∑

i

p(i)Vi(g(i)),

for all P,Q ∈ P and f, g ∈ A. Such a rule can be interpreted as follows: The observer evaluates

each allocation by computing its expected value for the worst probability distribution among the

possible ones. Of course, such a behavior is quite pessimistic.

Now, consider a Bayesian observer. Facing an information set P, she will reduce it to a single

probability distribution, i.e., F(P) ∈ ∆(N) for all P ∈ P. For instance, F(P) could be the

15Of course, we are going far beyond what the theorem actually delivers. The theorem only says that everything
is “as if” the observer actually thinks along the lines we describe here.
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Steiner point (which is a generalization of the notion of “center” for arbitrary convex sets) of P,

which will be denoted as St(P).16 Theorem 1 will then give us:

(f,P) � (g,Q) ⇔
∑

i

St(P)(i)Vi(f(i)) ≥ q
∑

i

St(Q)(i)Vi(g(i)),

for all P,Q ∈ P and f, g ∈ A. Thus, the observer evaluates an allocation by computing its

expected value with respect to the Steiner point of the information set. Observe that, in that

case, the observer is neutral towards uncertainty: for all P ∈ P, f, g ∈ A, and all α ∈ (0, 1),

(f,P) ∼ (g,P) implies (αf + (1 − α)g,P) ∼ (f,P).

Finally, another natural candidate for F is a combination of the two selection functions given

above, namely: F(P) = θP+(1−θ)St(P). This is precisely the selection function we characterize

in what follows, on a restricted domain. Before stating our next result, we need some additional

notation. For any S ⊆ N , let ∆(S) be the set of all probability distributions with support in S.

Let:

B = {P ∈ P|∃(αt)t=1,...,r ∈ [0, 1] with
∑

t

αt = 1 and (St)t=1,...,r ⊆ N s.t. P =
∑

t

αt∆(St)}.

Hence, an element of B is a convex combination of simplices with supports in N . Furthermore,

for P =
∑

t αt∆(St), let c(P) =
∑

t αtc(∆(St)), where c(∆(St)) is the probability distribution

defined by c(∆(St))(s) = 1
|St|

(hence, c(∆(St)) is the uniform distribution on St).
17 Actually, it

is easily shown that for all P ∈ B, c(P) = St(P), and that moreover c(P) coincides with the

Shapley value of the cooperative game whose core is P.

In what follows, we will consider the restriction of � on A × B. We propose two additional

axioms on that restricted domain. The first may be interpreted as an anonymity requirement.

The idea is that the only things that matter for the observer, besides the information set, are

the utility levels he obtains, conditionally on being each individual. For any f ∈ A and any

permutation ϕ : N → N , define A(fϕ) =
{

g ∈ A
∣

∣(g, {δi}) ∼ (f, {δϕ−1(i)}), ∀i ∈ n
}

. Hence, for

all g ∈ A(fϕ), individual i gets the same utility level as individual ϕ−1(i) with the allocation

f . Now, for any P ∈ B, let Pϕ be defined by Pϕ = {pϕ|p ∈ P}, where for all p ∈ P, pϕ(i) =

p(ϕ−1(i)) for all i ∈ N . Essentially, (f,P) and (g,Pϕ) (with ϕ a permutation and g ∈ A(fϕ))

only differ by the names of the states. The following axiom states that the observer is indifferent

between them.

16to be precise, let e = ( 1

|N|
, · · · , 1

|N|
) and V = {v ∈ R

|N| : 〈v, e〉 = 0, ‖v‖ = 1} be the |N | − 2 dimensional unit

sphere orthogonal to e. For P ∈ P, its Steiner point is defined by St(P ) =
R

V
arg maxp∈P 〈p, v〉ν(dv), where ν is

the uniform distribution over V . It satisfies the condition of Theorem 1. The Steiner point was introduced in
decision theory by Gajdos, Hayashi, Tallon and Vergnaud (2007).

17The set B is known in decision theory as the set of cores of belief functions. For more details on beliefs
functions see, e.g., Dempster (1967), Shafer (1976) and Jaffray (1989).
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Axiom 12 (Anonymity). For all (f,P) ∈ A×B, all permutations ϕ : N → N and all g ∈ A(fϕ),

(f,P) ∼ (g,Pϕ).

The next axiom states that whenever two allocations share the same worst probability distri-

bution in P, a mixture of these allocations will not reduce the degree of uncertainty and therefore

will not lead to an improvement, whenever P is the available information set. Recall that in

Axiom 11, we interpreted preference for hedging (or mixture) as uncertainty aversion. With

this in mind, indifference for hedging can be interpreted as neutrality towards uncertainty. The

following axiom can therefore be viewed as a restricted neutrality towards uncertainty.18

Axiom 13 (Restricted Mixture Neutrality). For all P ∈ B and all f, g ∈ A, if there exists p∗ ∈ P

such that (f, {p}) � (f, {p∗}) and (g, {p}) � (g, {p∗}) for all p ∈ P, then for all α ∈ [0, 1],

(f,P) ∼ (g,P) ⇔ (αf + (1 − α)g,P) ∼ (g,P).

We then obtain the following representation theorem when the information belongs to B.19

Theorem 2. Under the assumptions of Theorem 1 restricted to A× B, Axioms 12 and 13 hold

if, and only if, (a) there exist affine functions V̂i : Y → R, i ∈ N , representing �̂i such that

V̂i(Y ) = V̂j(Y ), for all i, j ∈ N and (b) there exists θ ∈ [0, 1] such that for all P,Q ∈ B and all

f, g ∈ A,

(f,P) � (g,Q) ⇔ θmin
p∈P

∑

i

p(i)V̂i(f(i)) + (1 − θ)
∑

i

c(P)(i)V̂i(f(i))

≥ θmin
p∈Q

∑

i

p(i)V̂i(g(i)) + (1 − θ)
∑

i

c(Q)(i)V̂i(g(i)).

Furthermore, θ is unique and the functions {V̂i}i∈N are unique up to a common positive affine

transformation.

Proof. See the Appendix.

Theorem 2 is a special case of Theorem 1, where the subjective set of priors is obtained by

(i) solving for the “mean value” c(P) of the information set and (ii) shrinking the information

18Mixture neutrality can be considered as the analogue of the betweenness property for preferences under risk
(on the betweenness property, see, e.g., Chew (1983, 1993) and Dekel (1986)). Attitudes towards mixtures are
considered in detail in Klibanoff (2001).

19Actually, the following representation theorem, which is only given when the information takes the form of
a core of a belief function, can be extended to convex combinations of symmetric polytopes. However, for the
problem under consideration, such an extension would not be a great improvement.
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set toward the mean value according to a degree (1−θ) given by the decision maker’s preference.

The set of priors is then F(P) = θP + (1 − θ){c(P)}. Because

min
p∈θP+(1−θ){c(P)}

∑

i∈N

p(i)V̂i(f(i)) = θmin
p∈P

∑

i∈N

p(i)V̂i(f(i)) + (1 − θ)
∑

i∈N

c(P)(i)V̂i(f(i)),

one obtains the decision rule that appears in Theorem 2. Observe that the case θ = 0 corresponds

to a Bayesian decision maker who uses exclusively the “mean value" c(P), whereas the case θ = 1

corresponds to an extremely pessimistic decision maker, who keeps the whole set of information.20

4 The Ignorant Observer Theorem

We now define individual preferences �i on Y . Following Harsanyi, we assume that individuals

obey the von Neumann and Morgenstern axioms. It should be noted that this assumption is

by no means in conflict with Rawls’ views. Indeed, Rawls only rejected the use of the Bayesian

doctrine from behind the veil of ignorance. Formally, these axioms are as follows.

Axiom 14 (Ordering). �i is a reflexive, complete, transitive and nondegenerate binary relation

on Y .

Axiom 15 (Continuity). For all w, y, z ∈ Y such that w ≻i y ≻i z, there exists an α ∈ (0, 1)

such that αw + (1 − α)z ∼i y.

Axiom 16 (Independence). For all w, y, z ∈ Y and all α ∈ [0, 1], y �i z implies αy+(1−α)w �i

αz + (1 − α)w.

As is well known (see, e.g., Fishburn, 1970), a preference relation satisfies these three axioms

if, and only if, it can be represented by an Expected Utility functional. This is stated formally

in the following theorem.

Theorem 3. Axiom 14 to 16 hold if, and only if, there exists an affine real-valued function Ui

on Y such that for all y, z ∈ Y , y �i z if, and only if, Ui(y) ≥ Ui(z). Furthermore, such a

representation is unique up to a positive affine transformation.

Our aim is to deduce from the individual preferences �i on Y and the observer’s preferences

� on A × P, a “social preference" �∗ on Y . In order to do so, one needs to specify how these

preferences interact.

20A similar decision rule has been axiomatized in Gajdos, Hayashi, Tallon and Vergnaud (2007) on the domain
A× P. The axioms used there are very different from the ones we use (they involve a strong notion of invariance
with respect to some joint transformations acts and information and continuity with respect to the information).
In particular, they do not involve any restriction concerning attitude towards mixture of acts. Finally, it was
stated in a state-independent framework.
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The preferences of the individuals and the observer are linked by the so-called “acceptance

principle" (see Harsanyi, 1977) which states that if the observer is sure to be i, her choices should

be the same as those of i. The acceptance axiom can be restated as follows in our framework.

Axiom 17 (Acceptance). For all i ∈ N and all f, g ∈ A, (f, {δi}) � (g, {δi}) if and only if

f(i) �i g(i).

