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Decomposing Berge graphs and detecting balanced skew

partitions

Nicolas Trotignon∗

April 26, 2006

Abstract

A hole in a graph is an induced cycle on at least four vertices. A graph is Berge if
it has no odd hole and if its complement has no odd hole. In 2002, Chudnovsky,
Robertson, Seymour and Thomas proved a decomposition theorem for Berge graphs
saying that every Berge graph either is in a well understood basic class or has some
kind of decomposition. Then, Chudnovsky proved stronger theorems. One of them
restricts the allowed decompositions to 2-joins and balanced skew partitions.

We prove that the problem of deciding whether a graph has a balanced skew par-
tition is NP-hard. We give an O(n9)-time algorithm for the same problem restricted
to Berge graphs. Our algorithm is not constructive: it certifies that a graph has a
balanced skew partition if it has one. It relies on a new decomposition theorem for
Berge graphs, that is more precise than the previously known theorems and implies
them easily. Our theorem also implies that every Berge graph can be decomposed
in a first step by using only balanced skew partitions, and in a second step by using
only 2-joins. Our proof of this new theorem uses at an essential step one of the
theorems of Chudnovsky.
AMS Mathematics Subject Classification: 05C17, 05C75
Key words: perfect graph, Berge graph, 2-join, balanced skew partition, decompo-
sition, detection, recognition.

1 Introduction

In this paper graphs are simple and finite. A hole in a graph is an induced cycle of
length at least 4. An antihole is the complement of a hole. A graph is said to be
Berge if it has no odd hole and no odd antihole. A graph G is said to be perfect if
for every induced subgraph G′ the chromatic number of G′ is equal to the maximum
size of a clique of G′. In 1961, Berge [2] conjectured that every Berge graph is
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perfect. This was known as the Strong Perfect Graph Conjecture, was the object
of much research and was finally proved by Chudnovsky, Robertson, Seymour and
Thomas in 2002 [7]. In fact, they proved a stronger result: a decomposition theorem,
first conjectured by Conforti, Cornuéjols and Vušković [11], stating that every Berge
graph is either in a well understood basic class of perfect graph, or has a structural
fault that cannot occur in a minimum counter-example to Strong Perfect Graph
Conjecture. Before stating this decomposition theorem, we need some definitions.

We call path any connected graph with at least a vertex of degree 1 and no vertex
of degree greater than 2. A path has at most two vertices of degree 1 that are the
ends of the path. If a, b are the ends of a path P we say that P is from a to b. The
other vertices are the interior vertices of the path. We denote by v1−· · ·−vn the
path whose edge set is {v1v2, . . . , vn−1vn}. When P is a path, we say that P is a
path of G if P is an induced subgraph of G. If P is a path and if a, b are two vertices
of P then we denote by a−P−b the only induced subgraph of P that is path from a
to b. The length of a path is the number of its edges. An antipath is the complement
of a path. Let G be a graph and let A and B be two subsets of V (G). A path of
G is said to be outgoing from A to B if it has an end in A, an end in B, length at
least 2, and no interior vertex in A ∪ B.

If X,Y ⊂ V (G) are disjoint, we say that X is complete to Y if every vertex in
X is adjacent to every vertex in Y . We also say that (X,Y ) is a complete pair. We
say that X is anticomplete to Y if there are no edges between X and Y . We also
say that (X,Y ) is an anticomplete pair. We say that a graph G is anticonnected if
its complement G is connected.

Skew partitions were first introduced by Chvátal [8]. A skew partition of a
graph G = (V,E) is a partition of V into two sets A and B such that A induces
a graph that is not connected, and B induces a graph that is not anticonnected.
When A1, A2, B1, B2 are non-empty sets such that (A1, A2) partitions A, (A1, A2)
is an anticomplete pair, (B1, B2) partitions B, and (B1, B2) is a complete pair, we
say that (A1, A2, B1, B2) is a split of the skew partition (A,B). A balanced skew
partition (first defined in [7]) is a skew partition (A,B) with the additional property
that every induced path of length at least 2 with ends in B, interior in A and every
antipath of length at least 2 with ends in A, interior in B have even length. If (A,B)
is a skew partition, we say that B is a skew cutset. If (A,B) is balanced we say
that the skew cutset B is balanced. Note that Chudnovsky et al. [7] proved that no
minimum counter example to the strong perfect graph conjecture has a balanced
skew partition.