We now turn to the link between social preferences and the observer’s preferences. The

fundamental idea of the veil of ignorance is that (fair) social preferences are those of an observer

who is totally ignorant about the position he will eventually get in the society. There are

two issues here. First, social preferences are defined over social alternatives in Y , whereas the

observer’s preferences are defined on the product A× P of allocations and information sets. For

all y ∈ Y , let ky ∈ A be the allocation defined by ky(i) = y for all i ∈ N . It is natural to

define the observer’s preferences �Y on Y × P as follows: (y,P) �Y (z,Q) iff (ky,P) � (kz,Q).

Indeed,consider the social lottery y together with the information set P. One may interpret this

couple as a two stages process. First, there is a probability distribution in P according to which

his identity will be chosen. Then, she will face the social alternative y, whatever her identity is.

But this is precisely how we interpret (ky,P).

Now, we should formalize the idea that the observer is totally ignorant about his position.

In our framework, this is captured by the fact that the information set is ∆(N), the set of all

probability distributions over the set N of individuals. This leads us to the following axiom.

Axiom 18 (Ignorance). For all y, z ∈ Y , y �∗ z if, and only if, (ky,∆(N)) � (kz,∆(N)).

We can now state a first representation Theorem.

Theorem 4. Assume that the observer’s preferences satisfy all of the axioms of Theorem 1 and

that the individual preferences satisfy all of the axioms of Theorem 3. Take F : P → P from

Theorem 1 and affine functions Vi : Y → R, i ∈ N , from Theorem 3. Then for all y, z ∈ Y ,

y �∗ z ⇔ min
p∈F(∆(N))

∑

i

p(i)
Vi(y) − minw∈Y Vi(w)

maxw∈Y Vi(w) − minw∈Y Vi(w)

≥ min
p∈F(∆(N))

∑

i

p(i)
Vi(z) − minw∈Y Vi(w)

maxw∈Y Vi(w) − minw∈Y Vi(w)
.

Proof. This theorem is a straightforward corollary of Theorem 1. Axiom 17 implies �i = �̂i.

Let Vi be an affine representation of �i. By Theorem 3, Vi is unique up to a positive affine

transformation. Therefore, V ∗
i (y) = Vi(y)−minw∈Y Vi(w)

maxw∈Y Vi(w)−minw∈Y Vi(w) is also an affine representation of

�i. Furthermore, V ∗
i (Y ) = V ∗

j (Y ) for all i, j ∈ N . Define Ṽi(f) = V ∗
i (f(i)) for all f ∈ A.
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Clearly, Ṽi are affine representations of �̂i and satisfy Ṽi(Y ) = Ṽj(Y ) for all i, j ∈ N . The result

then follows from Theorem 1.

Observe that the exact form of F(∆(N)) will actually depend on the decision maker’s un-

certainty aversion. A more precise form may be obtained if we use Axioms 12 and 13. Indeed,

Theorem 2 leads to the following result.

Theorem 5. Assume that the observer’s preferences satisfy all of the axioms of Theorem 2 and

that the individual preferences satisfy all of the axioms of Theorem 3. Take affine functions Vi,

i ∈ N , from Theorem 3. Then Axioms 17 and 18 hold if, and only if for y, z ∈ Y ,

y �∗ z ⇔ θmin
i∈N

Vi(y) − minw∈Y Vi(w)

maxw∈Y Vi(w) − minw∈Y Vi(w)
+(1−θ)

∑

i∈N

1

n

Vi(y) − minw∈Y Vi(w)

maxw∈Y Vi(w) − minw∈Y Vi(w)

≥ θmin
i∈N

Vi(z) − minw∈Y Vi(w)

maxw∈Y Vi(w) − minw∈Y Vi(w)
+ (1 − θ)

∑

i∈N

1

n

Vi(z) − minw∈Y Vi(w)

maxw∈Y Vi(w) − minw∈Y Vi(w)
.

Furthermore, θ is unique.

Proof. Let V ∗
i be defined as in the proof of Theorem 4. Reasoning as in the proof of Theorem

4, Theorem 2 implies that there exist affine functions Vi : Y → R, i ∈ N , representing �i such

that for all y, z ∈ Y ,

y �∗ z ⇔ θ min
p∈∆(N)

∑

i

p(i)V ∗
i (y) + (1 − θ)

∑

i

1

n
V ∗
i (y)

≥ θ min
p∈∆(N)

∑

i

p(i)V ∗
i (z) + (1 − θ)

∑

i

1

n
V ∗
i (z).

Theorem 5 follows by noting that minp∈∆(N)

∑

i p(i)V
∗
i (x) = mini∈N V

∗
i (x) for all x ∈ Y .

Such a criterion can be easily interpreted: it is a weighted average of Harsanyi’s utilitarian

criterion and Rawls’ maxmin criterion. It should be noted that Axioms 12 and 13 are used

to obtain this specific functional form. Axiom 12 plays a transparent role: it ensures that the

symmetry of the set of probability distributions that represents the available information will be

preserved in the decision rule. Axiom 13 forces the set of probability distributions used in the

decision rule to have a similar shape as the set of probability distributions that represents the

available information.

Let us note that, in both Theorems 4 and 5, the individual utility functions Vi(y)−minw∈Y Vi(w)
maxw∈Y Vi(w)−minw∈Y Vi(w)

are cardinally measurable and fully comparable. Therefore, the weights assigned to these func-

tions cannot be manipulated and are meaningful. As mentioned above, the normalization of

individual utility functions that we have obtained is very similar to that obtained by Karni
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(1998), Dhillon and Mertens (1999), Segal (2000) and Moreno-Ternero and Roemer (2005).21 In

all of these articles, the weight for each individual depends on the diameter of the range of her

utility function.22 Because Karni (1998) is the paper to which we are the closest, let us empha-

size a significant difference between Karni’s approach and the one that we have followed here.

Karni assumes that the observer’s preferences are defined on extended lotteries, in Harsanyi’s

sense.23 This assumption implies that he faces the well-known problem of the determination of

the weights the observer attaches to each individual. This is where his “Impartiality Axiom"

plays a key role. Our approach is rather different. Because the weights that appear in our repre-

sentation theorem are based on objective information (i.e., because probability distributions on

individual lotteries are part of the model), we do not face the problem of their determination.

Hence, the normalization of individual utilities can be seen as coming from a strictly epistemic

axiom (namely, Axiom 6), which should not be interpreted in terms of impartiality. Our impar-

tiality requirement actually lies in the nature of the information the observer can use to make

her decisions.

5 Arguments for a compromise

According to our Ignorant Observer theorem, there is not one, but a plurality of decision rules

complying with the impartiality requirement (as formalized by the veil of ignorance). These

include both Harsanyi’s utilitarian criterion and Rawls’ maximin principle.

In particular, given the assumptions of Theorem 4, the observer would be Rawlsian if, and

only if, she obeys the following axiom.

Axiom 19 (Extreme aversion towards uncertainty). For all f ∈ A, P ∈ P and p ∈ P, (f, {p}) �

(f,P).

This axiom requires the observer to (weakly) prefer any lottery on the set of individuals to

complete ignorance. In particular, she must (weakly) prefer to be the worst-off individual for

sure, rather than facing complete ignorance concerning her identity. Such a requirement seems

very unlikely from a decision theoretic point of view.

On the other hand, assuming that the ignorant observer is an expected utility maximizer, one

would obviously obtain the utilitarian rule.24 This requirement would take, in our framework,

the following form, which is a strengthening of Axiom 11:

21Although they consider a very restrictive case (i.e., when individual preferences are risk-isomorphic).
22See also Karni (2003) for a related approach.
23He uses the Anscombe and Aumann (1963) formalism.
24Again, in the preference utilitarian sense, as in Harsanyi’s work, and not as it was understood by classical

utilitarians
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Axiom 20 (Neutrality towards uncertainty). For all f, g ∈ A and all P ∈ P, (f,P) ∼ (g,P)

implies, for all α ∈ (0, 1), (αf + (1 − α)g,P) ∼ (f,P).

This axiom is relatively easy to interpret from an ethical point of view, because it is directly

related to a kind of neutrality towards inequalities. To grasp the intuition behind the axiom, let

us consider the following simple example.

Assume that the society is composed of two individuals, 1 and 2 and let P = ∆({1, 2}). Let

f and g be two allocations whose outcomes (in terms of utilities) are as follows:

1 2

V̂i(f(i)) 1 0

V̂i(g(i)) 0 1

V̂i(h(i))
1
2

1
2

Assume that the ignorant observer is indifferent between (f,∆({1, 2})) and (g,∆({1, 2})) (this

would be the case, in particular, if Axiom 12 holds). Observe that f and g are highly unequal.

Now, consider h, which is simply defined as 1
2f + 1

2g. Obviously, h is less unequal than f and

g. It makes sense, therefore, to assume that the ignorant observer will prefer h to both f and g.

However, Axiom 20 forces the observer to be indifferent between f and h. Actually, this is the

main point made in Diamond’s (1967) famous objection to Harsanyi.25

Axiom 11 allows us to accommodate for fairness, and thus to escape from Diamond’s cri-

tique, since we relax the independence axiom at the observer’s level. A similar argument applied

to Harsanyi’s Aggregation Theorem can be found in Epstein and Segal (1992). Observe that

there are other ways to relax the independence axiom, and thus to answer Diamond’s critique.