We call double split graph (first defined in [7]) any graph G that may be
constructed as follows. Let m,n ≥ 2 be integers. Let A = {a1, . . . , am},
B = {b1, . . . , bm}, C = {c1, . . . , cn}, D = {d1, . . . , dn} be four disjoint sets. Let
G have vertex set A ∪ B ∪ C ∪ D and edges in such a way that:

• ai is adjacent to bi for 1 ≤ i ≤ m. There are no edges between {ai, bi} and
{ai′ , bi′} for 1 ≤ i < i′ ≤ m;

• cj is non-adjacent to dj for 1 ≤ j ≤ n. There are all four edges between {cj , dj}
and {cj′ , bj′} for 1 ≤ j < j′ ≤ n;
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• there are exactly two edges between {ai, bi} and {cj , dj} for 1 ≤ i ≤ m,
1 ≤ j ≤ n and these two edges are disjoint.

Note that C ∪ D is a non-balanced skew cutset of G and that G is a double
split graph. Note that in a double split graph, vertices in A ∪ B all have degree
n + 1 and vertices in C ∪D all have degree 2n + m − 2. Since n ≥ 2,m ≥ 2 implies
2n−2+m > 1+n, it is clear that given a double split graph it is relevant to consider
the matching edges, that have an end in A and an end in B, independently of the
choice of the sets A,B,C,D.

A graph is said to be basic if one of G,G is either a bipartite graph, the line-graph
of a bipartite graph or a double split graph.

The 2-join was first defined by Cornuéjols and Cunningham [13]. We say that a
partition (X1,X2) of the vertex set is a 2-join when there exist disjoint non-empty
Ai, Bi ⊆ Xi (i = 1, 2) satisfying:

• every vertex of A1 is adjacent to every vertex of A2 and every vertex of B1 is
adjacent to every vertex of B2;

• there are no other edges between X1 and X2.

The sets X1,X2 are the two sides of the 2-join. When sets Ai’s Bi’s are like in
the definition we say that (X1,X2, A1, B1, A2, B2) is a split of (X1,X2). Implicitly,
for i = 1, 2, we will denote by Ci the set Xi \ (Ai ∪ Bi).

A 2-join (X1,X2) in a graph G is said to be connected when for i = 1, 2, every
component of G[Xi] meets both Ai and Bi. A 2-join (X1,X2) is said to be substantial
when for i = 1, 2, |Xi| ≥ 3 and Xi is not a path of length 2 with an end in Ai, an
end in Bi and its unique interior vertex in Ci. A 2-join (X1,X2) in a graph G is
said to be proper when it is connected and substantial.

A 2-join is said to be a path 2-join if it has a split (X1,X2, A1, B1, A2, B2) such
that G[X1] is a path with an end in A1, an end in B1 and interior in C1. Implicitly
we will then denote by a1 the unique vertex in A1 and by b1 the unique vertex in
B1. We say that X1 is the path-side of the 2-join. Note that when G is not a hole
then this path-side is unique. A non-path 2-join is a 2-join that is not a path 2-join.

The homogeneous pair was first defined by Chvátal and Sbihi [9]. The definition
that we give here is a slight variation used in [7]. An homogeneous pair is a partition
of V (G) into six non-empty sets (A,B,C,D,E, F ) such that:

• every vertex in A has a neighbor in B and a non-neighbor in B, and vice versa;

• the pairs (C,A), (A,F ), (F,B), (B,D) are complete;

• the pairs (D,A), (A,E), (E,B), (B,C) are anticomplete.