For instance, Grant, Kajii, Polak and Safra (2006) assume that the Impartial Observer’s prefer-

ences are defined over ∆(N) × ∆(X) (instead of ∆(N ×X) as in Harsanyi (1953, 1977). This

allows them to assume independence over outcome lotteries (i.e., elements of ∆(X)) and in-

dependence with respect to identity lotteries (i.e., elements of ∆(N)) without assuming that

a randomization between individual lotteries is equivalent from the observer’s point of view to

randomization between outcome lotteries. In that framework, they prove that if the observer ac-

tually prefers randomization between outcome lotteries to randomization over identity lotteries,

then her preferences can be represented by a “generalized utilitarian representation” of the form

V (y, p) =
∑

i p(i)φi(Ui(y)), where (y, p) ∈ ∆(X) × ∆(N), and the φi functions are concave. We

admit that Grant, Kajii, Polak and Safra’s answer to Diamond is deeper than ours, insofar as

they show that it is not really the independence assumption that is at the heart of Diamond’s

critique, but the fact that lotteries over outcomes and lotteries over identities are considered

25Actually, Diamond’s critique concerned Harsanyi’s (1955) Social Aggregation Theorem. However, it readily
translates into the Impartial Observer framework.
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as equivalent. However, our aim was not to improve Harsanyi’s model so as to answer Dia-

mond’s critique, but to provide a framework in which Rawls’ and Harsanyi’s arguments could be

compared and evaluated (because they represent ignorance by individual lotteries, Grant, Kajii,

Polak and Safra’s (2006) approach cannot be related to Rawls’ veil of ignorance).

However, we would like, here, to give some arguments in favor of the compromise suggested

by Theorem 5. Once one is convinced that both Rawls’ and Harsanyi’s criteria are unappealing,

adoption of the Axioms of Theorem 5 would indeed lead to a strict compromise between Rawls’

egalitarianism and Harsanyi’s utilitarianism.

The two key axioms that allow us to obtain Theorem 5 are Axioms 12 and 13. The first one is

a standard anonymity assumption that simply states that individuals’ names are irrelevant when

one compares two allocations. Axiom 13 is less usual and can actually be viewed as a restriction

of Axiom 20 that escapes Diamond’s critique. Indeed, consider again Diamond’s example. It

is clearly not the case that f and g share the same worst probability distribution in ∆({1, 2}),

since the worst case if f is chosen is to be individual 2 for sure, whereas the worst case if g is

chosen is to be individual 1 for sure. Therefore, one can not conclude that h ∼ f . Now, consider

the following variation of Diamond’s example, with 3 individuals.

1 2 3

V̂i(f1(i)) 1 0 0

V̂i(g1(i)) 1 1 0

V̂i(h1(i)) 1 1
2 0

Assume that the observer is indifferent between (f1,∆({1, 2, 3})) and (g1,∆({1, 2, 3})). Since

δ3 is the worst probability distribution for both f1 and g1, Axiom 13 leads to the conclusion

that (h1,∆({1, 2, 3})) ∼ (f1,∆({1, 2, 3})) ∼ (g1,∆({1, 2, 3})). Is this reasonable? Yes, insofar

as the observer’s indifference between (f1,∆({1, 2, 3})) and (g1,∆({1, 2, 3})) indicates that he

cares a lot about the worst-off individual because this individual is the same whatever allocation

is chosen (namely, 3) and has always the same utility.

Naturally, Axiom 13 is by no means indisputable. In particular, one may exhibit a particular

version of Diamond’s critique. Consider the following example, with the same notation as above:

1 2 3

V̂i(f2(i)) 1 0 0

V̂i(g2(i)) 0 1 0

V̂i(h2(i))
1
2

1
2 0

Assume, again, that (f2,∆({1, 2, 3})) ∼ (g2,∆({1, 2, 3})). Since δ3 is the worst probabil-

ity distribution for both f and g, Axiom 13 leads to the conclusion that (h2,∆({1, 2, 3})) ∼

(f2,∆({1, 2, 3})) ∼ (g2,∆({1, 2, 3})). But observe that if one considers only individuals 1 and
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2, h2 is strictly more equal than f2 and g2, whereas individual 3 gets the same outcome in

f2, g2 and h2. Thus one may consider that the observer should prefer (h2,∆({1, 2, 3})) over

(f2,∆({1, 2, 3})). In other words, Axiom 13 does not allow compensating the situation of the

worst-off individual by a decrease of the inequality among better-off individuals (only a Pareto-

improvement can lead to such a compensation). Thus, in this case, we are essentially back to

Diamond’s critique. Thus, Axiom 13 might be seen as an axiom restricting the set of situations

where Diamond’s critique applies (as compared to Harsanyi’s utilitarianism), without totally

eliminating them.

This leads us to believe that the allocation rule proposed in Theorem 5 (with θ ∈ (0, 1))

is a reasonable one.26 Of course, this rule is in sharp conflict with Harsanyi’s view, since it is

not compatible with utilitarianism as soon as θ > 0. On the other hand, it is not certain that

Rawls would have been displeased with it. Although after A Theory of Justice was published, he

wrote some articles to defend maximin (see, e.g., Rawls, 1974a, 1974b), his arguments were often

conflicting and even contradictory with his own interpretation of the veil of ignorance. We take

these contradictions as evidence that his main purpose was not to defend a specific criterion of

rational decision under ignorance. Since his project was primarily to propose a theory of social

justice alternative to Utilitarianism, his main purpose with the veil of ignorance model was to

acknowledge a solution excluding Utilitarianism. As himself wrote:

“But I do not wish to overemphasize this criterion: a deeper investigation (...) may

show that some other conception of justice is more reasonable."

Rawls, (1974a, p. 145)

26Yet, since as we have seen, Axiom 13 is not indisputable, we do not claim that this rule is the only one that
should be considered. One may want to start from the more general representation of Theorem 4 and impose
other axioms that would lead to different rules. We leave this investigation for future research.
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Appendix

Proof of Theorem 1

The necessity part of the Theorem is easily checked. We therefore only prove the sufficiency

part. The proof goes through several claims. Although not explicitly stated in the claims, all of

the assumptions of Theorem 1 are made throughout this subsection.

Claim 1. Acv is convex.

Proof. Let f, g ∈ Acv and α ∈ [0, 1]. By the definition of Acv, (f, {δi}) ∼ (f, {δj}) for all i, j ∈ N .

Therefore, by Axiom 7, (αf + (1 − α)g, {δi}) ∼ (αf + (1 − α)g, {δj}) for all i, j ∈ N . Hence,

αf + (1 − α)g ∈ Acv, which proves that Acv is convex.

Claim 2. For all i ∈ N , all f, g, h ∈ A and all α ∈ (0, 1),

(f, {δi}) � (g, {δi}) ⇔ (αf + (1 − α)h, {δi}) � (αg + (1 − α)h, {δi}).

Proof. Let f, g, h ∈ A. By Axiom 6, there exist h̄, h ∈ Acv such that (h̄, {δi}) � (h, {δi}) �

(h, {δi}). Hence, by Axiom 3, there exists θ ∈ [0, 1] such that (h, {δi}) ∼ (θh̄ + (1 − θ)h, {δi}).

Let ĥ = θh̄+(1−θ)h. By Claim 1, ĥ ∈ Acv. Next, let h̃ be defined by h̃(i) = h(i) and h̃(j) = ĥ(j)

for all j 6= i. By Axiom 10, we then have (h̃, {δi}) ∼ (h, {δi}) ∼ (ĥ, {δi}). Furthermore, for all

j 6= i, (h̃, {δj}) ∼ (h̃, {δi}) by construction. Therefore, h̃ ∈ Acv. By Axiom 7, for all α ∈ (0, 1),

(f, {δi}) � (g, {δi}) ⇔ (αf + (1 − α)h̃, {δi}) � (αg + (1 − α)h̃, {δi}).

But, by Axiom 10, (αf + (1 − α)h̃, {δi}) ∼ (αf + (1 − α)h, {δi}) and (αg + (1 − α)h̃, {δi}) ∼

(αg + (1 − α)h, {δi}). Therefore,

(f, {δi}) � (g, {δi}) ⇔ (αf + (1 − α)h, {δi}) � (αg + (1 − α)h, {δi}),

the desired result.

Claim 3. For all i, there exits an affine function V̂i : Y → R such that for all f, g ∈ A,

(f, {δi}) � (g, {δi}) ⇔ V̂i(f(i)) ≥ V̂i(g(i)).

Furthermore, V̂i is unique up to a positive affine transformation.

Proof. Let i be fixed in N and �̂i be the restriction of � to A×{δi}. By Axioms 1, 3 and Claim

2, �̂i satisfies the von Neumann-Morgenstern axioms (observe that by Axiom 2 the restriction
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of �̂i is nondegenerate). Therefore, there exists an affine function Ui : A → R, unique up to a

positive affine transformation, such that for all f, g ∈ A,

(f, {δi}) � (g, {δi}) ⇔ Ui(f) ≥ Ui(g).

By Axiom 10, for all f, f ′ ∈ A such that f(i) = f ′(i), (f, {δi}) ∼ (f ′, {δi}). Therefore, defining

V̂i : Y → R by V̂i(f(i)) = Ui(f
′) for all f ′ ∈ A such that f ′(i) = f(i), one obtains the desired

result.

In the sequel, we will make the following slight abuse of notation: we will denote by V̂i

both the function V̂i : Y → R defined in Claim 3 and the function Ṽi : A → R defined by

Ṽi(f) = V̂i(f(i)).