A graph G is path-cobipartite if it is a Berge graph obtained by subdividing an
edge between the two cliques that partitions a cobipartite graph. More accurately,
a graph is path-cobipartite if its vertex set can be partitioned into three sets A,B,P
where A and B are non-empty cliques and P consist of vertices of degree 2, each
of which belongs to the interior of a unique path of odd length with one end a
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in A, the other one b in B. Moreover, a has neighbors only in A ∪ P and b has
neighbors only in B ∪ P . Note that a path-cobipartite graph such that P is empty
is the complement of bipartite graph. Note that our path-cobipartite graphs are
simply the complement of the path-bipartite graphs defined by Chudnovsky in [5].
For convenience, we prefer to think about them in the complement as we do.

A cutset is a graph G is a set C ⊂ V (G) such that G \C is disconnected (G \C
means G[V (G) \ C]). A double star in a graph is a subset D of the vertices such
that there is an edge ab in G[D] satisfying: D ⊂ N(a) ∪ N(b).

Now we can state the known decomposition theorems of Berge graphs. The first
decomposition theorem for Berge graph ever proved is the following:

Theorem 1.1 (Conforti, Cornuéjols and Vušković, 2001, [12]) Every graph
with no odd hole is either basic or has a proper 2-join or has a double star cut-
set.

It could be thought that this theorem is useless to prove the Strong Perfect Graph
Theorem since there are minimal imperfect graphs that have double star cutsets: the
odd antiholes of length at least 7. However, by the Strong Perfect Graph Theorem,
we know that the following fact is true: for any minimal non-perfect graph G, one
of G,G has no double star cutset. A direct proof of this — of which we have no idea
— would yield together with Theorem 1.1 a new proof of the Strong Perfect Graph
Theorem.

The following theorem was first conjectured in a slightly different form by Con-
forti, Cornuéjols and Vušković, who proved it in the particular case of square-free
graphs [11]. A corollary of it is the Strong Perfect Graph Theorem.

Theorem 1.2 (Chudnovsky, Robertson, Seymour and Thomas, 2002, [7])
Let G be a Berge graph. Then either G is basic or G has an homogeneous pair, or
G has a balanced skew partition or one of G,G has a proper 2-join.

The two theorems that we state now are due to Chudnovsky who proved them
from scratch, that is without assuming Theorem 1.2. Her proof uses the notion
of trigraph. The first theorem shows that homogeneous pairs are not necessary
to decompose Berge graphs. Thus it is a result stronger than Theorem 1.2. The
second one shows that path 2-joins are not necessary to decompose Berge graphs,
but at the price of extending balanced skew partitions to general skew partitions
and introducing a new basic class. Note that a third theorem can be obtained by
viewing the second one in the complement of G.

Theorem 1.3 (Chudnovsky, 2003, [4, 5]) Let G be a Berge graph. Then either
G is basic, or one of G,G has a proper 2-join or G has a balanced skew partition.

Theorem 1.4 (Chudnovsky, 2003, [5]) Let G be a Berge graph. Then either G
is basic, or one of G,G is path-bipartite, or G has a proper non-path 2-join, or G
has a proper 2-join or G has a skew partition.
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Main results and Motivation

Our main result is Theorem 2.1, a new decomposition for Berge graph that is a
generalisation of Theorems 1.2, 1.3 and 1.4. Note that our proof of Theorem 2.1 is
not a new proof of the previously known decomposition theorems for Berge graphs,
since it uses at an essential step Theorem 1.3. We also give algorithmic applications.
Figueiredo, Klein, Kohayakawa and Reed devised an algorithm that given a graph
G computes in polynomial time a skew partition if G has one [14]. But the problem
of detecting balanced skew partitions has not been studied so far. Let us call BSPD
the decision problem whose input is a graph and whose answer is YES if the graph
has a balanced skew partition and NO otherwise. Using a construction due to
Bienstock [3], we prove that BSPD is NP-hard (we are not able to prove that BSPD
in NP or in CoNP). Using Theorem 2.1 we give an O(n9)-time algorithm for BSPD
restricted to Berge graphs.

In 2002, Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [6] gave an algo-
rithm that recognizes Berge graphs in time O(n9). This algorithm may be used to
prove that, when restricted to Berge graphs, BSPD is in NP. Indeed, a balanced
skew partition is a good certificate for BSPD: given a Berge graph and a partition
(A,B) of its vertices, one can easily check that (A,B) is a skew partition; to check
that it is balanced, it suffices to add a vertex adjacent to every vertex of B, to no
vertex of A, and to check that this new graph is still Berge.