Claim 4. For all P ∈ P, f, g ∈ A,

{

(f, {δi}) ≻ (g, {δi}), ∀i ∈ N ⇒ (f,P) ≻ (g,P)
(f, {δi}) � (g, {δi}), ∀i ∈ N ⇒ (f,P) � (g,P).

Proof. Let f, g ∈ A be such that (f, {δi}) ≻ (g, {δi}) for all i ∈ N . By Axiom 4, for all

(α1, . . . , αn) such that αi ≥ 0 for all i and
∑

i∈N αi = 1, we have (f,
∑

i∈N αi{δi}) ≻ (g,
∑

i∈N αi{δi}).

Therefore, for all p ∈ ∆(N), (f, {p}) ≻ (g, {p}). Hence, by Axiom 5, for all P ∈ P, (f,P) ≻

(g,P). The second part of the Claim is proved using the same argument.

Claim 5. There exist f and g in Acv such that for all i ∈ N , (f, {δi}) ≻ (g, {δi}).

Proof. Let P ∈ P be fixed. By Axiom 2, there exists f̂ , ĝ ∈ A such that (f̂ ,P) ≻ (ĝ,P). By

Axiom 6, there exist f, g ∈ Acv such that (f,P) � (f̂ ,P) and (ĝ,P) � (g,P). Therefore,

(f,P) ≻ (g,P). Since f and g belong to Acv, Axiom 9 implies that (f, {δi}) ≻ (g, {δi}) for all

i ∈ N .

We say that a function V : A → R is Acv-affine iff for all f ∈ A, g ∈ Acv and α ∈ [0, 1],

V (αf + (1 − α)g) = αV (f) + (1 − α)V (g).

Claim 6. For all P ∈ P, there exists an Acv−affine functional VP : A → R such that for all

f, g ∈ A:

(f,P) � (g,P) ⇔ VP(f) ≥ VP(g).

Furthermore, VP is unique up to a positive affine transformation and VP(A) = VP(Acv).

Proof. This result follows from Claim 1, Axioms 1, 3, 6, 7 and Corollary 2 in Castagnoli, Mari-

nacci and Maccherroni (2003).
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For all h ∈ A \ Acv, let Ah = co{h,Acv}.

Claim 7. There exist affine representations V̂i (i ∈ N) of � on A×{δi} satisfying V̂i(A) = V̂j(A),

for all i, j ∈ N , such that, for all P ∈ P, h ∈ A \ Acv, there exists an Acv−affine representation

VP of � on A×{P} and non-negative numbers λ1(h,P), . . . , λn(h,P), not all equal to zero and

summing up to one, such that, for all f ∈ Ah,

VP(f) =
∑

i∈N

λi(h,P)V̂i(f).

Moreover, the functions {V̂i}i∈N are unique up to a common positive affine transformation and

coincide on Acv.

Proof. For all i, let f∗i be such that f∗i �̂if for all f ∈ A and f∗i be such that f�̂if∗i for all f ∈ A.

These allocations are well defined since A is a compact set. Define f∗ and f∗ by f∗(i) = f∗i (i)

and f∗(i) = f∗i(i) for all i ∈ N .

By Axiom 10, f∗∼̂if
∗
i and f∗∼̂if∗i for all i ∈ N . Therefore, by Claim 4, f∗�̂if�̂if∗ for all

f ∈ A and all i ∈ N . Let V̂i (i ∈ N) be affine representations of �̂i, as defined in Claim 3 and

VP be an Acv−affine representation of � on A × {P}, as defined in Claim 6. Without loss of

generality, since the V̂i and VP are defined up to a positive affine transformation, we can choose

V̂i such that V̂i(f
∗) = VP(f∗) = 1 and V̂i(f∗) = VP(f∗) = −1 for all i ∈ N . We thus have

V̂i(A) = [−1, 1] for all i ∈ N .

We now show that for all h ∈ Acv and all i, j ∈ N , V̂i(h) = V̂j(h). Let h ∈ Acv. Because f∗

and f∗ are such that f∗�̂if�̂if∗ for all f ∈ A and all i ∈ N , we have in particular f∗�̂ih�̂if∗,

for all i ∈ N . By Axioms 1 and 3, for all P ∈ P, there exists αP such that (h,P) ∼ (αPf
∗ +(1−

αP)f∗,P). By Claim 1, αPf
∗+(1−αP)f∗ ∈ Acv. Therefore, by Axiom 9, (αPf

∗+(1−αP)f∗,P) ∼

(αPf
∗+(1−αP)f∗, {δi}) and (h,P) ∼ (h, {δi}). Thus αPf

∗+(1−αP)f∗∼̂ih for all i ∈ N . Hence,

for all i ∈ N , V̂i(h) = αP V̂i(f
∗) + (1 − αP)V̂i(f∗) = 2αP − 1, which proves that V̂i(h) = V̂j(h)

for all i, j ∈ N .

Assume now that {Ṽi}i∈N is another set of affine functions representing {�̂i}i∈N and satisfy-

ing Ṽi(A) = Ṽj(A) for all i, j ∈ N . By the same argument as above, we must have Ṽi(h) = Ṽj(h)

for all i, j ∈ N and all h ∈ Acv. Because the Ṽi are unique up to an affine transformation, there

must exist a1, . . . , an > 0 and b1, . . . , bn ∈ R such that for all i, Ṽi = aiV̂i + bi. But as we have

shown, one must also have: Ṽi(f) = Ṽj(f) for all f ∈ Acv. Hence, aiV̂i(f)+ bi = aj V̂j(f)+ bj for

all i, j ∈ N , f ∈ Acv. Since V̂i(f) = V̂j(f) for all f ∈ Acv and all i, j ∈ N and V̂i is not constant

on Acv, this implies ai = aj and bi = bj .

Let F : A → Rn+1 be defined by F (f) = (VP(f), V̂1(f), . . . , V̂n(f)). For any h ∈ A \ Acv,

let Kh = F (Ah). By Claims 1, 3 and 6, Kh is convex. Therefore, by Claims 4 and 5, we
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can apply Proposition 2 in De Meyer and Mongin (1995) : there exist non-negative numbers

λ1(h,P), . . . , λn(h,P) not all zero, a nonnegative number κ(h,P) and a real number µ(h,P)

such that for all f ∈ Ah,

κ(h,P)VP(f) =
∑

i∈N

λi(h,P)V̂i(f) + µ(h,P).

Because V̂i is not constant on Acv, κ(h,P) 6= 0 and, without loss of generality, can be set equal

to 1. We hence have:
{

VP(f∗) = 1 =
∑

i∈N λi(h,P) + µ(h,P)
VP(f∗) = −1 = −

∑

i∈N λi(h,P) + µ(h,P).

Therefore,
∑

i λi(h,P) + µ(h,P) =
∑

i∈N λi(h,P) − µ(h,P), which implies µ(h,P) = 0 and

therefore,
∑

i∈N λi(h,P) = 1.

Claim 8. For all P ∈ P, there exists a unique compact and convex set F(P) ∈ P such that, for

all f, g ∈ A,

(f,P) � (g,P) ⇔ min
p∈F(P)

∑

i

p(i)V̂i(f(i)) ≥ min
p∈F(P)

∑

i

p(i)V̂i(f(i)),

where the V̂i are affine representations of �̂i such that V̂i(A) = V̂j(A) for all i, j ∈ N . Moreover,

the functions {V̂i}i∈N are unique up to a common positive affine transformation and coincide on

Acv.

Proof. Let P ∈ P be fixed and VP , V̂i (i ∈ N) be defined as in Claim 7.

Let B̃ = {ϕ : N → [−1, 1]n|∃f ∈ A s.t. ϕ(i) = V̂i(f),∀i ∈ N} and B(N,VP(A)) be the set

of functions from N to VP(A).

We first prove that B̃ ⊆ B(N,VP(A)). Let ϕ ∈ B̃. By definition, there exists f ∈ A

such that ϕ(i) = V̂i(f) for all i ∈ N . By Axiom 6, for all i ∈ N there exist h̄i, hi ∈ Acv

such that (h̄i, {δi}) � (f, {δi}) � (hi, {δi}). By Axiom 3, there exists θi ∈ [0, 1] such that

(f, {δi}) ∼ (θih̄i + (1 − θi)hi, {δi}). Let hi = θih̄i + (1 − θi)hi. Note that because (hi, {δi}) ∼

(f, {δi}), V̂i(f) = V̂i(hi). By Claim 1, hi ∈ Acv. Therefore, as shown in the proof of Claim 7,

V̂i(hi) = V̂j(hi) for all j ∈ N \ {i}. Thus, by the displayed equation in Claim 7, VP(hi) = V̂i(hi)

and therefore VP(hi) = V̂i(f). Now, define ψ ∈ B(N,VP(A)) by ψ(i) = VP(hi). We have

ψ(i) = ϕ(i) for all i ∈ N , proving that ϕ ∈ B(N,VP(A)). Thus B̃ ⊆ B(N,VP(A)).

We show now that B(N,VP) ⊆ B̃. Let ϕ : N → VP(A). By Claim 6, VP(A) = VP(Acv).

Therefore, for all i ∈ N , there exist hi ∈ Acv such that ϕ(i) = VP(hi). Let f ∈ A be defined

by f(i) = hi(i) for all i ∈ N . By Axiom 10 we then have V̂i(f) = V̂i(hi). Because hi ∈ Acv,
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the proof of Claim 7 shows that V̂i(hi) = VP(hi). Therefore, (V̂1(f), . . . , V̂n(f)) = ϕ. Thus

B(N,VP) ⊆ B̃.

Let I : B(N,VP(A)) → R be defined by:

I(ϕ) = VP(f) if ϕ(i) = V̂i(f)∀i ∈ N.

Observe that because B̃ = B(N,VP(A)), I is well defined. By Claim 4, I is monotone and by

Claim 7, I(0) = 0, I(1) = 1 and I is VP(Acv)-affine, i.e., for all f ∈ A, all h ∈ Acv and all

α ∈ [0, 1], if φ, ψ ∈ B(N,VP(A)) are such that φ(i) = V̂i(f) and ψ(i) = V̂i(h) for all i ∈ N , then

I(αφ+(1−α)ψ) = αI(φ)+(1−α)I(ψ). By Claim 6, VP(A) = VP(Acv). Thus, I is homogeneous

of degree 1. Furthermore, Axiom 11 implies that I is concave. Therefore, its homogeneous of

degree 1 extension J to B(N), the set of all functions from N to R, is monotone, concave and

such that J(ϕ + k) = J(ϕ) + k for all k ∈ R. Because I is concave and homogeneous of degree

1, it is also superadditive. Therefore, by a classical result (see, e.g., the “Fundamental Lemma"

in Chateauneuf, 1991, and Lemma 3.5 in Gilboa and Schmeidler, 1989), there exists a unique

compact convex set F(P) ∈ P such that for all ϕ ∈ B(N):

J(ϕ) = min
p∈F(P)

∑

i∈N

p(i)ϕ(i).

Therefore, for all f ∈ A,

(f,P) � (g,P) ⇔ min
p∈F(P)

∑

i∈N

p(i)V̂i(f) ≥ min
p∈F(P)

∑

i∈N

p(i)V̂i(g)

which is equivalent to

(f,P) � (g,P) ⇔ min
p∈F(P)

∑

i∈N

p(i)V̂i(f(i)) ≥ min
p∈F(P)

∑

i∈N

p(i)V̂i(g(i)).

Finally, that the functions {V̂i}i∈N are unique up to a common positive affine transformation

follows from Claim 7.

Claim 9. For all P,Q ∈ P, there exist unique compact and convex sets F(P),F(Q) ∈ P such

that, for all f, g ∈ A,

(f,P) � (g,Q) ⇔ min
p∈F(P)

∑

i

p(i)V̂i(f(i)) ≥ min
p∈F(Q)

∑

i

p(i)V̂i(f(i)),

where the V̂i are affine representations of �̂i such that V̂i(A) = V̂j(A) for all i, j ∈ N . Moreover,

the functions {V̂i}i∈N are unique up to a common positive affine transformation and coincide on

Acv.
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Proof. Let f, g ∈ A and P,Q ∈ P. Let F(P) and F(Q) be defined as in Claim 8. Assume that

(f,P) � (g,Q). By Axiom 6, there exist f̄ , f , ḡ, g ∈ Acv such that:

{

(f̄ ,P) � (f,P) � (f,P)

(ḡ,Q) � (g,Q) � (g,Q).

By Axiom 9, (g,P) ∼ (g,Q) and (f̄ ,P) ∼ (f̄ ,Q). Therefore,

{

(f̄ ,P) � (f,P) � (g,P)

(f̄ ,Q) � (g,Q) � (g,Q).

Hence, by Axioms 1 and 3, there exist λ, µ ∈ [0, 1] such that (f,P) ∼ (λf̄ + (1− λ)g,P) and

(g,Q) ∼ (µf̄+(1−µ)g,Q). Hence, (λf̄+(1−λ)g,P) � (µf̄+(1−µ)g,Q). Observe that by Claim

1, λf̄ + (1−λ)g ∈ Acv and µf̄ + (1−µ)g ∈ Acv. Therefore, by Axiom 9, (λf̄ + (1−λ)g, {δ1}) �

(µf̄ + (1 − µ)g, {δ1}) and therefore, V̂1(λf̄(1) + (1 − λ)g(1)) ≥ V̂1(µf̄(1) + (1 − µ)g(1)).

Since (λf̄ + (1 − λ)g,P) ∼ (f,P), we have by Claim 8:

min
p∈F(P)

∑

i

p(i)V̂i(f(i)) = min
p∈F(P)

∑

i

p(i)V̂i(λf̄(i) + (1 − λ)g(i))

= V̂1(λf̄(1) + (1 − λ)g(1)).

Similarly,

min
p∈F(Q)

∑

i

p(i)V̂i(g(i)) = min
p∈F(Q)

∑

i

p(i)V̂i(µf̄(i) + (1 − µ)g(i))

= V̂1(µf̄(1) + (1 − µ)g(1)).

Since V̂1(λf̄(1) + (1 − λ)g(1)) ≥ V̂1(µf̄(1) + (1 − µ)g(1)), we finally obtain:

min
p∈F(P)

∑

i

p(i)V̂i(f(i)) ≥ min
p∈F(Q)

∑

i

p(i)V̂i(g(i)),

the desired result.

Hence, there exists a unique function F : P → P such that F(P) is compact and convex for

all sets P ∈ P for which for all f, g ∈ A, P,Q ∈ P,

(f,P) � (g,Q) ⇔ min
p∈F(P)

∑

i

p(i)V̂i(f(i)) ≥ min
p∈F(Q)

∑

i

p(i)V̂i(f(i)),

where the V̂i are affine representations of �̂i such that V̂i(A) = V̂j(A), for all i, j ∈ N . Moreover,

{V̂i}i∈N are unique up to a common positive affine transformation.

It remains to show that F(P) ⊆ P for all P ∈ P and that for all α ∈ (0, 1), all P,Q ∈ P,

F(αP + (1 − α)Q) = αF(P) + (1 − α)F(Q). This is done in the two following claims.
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Claim 10. For all P ∈ P, F(P) ⊆ P.

Proof. First, note that for all P ∈ P and all p ∈ F(P), p(S(P)) = 1. Indeed, assume on the

contrary that there exists p̃ ∈ F(P) such that p(S(P)) = q < 1. Let f be defined by f(i) = f∗(i)

for all i ∈ S(P) and f(i) = f∗(i) for all i ∈ N \ S(P), where f∗ and f∗ are defined as in Claim

7. Let g be defined by g(i) = f∗(i) for all i ∈ N . We then have:

min
p∈F(P)

∑

i

p(i)V̂i(f(i)) ≤
∑

i

p̃(i)V̂i(f(i))

= qV̂i(f
∗(i)) + (1 − q)V̂i(f∗(i))

< V̂i(f
∗(i))

= min
p∈F(P)

∑

i

p(i)V̂i(g(i))

Hence, (g,P) ≻ (f,P), which contradicts Axiom 10. Therefore, F({δi}) = {δi} for all i ∈ N .

Let f ∈ A and p ∈ ∆(N). By Axioms 3, 6 and Claim 1, for all i ∈ N there exist hi ∈ Acv

such that (f, {δi}) ∼ (hi, {δi}). Because hi ∈ Acv, (hi, {δi}) ∼ (hi, {δk}) and F({δi}) = {δi},

Claim 9 implies V̂i(hi(i)) = V̂k(hi(k)) for all i ∈ N .

Let h =
∑

i∈N p(i)hi. By Axiom 8, (h, {δk}) ∼ (f, {p}). Thus,

min
p∈F({p})

∑

i∈N

p(i)V̂i(f(i)) = min
p∈F({δk})

∑

i∈N

p(i)V̂i(h(i)) (by Claim 9)

= V̂k(h(k)) (because F ({δk}) = {δk})

= V̂k

(

∑

i

p(i)hi(k)

)

(by definition of h)

=
∑

i

p(i)V̂k(hi(k)) (because V̂k is affine)

=
∑

i

p(i)V̂i(hi(i)) (because (hi, {δk}) ∼ (hi, {δi}) for all i ∈ N).

Hence, for all f, g ∈ A, p, q ∈ ∆(N),

(f, {p}) � (g, {q}) ⇔
∑

i

p(i)V̂i(f(i)) ≥
∑

i

q(i)V̂i(g(i)).

Assume that there exists P ∈ P such that F(P) * P. Then, there exists p∗ ∈ F(P) such

that p∗ /∈ P. Since P and F(P) are closed and convex sets, a separation argument implies

that there exists a function φ : N → R such that
∑

i p
∗(i)φ(i) < minp∈P

∑

i p(i)φ(i). There

exist numbers a, b with a > 0 such that aφ(i) + b ∈ V̂i(A) for all i (choosing a sufficiently

close to zero will ensure that ajφj(i) + bj ∈ [−1, 1] for all i ∈ N). Hence, for all i, there exists

yi ∈ Y such that aφ(i) + b = V̂i(yi). Define f by f(i) = yi for all i ∈ N . Note that because
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Acv is convex (see Claim 1), V̂i is continuous and V̂i(g) = V̂j(g) for all i, j ∈ N and g ∈ Acv,

minp∈P
∑

i p(i)V̂i(f(i)) ∈ V̂j(A
cv) for all j ∈ N . Therefore, there exists ĥ ∈ Acv such that

V̂j(ĥ(j)) = minp∈P
∑

i p(i)V̂i(f(i)) for all j ∈ N . We have, for all q ∈ P and all j ∈ N :

∑

i

q(i)V̂i(f(i)) ≥ min
p∈P

∑

i

p(i)V̂i(f(i)) = V̂j(ĥ(j)).

But we have shown that F({p}) = {p} for all p ∈ ∆(N). Therefore, by Claim 9, for all q ∈ P and

all j ∈ N , (f, {q}) � (ĥ, {δj}). Because ĥ ∈ Acv, by Axiom 9, (ĥ, {δj}) ∼ (ĥ, {q}) for all j ∈ N

and all q ∈ ∆(N). Thus (f, {q}) � (ĥ, {q}) for all q ∈ P. Hence, by Axiom 5, (f,P) � (ĥ,P).