Proving that BSPD is in fact in P by a decomposition theorem uses a classical
idea, used for instance in [10] to check whether a given graph has or not an even
hole. First, solve BSPD for each class of basic graph. This is done in Section 5 in
time O(n5). Note that bipartite graphs are the most difficult to handle efficiently.
For them, we use an algorithm due to Reed [18]. For a graph G such that one of
G,G has a 2-join, try to break G into smaller blocks in such a way that G has
a balanced skew partition if and only if one of the blocks has one, allowing us to
recurse. And when a graph is not basic and has no 2-join, simply answer “the graph
has a balanced skew partition”, the correct answer because of the decomposition
theorem. This blind use of decomposition is not safe from criticism, but this will be
discussed later.

Unfortunately, with the usual notions of 2-join and blocks, this approach does
not work. Building the blocks of a 2-join preserves existing balanced skew partitions,
but some 2-joins can create balanced skew partitions when building the blocks. In
the graph depicted Fig. 1 on the left, we have to simplify somehow the left part of
the obvious 2-join to build one of the blocks. The most reasonable way to do so
seems to be replacing X1 by a path of length 1. But this creates a skew cutset: the
black vertices on the right. Of course, this graph is bipartite but one can imagine
more complicated examples based on the same template and another template exists.
These bad 2-joins will be described in more details in Section 2 and called cutting
2-joins. All of them are path 2-joins.

Theorem 2.1 shows that cutting 2-joins are not necessary to decompose Berge
graphs. A more general statement is proved, that makes use of a new basic class and
of a new kind of decomposition that are quite long to describe. But an interesting
corollary can be stated with no new notions. By contracting a path P that is the
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Figure 1: Contracting a path creates a skew cutset

side of a proper path 2-join of a graph we mean delete the interior vertices of P ,
and link the ends of P with a path of length 1 or 2 according to the original parity
of the length of P .

Theorem 1.5 Let G be a Berge graph. Then either:

• G is basic;

• one of G,G has a non-path proper 2-join;

• G has no balanced skew partition and exactly one of G,G (say G) has at least
a proper path 2-join. Moreover, for every proper path 2-join of G, the graph
obtained by contracting its path-side has no balanced skew partition;

• G has a balanced skew partition.

The algorithm for detecting balanced skew partitions is now easy to sketch. Since
the balanced skew partition is a self-complementary notion, we may switch from the
graph to its complement as often as needed. First check whether the input graph is
basic, and if so look directly for a balanced skew partition. Else, try to decompose
along non-path 2-joins (they preserve the existence of balanced skew partitions). If
there are none of them, try to decompose along path 2-joins (possibly, this creates
balanced skew partitions but do not destroy them). At the end of this process, one
of the leaf of the decomposition tree has a balanced skew partition if and only if the
root has one. Note that a balanced skew partition in a leaf may have been created
by the contraction of a cutting 2-join since such 2-joins do exist (we are not able to
recognize all of them, it seems to be a difficult task). But Theorem 1.5 shows that
when such a bad contraction occurs, the graph has anyway a balanced skew cutset
somewhere. The proof of correctness and complexity analysis are given in Section 5.