But:

min
p∈F(P)

∑

i

p(i)V̂i(f(i)) ≤
∑

p∗(i)V̂i(f(i)) (because p∗ ∈ F(P))

< min
p∈P

∑

i

p(i)V̂i(f(i))

= V̂j(ĥ(j)), for all j ∈ N (by definition of h).

Hence, by Claim 9 and Axiom 9, (ĥ,P) ≻ (f,P), a contradiction.

Claim 11. For all P,Q ∈ P, all α ∈ (0, 1), F(αP + (1 − α)Q) = αF(P) + (1 − α)F(Q).

Proof. Let P,Q ∈ P and α ∈ (0, 1). For all f ∈ A, let p∗(f) ∈ arg minp∈F(P)

∑

i p(i)V̂i(f(i)) and

q∗(f) ∈ arg minp∈F(Q)

∑

i p(i)V̂i(f(i)). Because by Claim 9, F(P) and F(Q) are compact, p∗(f)

and q∗(f) are well-defined. By Claims 9 and 10, (f,P) ∼ (f, {p∗(f)}) and (f,Q) ∼ (f, {q∗(f)}).

By Axiom 4, this implies:

(f, αP + (1 − α)Q) ∼ (f, α{p∗(f)} + (1 − α){q∗(f)}).

By Claim 10, F({αp∗(f) + (1 − α)q∗(f)}) = {αp∗f + (1 − α)q∗(f)} = αp∗(f) + (1 − α){q∗(f)}.

Hence, by Claims 9 and 10:

min
p∈F(αP+(1−α)Q)

∑

i

p(i)V̂i(f(i)) = min
p∈F(α{p∗(f)}+(1−α){q∗(f)})

∑

i

p(i)V̂i(f(i))

=
∑

i

(αp∗(f)(i) + (1 − α)q∗(f)(i))V̂i(f(i))

= α
∑

i

p∗(f)(i)V̂i(f(i)) + (1 − α)
∑

i

q∗(f)(i)V̂i(f(i))

= α min
p∈F(P)

∑

i

p(i)V̂i(f(i)) + (1 − α) min
p∈F(Q)

∑

i

p(i)V̂i(f(i))

= min
p∈αF(P)+(1−α)F(Q)

∑

p(i)V̂i(f(i)).
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This holds for all f ∈ A. Observe that by Claim 7, the set {(V̂1(f(1)), . . . , V̂n(fn))|f ∈ A} =

[−1, 1]n and therefore includes a neighborhood of the origin. Thus, uniqueness of F (see Claim

9) implies that F(αP + (1 − α)Q) = α(F)P + (1 − α)F(Q), the desired result.

Proof of Theorem 2

The necessity part of the Theorem is easily checked. We therefore only prove the sufficiency

part.

We will use the following notation. For all subsets T of N , let ∆(T ) be the simplex over T .

Let cT ∈ ∆(T ) be defined by cT (s) = 1
|T | for all s ∈ T . Finally, let H : P×∆(N)× [0, 1] → P be

defined by :

H(Q, c, θ) = {p ∈ ∆(N) |∃q ∈ Q s.t. p = θq + (1 − θ)c} .

One can easily check that the proof of Theorem 1 is unaffected if one restrict the domain of

� to A × B. Thus, under the assumptions of Theorem 1 restricted to A × B, there exist affine

functions V̂i : Y → R, i ∈ N , representing �̂i such that V̂i(Y ) = V̂j(Y ), for all i, j ∈ N and a

function F : B → P satisfying for all P,Q ∈ B,

1. F(P) ⊆ P

2. For all α ∈ [0, 1], F(αP + (1 − α)Q) = αF(P) + (1 − α)F(Q)

for which for all P,Q ∈ B and all f, g ∈ A,

(f,P) � (g,Q) ⇔ min
p∈F(P)

∑

i

p(i)V̂i(f(i)) ≥ min
p∈F(Q)

∑

i

p(i)V̂i(g(i)).

Furthermore, F is unique and the functions {V̂i}i∈N are unique up to a common positive affine

transformation and coincide on Acv.

As in the proof of Theorem 1, we will use the following slight abuse of notation: for all i ∈ N

and f ∈ A, we define V̂i(f) as V̂i(f(i)).

The proof goes through several claims. Although not explicitly stated in the claims, all the

assumptions of Theorem 2 are made throughout this subsection.

Claim 12. For all P ∈ B and all bijections ϕ : N → N , F(Pϕ) = (F(P))ϕ.

Proof. Let P ∈ B and ϕ be a permutation on N . We will prove that F(P)ϕ ⊆ F(Pϕ). Assume

that such is not the case, i.e., there exists p∗ ∈ F(P)ϕ such that p∗ /∈ F(Pϕ). Because F(Pϕ) and

F(P)ϕ are closed convex sets, a standard separation argument implies that there exists a function

φ : N → R such that:
∑

i p
∗(i)φ(i) < minp∈F(Pϕ)

∑

i p(i)φ(i). There exist numbers a, b with

a > 0 such that aφ(i)+b ∈ V̂i(A) for all i. Hence, for all i, there exists yi ∈ Y such that aφ(i)+b =

31



V̂i(yi) (choosing a sufficiently close to zero will ensure that ajφj(i) + bj ∈ [−1, 1] for all i ∈ N).

Define f by f(i) = yi for all i ∈ N . We then have:
∑

i p
∗(i)V̂i(f) < minp∈F(Pϕ)

∑

i p(i)V̂i(f).

Axiom 6 and Claim 1 in the proof of Theorem 1 imply that A(hψ) 6= ∅, for all permutations

ψ : N → N and all h ∈ A. Let g ∈ A(fϕ
−1

). For all p ∈ F(P),
∑

i p(i)V̂i(g) =
∑

i p
ϕ(i)V̂i(f).

Therefore, minp∈F(P)ϕ

∑

i p(i)V̂i(f) = minp∈F(P)

∑

i p(i)V̂i(g). Hence,

min
p∈F(P)

∑

i

p(i)V̂i(g) = min
p∈F(P)ϕ

∑

i

p(i)V̂i(f) ≤
∑

i

p∗(i)V̂i(f) < min
p∈F(Pϕ)

∑

i

p(i)V̂i(f).

Thus, (f,Pϕ) ≻ (g,P), a contradiction with Axiom 12. The inclusion F(Pϕ) ⊆ F(P)ϕ can be

proved using a similar argument. Therefore, F(Pϕ) = F(P)ϕ.

Claim 13. Let P ∈ B, I a subset of N and fk ∈ A (k ∈ I). Then:

⋂

k∈I

(

arg min
p∈P

∑

i

p(i)V̂i(fk)

)

6= ∅ ⇒
⋂

k∈I

(

arg min
p∈F(P)

∑

i

p(i)V̂i(fk)

)

6= ∅.

Proof. Let P ∈ B, I = {1, . . . ,m} with m ≥ 2 and fk ∈ A (k ∈ I) be such that:

⋂

k∈I

(

arg min
p∈P

∑

i

V̂i(fk)

)

6= ∅.

Assume, without loss of generality, that (f1,P) � (fk,P), for all k ∈ I. By Axiom 6, there

exists f̄ ∈ Acv such that (f̄ ,P) � (f1,P). Hence, for all k ∈ I \ {1}, (f̄ ,P) � (f1,P) �

(fk,P). Hence, by Axioms 1 and 3, for all k 6= 1, there exist αk ∈ [0, 1] such that (αkf̄ + (1 −

αk)fk,P) ∼ (f1,P). But observe that since f̄ ∈ Acv, arg minp∈F(P)

∑

i p(i)V̂i(αkf̄+(1−αk)fk) =

arg minp∈F(P)

∑

i p(i)V̂i(fk) if ak 6= 1. Therefore, there is no loss in generality if we assume

(f1,P) ∼ (fk,P), for all k ∈ I, an assumption we maintain throughout this proof.

We now proceed by induction. For all r ≤ m let

P(r) =







⋂

k∈I

(

arg min
p∈P

∑

i

p(i)V̂i(fk)

)

6= ∅ ⇒
⋂

k∈{1,...,r}

(

arg min
p∈F(P)

∑

i

p(i)V̂i(fk)

)

6= ∅







.

We first prove that P(2) is true. Assume that:

(

arg min
p∈F(P)

∑

i

p(i)V̂i(f1)

)

∩

(

arg min
p∈F(P)

∑

i

V̂i(f2)

)

= ∅.

Let p∗ ∈ arg minp∈F(P)

∑

i p(i)V̂i(f1) and p̂ ∈ arg minp∈F(P)

∑

i p(i)V̂i(f2). By assumption,

∑

i

p̂(i)V̂i(f2) <
∑

i

p∗(i)V̂i(f2),
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and by Theorem 1:
∑

i

p∗(i)V̂i(f1) =
∑

i

p̂(i)V̂i(f2).

By assumption, there exists p̄ ∈ P such that

p̄ ∈

(

arg min
p∈P

∑

i

p(i)V̂i(f1(i))

)

∩

(

arg min
p∈P

∑

i

p(i)V̂i(f2(i))

)

.

By Theorem 1, F({p}) = {p} for all p ∈ ∆(N) and, hence, (f1, {p}) � (f1, {p̄}) and (f2, {p}) �

(f2, {p̄}) for all p ∈ P. Thus, by Axiom 13, for all α ∈ (0, 1), (αf1 + (1 − α)f2,P) ∼ (f1,P).