Theorem 1.5 gives a structural description of Berge graphs that have no balanced
skew partitions: these graphs can be decomposed along 2-joins till reaching basic
graphs. This could be used to solve algorithmic problems for the class of Berge
graphs with no balanced skew partitions (together with the Berge graphs recognition
algorithm [6], our work solves the recognition in O(n9)). Note that this class has an
unusual feature in the field of perfect graphs: it is not closed under taking induced
subgraph. Theorem 1.5 also gives a structural information on every Berge graph: it
can be decomposed in a first step by using only balanced skew partitions, and in a
second step by using only 2-joins, possibly in the complement.
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Let us come back to the weak point of our recognition algorithm: when it an-
swers “the graph has a balanced skew-partition” using blindly some decomposition
theorem. This weakness is the reason why we are not able to find explicitly a bal-
anced skew partition when there is one. However, our results shows that an explicit
algorithm might exist. The proof of Theorem 1.2 or Theorem 1.3 might contain its
main steps and ideas. However, we would like to point out that if someone manage to
read algorithmically the proof of Theorem 1.2 or of Theorem 1.3, (s)he will probably
end up with an algorithm that given a graph, either finds an odd hole/antihole, or
certifies that the graph is basic, or finds some decomposition. If the decomposition
found is not a balanced skew partition, the algorithm will probably not certify that
there is no balanced skew partition in the graph, and thus BSPD will not be solved
entirely. To solve it, one will still have to think about the detection of balanced skew
partitions in basic graphs, and in graphs having a 2-join: this is what we are doing
here. Thus an effective algorithm might have to use much of the present work.

This paper answers in some respect questions asked by several authors, for in-
stance the problem of how 2-joins and balanced skew partitions interact in Berge
graphs. See [1] where a section is devoted to open problems about skew partitions.
One of them is the fast detection of general skew partitions in Berge graphs. This
has been solved for basic graphs by Reed [18], so a decomposition based approach
might work. Moreover, at first glance, general skew partitions seem easier than bal-
anced skew partitions: in general graphs the first ones are polynomial [14] to detect
while the second ones are NP-hard. However, at Subsection 4.3 we explain why our
work does not improve the general skew partition detection in Berge graphs, why
we are not able to prove Theorem 1.5 with “skew partition” instead of “balanced
skew partition”. Rather than a failure, we consider this as a further indication that
balanced skew partition is the relevant decomposition for Berge graphs.

Section 2 gives the new definitions necessary to state properly Theorem 2.1, states
it, and explain why it is a generalisation of the previously known decomposition
theorems for Berge graphs. Section 3 gives some useful technical lemmas and study
how 2-joins and balanced skew partitions can overlap in a Berge graph. Section 4
gives the proof of Theorems 2.1 and of its corollary 1.5. Section 5 describes the
algorithms announced above. Section 6 proves that BSPD is NP-hard.

2 The decomposition theorem

We call flat path of a graph G any path whose interior vertices all have degree 2 in
G and whose ends have no common neighbors outside of the path.

We call path-double split graph any graph obtained from a double split graph G
by subdividing matching edges of G into paths of odd length. Note that a double
split graph is a path-double split graph. More accurately, a path-double split graph
is any graph G that may be constructed as follows. Let m,n ≥ 2 be integers. Let
A = {a1, . . . , am}, B = {b1, . . . , bm}, C = {c1, . . . , cn}, D = {d1, . . . , dn} be four
disjoint sets. Let E be another possibly empty set disjoint from A, B, C, D. Let G
have vertex set A ∪ B ∪ C ∪ D ∪ E and edges in such a way that:

• for every vertex v in E, v has degree 2 and there exists i ∈ {1, . . . m} such that
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v lies on a path of odd length from ai to bi;

• for 1 ≤ i ≤ m, there is a unique path of odd length (possibly 1) between ai

and bi whose interior is in E. There are no edges between {ai, bi} and {ai′ , bi′}
for 1 ≤ i < i′ ≤ m;

• cj is non-adjacent to dj for 1 ≤ j ≤ n. There are all four edges between {cj , dj}
and {cj′ , bj′} for 1 ≤ j < j′ ≤ n;

• there are exactly two edges between {ai, bi} and {cj , dj} for 1 ≤ i ≤ m,
1 ≤ j ≤ n and these two edges are disjoint.