Therefore, by Theorem 1,

min
p∈F(P)

∑

i

p(i)V̂i(αf1 + (1 − α)f2) = min
p∈F(P)

∑

i

p(i)V̂i(f1) =
∑

i

p∗(i)V̂i(f1).

Hence, there exists p̃ ∈ F(P) such that:

∑

i

p̃(i)V̂i(αf1 + (1 − α)f2) =
∑

i

p∗(i)V̂i(f1),

i.e.,

α
∑

i

p̃(i)V̂i(f1) + (1 − α)
∑

i

p̃(i)V̂i(f2) =
∑

i

p∗(i)V̂i(f1).

Therefore, because
∑

i p
∗(i)V̂i(f1) =

∑

i p̂(i)V̂i(f2) :

α
∑

i

p̃(i)V̂i(f1) + (1 − α)
∑

i

p̃(i)V̂i(f2) = α
∑

i

p∗(i)V̂i(f1) + (1 − α)
∑

i

p̂(i)V̂i(f2).

Hence, because p̃ ∈ F(P), it follows from the definition of p̂ and p∗ that

p̃ ∈

(

arg min
p∈F(P)

∑

i

p(i)V̂i(f1)

)

∩

(

arg min
p∈F(P)

∑

i

p(i)V̂i(f2)

)

,

a contradiction. Therefore, P(2) is true.

We now assume that P(r − 1) is true, with r − 1 < m and prove that then P(r) is

also true. Assume that
⋂

k∈{1,...,r}

(

arg minp∈F(P)

∑

i p(i)V̂i(fk)
)

= ∅. By the induction as-

sumption, there exists p∗ ∈
⋂

k∈{1,...,r−1}

(

arg minp∈F(P)

∑

i p(i)V̂i(fk)
)

. By assumption, for all

p̂ ∈
(

arg minp∈F(P)

∑

i p(i)V̂i(fr)
)

,

∑

i

p̂(i)V̂i(fr) <
∑

i

p∗(i)V̂i(fr)

and, by Theorem 1,

∑

i

p̂(i)V̂i(fr) =
∑

i

p∗(i)V̂i(fk), ∀k ∈ {1, . . . , r − 1}.
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Let h =
∑r−1

k=1
1
r−1fk. We then have:

arg min
p∈P

∑

i

p(i)V̂i(h) = arg min
p∈P

∑

i

p(i)V̂i

(

r−1
∑

k=1

1

r − 1
fk

)

= arg min
p∈P

∑

i

p(i)

(

r−1
∑

k=1

V̂i(fk)

)

,

the last equality being implied by the fact that the V̂i are affine.

Let p1 ∈ arg minp∈P
∑

i p(i)V̂i(h) and assume that p1 /∈
⋂r−1
k=1

(

arg minp∈P
∑

i V̂i(fk)
)

. Then,

for all p2 ∈
⋂r−1
k=1

(

arg minp∈P
∑

i p(i)V̂i(fk)
)

and all k ∈ {1, . . . , r − 1},
∑

i p2(i)V̂i(fk) ≤
∑

i p1(i)V̂i(fk), with a strict inequality for some j ∈ {1, . . . , r − 1}. But, then,
∑

i p2(i)V̂i(h) <
∑

i p1(i)V̂i(h), a contradiction with the fact that p1 ∈ arg minp∈P
∑

i p(i)V̂i(h). Therefore,

arg minp∈P
∑

i p(i)V̂i(h) ⊆
⋂r−1
k=1

(

arg minp∈P
∑

i p(i)V̂i(fk)
)

. Conversely, let

q1 ∈
r−1
⋂

i=1

(

arg min
p∈P

∑

i

p(i)V̂i(fk)

)

.

Then, by definition, q1 ∈ arg minp∈P
∑

i p(i)V̂i(fk), for all k ∈ {1, . . . , r − 1}. Hence, q1 ∈

arg minp∈P
∑

i p(i)
(

∑r−1
k=1 V̂i(fk)

)

= arg minp∈P
∑

i p(i)V̂i(h). Therefore,

r−1
⋂

k=1

(

arg min
p∈P

∑

i

p(i)V̂i(fk)

)

⊆ arg min
p∈P

∑

i

p(i)V̂i(h),

which implies that
⋂r−1
k=1

(

arg minp∈P
∑

i p(i)V̂i(fk)
)

= arg minp∈P
∑

i p(i)V̂i(h). The same rea-

soning show that
⋂r−1
k=1

(

arg min
p∈F(P)

P

i p(i)V̂i(fk)

)

= arg minp∈F(P)

∑

i p(i)V̂i(h).

Hence, because, by assumption,
⋂

k∈I

(

arg minp∈P
∑

i p(i)V̂i(fk)
)

6= ∅, we have

(

arg min
p∈P

∑

i

p(i)V̂i(h)

)

∩

(

arg min
p∈P

∑

i

p(i)V̂i(fr)

)

6= ∅.

Furthermore, by assumption, p∗ ∈ arg minp∈F(P)

∑

i p(i)V̂i(h) = arg minp∈F(P)

∑

i p(i)
(

∑r−1
k=1

1
r−1 V̂i(fk)

)

.

Reasoning as in the r = 2 case, Axiom 13 implies that for all α ∈ (0, 1), (αh+(1−α)fr,P) ∼

(h,P). Therefore, by Theorem 1,

min
p∈F(P)

∑

i

p(i)V̂i(αh+ (1 − α)fr) = min
p∈F(P)

∑

i

p(i)V̂i(h) =
∑

i

p∗(i)V̂i(h).

Hence, there exists p̃ ∈ F(P) such that:

∑

i

p̃(i)V̂i(αh+ (1 − α)fr) =
∑

i

p∗(i)V̂i(h).
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Thus, because
∑

p∗(i)V̂i(h) =
∑

i p̂(i)V̂i(fr),

α
∑

i

p̃(i)V̂i(h) + (1 − α)
∑

i

p̃(i)V̂i(fr) = α
∑

i

p∗(i)V̂i(h) + (1 − α)
∑

i

p̂(i)V̂i(fr),

which implies that p̃ ∈
(

arg minp∈F(P)

∑

i p(i)V̂i(h)
)

∩
(

arg minp∈F(P)

∑

i p(i)V̂i(fr)
)

. But:

(

arg min
p∈F(P)

∑

i

p(i)V̂i(h)

)

=
⋂

k∈{1,...,r−1}

(

arg min
p∈F(P)

∑

i

p(i)V̂i(fk)

)

.

Therefore, p̃ ∈
⋂

l∈{1,...,r}

(

arg minp∈F(P)

∑

i p(i)V̂i(fk)
)

, a contradiction.

Claim 14. Let S1, S2 ⊂ N such that S1 6= ∅, S2 6= ∅. Then, for all α ∈ [0, 1], there exists

θ ∈ [0, 1] such that F(α∆(S1)+(1−α)∆(S2)) = H(α∆(S1)+(1−α)∆(S2), αcS1
+(1−α)cS2

, θ).

Proof. Let α ∈ [0, 1] and S1, S2 ⊂ N such that S1 6= ∅, S2 6= ∅. To simplify notation, let c1 = cS1

and c2 = cS2
, ∆1 = ∆(S1), ∆2 = ∆(S2) and ∆ = α∆1 + (1 − α)∆2. We first consider the case

|S1| > 1 and |S2| > 1.

We know by Theorem 1 that F(∆) = αF(∆1) + (1− α)F(∆2). Furthermore, because ∆ϕ
i =

∆i, for all permutation ϕ : N → N such that ϕ(Si) = Si, Claim 12 implies that F(∆i)
ϕ = F(∆i)

for all such permutations. Hence, because F(∆i) is convex (by Theorem 1), ci ∈ F(∆i) and,

therefore, αc1 + (1 − α)c2 ∈ αF(∆1) + (1 − α)F(∆2) = F(∆). Let c = αc1 + (1 − α)c2

Because ∆ is a polytope, it has a finite number of facets and vertices. Let {F1, . . . , FK} be

the set of all facets of ∆ and Π = {π∗1, . . . , π
∗
M} be the set of its vertices. Furthermore, for all

m ∈ {1, . . . ,M}, let Jm be a subset of {1, . . . ,K} such that ∩j∈JmFj = {π∗m}.

For each facet Fj , let qj be in the (relative) interior of Fj . Let Ψj be the (unique) hyperplane

supporting ∆ at qj , defined by Ψj = {p |φj(p) = µj}, with µj ∈ R and φj a linear function

(observe that Fj ⊂ Ψj). Because Ψj is a supporting hyperplane for ∆, φj can be chosen such

that φj(p) ≥ µj for all p ∈ ∆. Let φj(p) =
∑

i φj(i)p(i). There exist numbers aj and bj ,

with aj > 0 such that ajφj(i) + bj ∈ V̂i(A) for all i ∈ N (choosing a sufficiently close to zero

will ensure that ajφj(i) + bj ∈ [−1, 1] for all i ∈ N). Therefore, there exist yji ∈ Y such that

ajφj(i) + bj = V̂i(y
j
i ) for all i ∈ N . Define fj by fj(i) = yji for all i ∈ N .

Observe that H(Ψj∩∆, c, θ) are the sets for which
∑

i p(i)V̂i(fj) is constant and smaller than
∑

i c(i)V̂i(fj). Furthermore, for all p ∈ H(Ψj ∩ ∆, c, θ), p′ ∈ H(Ψj , c, θ
′), θ < θ′ if, and only if,

∑

i p(i)V̂i(fj) >
∑

i p
′(i)V̂i(fj). Therefore, it is the case that, for some θ̂j ,

arg min
p∈F(∆)

∑

i

p(i)V̂i(f) ⊆ H(Ψj ∩ ∆, c, θ̂j).
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Now, assume that there are two facets Fr and Ft such that θ̂r 6= θ̂t. This implies that there

are two facets Fj and Fℓ such that θ̂j 6= θ̂ℓ and Fℓ ∩ Fj 6= ∅ and θ̂ℓ > θ̂j .
27

Finally, consider π ∈ Fℓ ∩Fj . There exist numbers η1, η2, λ1, λ2 with η1 and η2 both positive

such that η1φℓ(i) + λ1 ∈ V̂i(A) for all i ∈ N , η2φj(i) + λ2 ∈ V̂i(A) for all i ∈ N and

{ ∑

i π(i)(η1φℓ(i) + λ1) =
∑

i π(i)(η2φj(i) + λ2)
∑

i c(i)(η1φℓ(i) + λ1) =
∑

i c(i)(η2φj(i) + λ2).

(Again, choosing these numbers sufficiently close to zero will ensure that η1φℓ(i)+λ1 and η2φj(i)+

λ2 belong to [−1, 1].) Therefore, there exist ỹji and ỹℓi in Y such that V̂i(ỹ
ℓ
i ) = η1φℓ(i) + λ1 and

V̂i(ỹ
j
i ) = η2φj(i) + λ2 for all i ∈ N . Let gℓ be defined by gℓ(i) = ỹℓi for all i and gj be defined by

gj(i) = ỹji for all i. Observe that:

arg min
p∈∆

∑

i

p(i)V̂i(gj) = arg min
p∈∆

∑

i

p(i)V̂i(fj)

and

arg min
p∈∆

∑

i

p(i)V̂i(gℓ) = arg min
p∈∆

∑

i

p(i)V̂i(fℓ).

Therefore,

arg min
p∈∆

∑

i

p(i)V̂i(gj) ∩ arg min
p∈∆

∑

i

p(i)V̂i(gℓ) 6= ∅.

Hence, by Axiom 13, (gj ,∆) ∼ (gℓ,∆), i.e.,

min
p∈F(∆)

∑

i

p(i)V̂i(gj) = min
p∈F(∆)

∑

i

p(i)V̂i(gℓ).

But we also have

min
p∈F(∆)

∑

i

p(i)V̂i(gj) =
∑

i

qj(i)V̂i(gj)

for any qj ∈ H(Ψj ∩ ∆, c, θ̂j) and similarly,

min
p∈F(∆)

∑

i

p(i)V̂i(gℓ) =
∑

i

qℓ(i)V̂i(gℓ)

for any qℓ ∈ H(Ψℓ ∩ ∆, c, θ̂ℓ). So, in particular, we have

min
p∈F(∆)

∑

i

p(i)V̂i(gj) =
∑

i

H(π, c, θ̂j)(i)V̂i(gj)

and

min
p∈F(∆)

∑

i

p(i)V̂i(gℓ) =
∑

i

H(π, c, θ̂ℓ)(i)V̂i(gℓ).

27Assume Fr ∩ Ft = ∅. Because ∆ is a polytope, there is as sequence of adjacent facets (Fr1
, Fr2

, . . . , Frs
)

such that Fr1
is adjacent to Fr and Frs

is adjacent to Ft. Thus, it must be the case that θ̂rk
6= θ̂rk+1

for some
k ∈ {1, . . . , s − 1}.
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Therefore, we must have:

∑

i

H(π, c, θ̂j)(i)V̂i(gj) =
∑

i

H(π, c, θ̂ℓ)(i)V̂i(gℓ)

∑

i

(θ̂jπ(i) + (1 − θ̂j)c(i))V̂i(gj) =
∑

i

(θ̂ℓπ(i) + (1 − θ̂ℓ)c(i))V̂i(gℓ)

θ̂j
∑

i

π(i)V̂i(gj) + (1 − θ̂j)
∑

i

c(i)V̂i(gj) = θ̂ℓ
∑

i

π(i)V̂i(gℓ) + (1 − θ̂ℓ)
∑

i

c(i)V̂i(gℓ).

But
∑

i π(i)V̂i(gj) =
∑

i π(i)V̂i(gℓ),
∑

i c(i)V̂i(gj) =
∑

i c(i)V̂i(gℓ),
∑

i π(i)V̂i(gℓ) <
∑

i c(i)V̂i(gℓ)

and
∑

i π(i)V̂i(gj) <
∑

i c(i)V̂i(gj). Therefore θ̂ℓ > θ̂j implies

θ̂j
∑

i

π(i)V̂i(gj) + (1 − θ̂j)
∑

i

c(i)V̂i(gj) > θ̂ℓ
∑

i

π(i)V̂i(gℓ) + (1 − θ̂ℓ)
∑

i

c(i)V̂i(gℓ),

a contradiction. Therefore, θ̂j = θ̂ℓ. Let θ̂ = θ̂k for all k ∈ {1, . . . ,K}. Observe that because

H(Ψj , c, θ̂) are supporting hyperplanes of F(∆) for all j ∈ {1, . . . ,K}, F(∆) ⊆ H(∆, c, θ̂).

Now, consider any vertex π∗m of ∆. Because π∗m ∈
⋂

k∈Jm
Fk,

⋂

k∈Jm

(

arg min
p∈∆

∑

i

p(i)V̂i(fk)

)

6= ∅.

Then, Claim 13 implies:
⋂

k∈Jm

(

arg min
p∈F(∆)

∑

i

p(i)V̂i(fk)

)

6= ∅.

But:
⋂

k∈Jm

H(Fk, c, θ̂) = H(π∗m, c, θ̂).

We thus have:

∅ 6=
⋂

k∈Jm

(

arg min
p∈F(∆)

∑

i

p(i)V̂i(fk)

)

⊆
⋂

k∈Jm

H(Fk, c, θ̂) = H(π∗m, c, θ̂).

Therefore, H(π∗m, c, θ̂) ∈ F(∆). Now consider any other vertex π∗r of ∆. Then there exists a

permutation ϕ : N → N (that depends of π∗r ) satisfying ϕ(S1) = S1 and ϕ(S2) = S2 such that

π∗r = (π∗m)ϕ. Because ∆ = ∆ϕ for any such permutation, Claim 12 implies that:

(

H(π∗m, c, θ̂)
)ϕ

= H((π∗m)ϕ, c, θ̂) = H(π∗r , c, θ̂) ∈ F(∆).

Thus, for any vertex π∗ of ∆, H(π∗, c, θ̂) ∈ F(∆). Because ∆ is polyhedral, H(∆) = co{H(π∗m, c, θ̂)|π
∗
m ∈

Π}. Therefore H(∆, c, θ̂) ⊆ F(∆). Because we proved that F(∆) ⊆ H(∆, c, θ̂), we finally obtain

H(∆, c, θ̂) = F(∆).

37



It remains to consider the case |Si| = 1 for some i ∈ {1, 2} (if |S1| = |S2| = 1, the result

follows trivially from Theorem 1). Assume without loss of generality, that |S1| = 1 and |S2| > 1.

Then ∆ = αδk+(1−α)∆2, for some k ∈ N , where δk is the probability distribution on N defined

by δk(k) = 1. By Theorem 1, F(∆) = αδk + (1 − α)F(∆2). But by the above result, F(∆2) =

H(∆2, c2, θ̂). Hence, F(∆) = αδk +(1−α)H(∆2, c2, θ̂) = H(αδk +(1−α)∆2, αδk +(1−α)c2, θ̂),

which proves the desired result.

Claim 15. There exists θ ∈ [0, 1] such that for all subsets S of N , F(∆(S)) = H(∆(S), cS , θ).

Proof. Let S1 and S2 be two subsets of N . We use the same notation as in Claim 14. By Claim

14, we know that there exist θ1, θ2 ∈ [0, 1] such that F(∆i) = H(∆i, ci, θi). What remains to be

proved is that θ1 = θ2. Let α ∈ (0, 1) and ∆ = α∆1 + (1 − α)∆2. By Claim 14, we also know

that there exists θ3 ∈ [0, 1] such that:

F(∆) = H(∆, αc1 + (1 − α)c2, θ3) = αH(∆1, c1, θ3) + (1 − α)H(∆2, c2, θ3).

Finally, by Theorem 1,

F(∆) = αF(∆1) + (1 − α)F(∆2).

Therefore,

αH(∆1, c1, θ1) + (1 − α)H(∆2, c2, θ2) = αH(∆1, c1, θ3) + (1 − α)H(∆2, c2, θ3)

which implies that θ1 = θ2 = θ3, the desired result.

Finally, let P =
∑

t αt(∆(St)) with αt ∈ [0, 1],
∑

t αt = 1 and St ⊆ N for all t. By Claims 14

and 15, we know that

F(P) = H(P, c(P), θ)

= {p ∈ ∆(N) |∃q ∈ P s.t. p = θq + (1 − θ)c(P)} .

Note that

min
p∈F(P)

p(i)V̂i(f(i)) = min
q∈P

∑

i

[θq(i) + (1 − θ)c(P)(i)] V̂i(f(i))

= θmin
p∈P

∑

i

p(i)V̂i(f(i)) + (1 − θ)
∑

i

c(P)(i)V̂i(f(i)),

which completes the proof of Theorem 2.
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