Now we turn our attention to types of 2-join whose contraction may create balanced
skew partitions:

• A 2-join is said to be cutting of type 1 if it has a split (X1, X2, A1, B1, A2,
B2) such that:

1. (X1,X2) is a path 2-join with path-side X1;

2. G[X2 \ A2] is disconnected.

• A 2-join is said to be cutting of type 2 if it has a split (X1, X2, A1, B1, A2,
B2) such that there exist sets A3, B3 satisfying:

1. (X1,X2) is a path 2-join with path-side X1;

2. A3 6= ∅, B3 6= ∅, A3 ⊂ A2, B3 ⊂ B2;

3. A3 is complete to B3;

4. every outgoing path from B3 ∪ {a1} to B3 ∪ {a1} (resp. from A3 ∪ {b1}
to A3 ∪ {b1}) has even length;

5. every antipath with its ends outside of B3 ∪ {a1} (resp. A3 ∪ {b1}) and
its interior in B3 ∪ {a1} (resp. A3 ∪ {b1}) has even length;

6. G \ (X1 ∪ A3 ∪ B3) is disconnected.

• A 2-join is said to be cutting if it is either cutting of type 1 or cutting of type 2.

An homogeneous 2-join is a partition of V (G) into six non-empty sets (A, B, C, D,
E, F ) such that:

• (A,B,C,D,E, F ) is an homogeneous pair;

• every vertex in E has degree 2 and belongs to a flat path of odd length with
an end in C, an end in D and whose interior is in E;

• every flat path outgoing from C to D and whose interior is in E is the path-side
of a non-cutting proper 2-join of G.

Our main result is the following:
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Theorem 2.1 Let G be a Berge graph. Then either G is basic, or one of G,G is
a path-cobipartite graph, or one of G,G is a path-double split graph, or one of G,G
has an homogeneous 2-join, or one of G,G has a non-path proper 2-join, or G has
a balanced skew partition.

This theorem generalises Theorems 1.2, 1.3 and 1.4: path-cobipartite graphs may
be seen either as graphs having a proper path 2-join (Theorems 1.2 and 1.3) or as
a new basic class (Theorem 1.4). Path-double split graphs may be seen as graphs
having a proper path 2-join (Theorems 1.2 and 1.3) or as graphs having a non-
balanced skew partition (Theorem 1.4). And graphs having an homogeneous 2-join
may be seen as graphs having an homogeneous pair (Theorems 1.4 and perhaps 1.2)
or as graphs having a proper path 2-join (Theorems 1.3 and perhaps 1.2). Formally
all these remarks are not always true: it may happen in special cases that path-
cobipartite graphs and path-double split graphs have no proper 2-join. But such
graphs are established in Lemma 3.4 to be basic or to have a balanced skew partition.

3 Lemmas

The following is a useful characterization of line-graphs of bipartite graphs:

Theorem 3.1 (Harary and Holzmann [16]) G is the line-graph of a bipartite
graph if and only if G contains no odd hole, no claw and no diamond as induced
subgraphs.

Figure 2: A claw and a diamond

The following fact is clear and useful:

Lemma 3.2 If (A,B) is a balanced skew partition of a graph G then (B,A) is a
balanced skew partition of G. In particular, a graph G has a balanced skew partition
if and only if G has a balanced skew partition.

A star in a graph is a set of vertices B such that there is a vertex x in B, called
a center of the star, seeing every vertex of B \ x. Note that a star cutset of size at
least 2 is a skew cutset.

Lemma 3.3 Let G be a Berge graph of size at least 4, with at least an edge and
that is not the complement of C4. If G has a star cutset then G has a balanced skew
partition

proof — Let B be a star cutset of G. Let us suppose |B| being maximum with
that property. Let A1, A2 be such that A1, A2, B are pairwise disjoint, there are no
edges between A1, A2, and A1 ∪ A2 ∪ B = V (G).

9
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Suppose first that B has size 1. Thus up to a symmetry |A1| ≥ 2 since G has
at least 4 vertices. There is no edge between B and A1 for otherwise such an edge
would be a cutset contradicting |B| being maximum. There is no edge in A2 since
such an edge would be a cutset of G. If there is no edge in A1, any edge of G is a
cutset of G. So, there is an edge e in A1. So, |A1| = 2 and B is complete to A2 for
otherwise, e is a cutset of G. So, |A2| = 1 for otherwise, any edge between B and
A2 is a cutset edge of G. Now, we observe that G is the complement of C4.

If B has size at least 2 then B is a skew cutset of G. Let x be a center of B.
By maximality of B, every component of G \ B has either size 1 or contains no
neighbor of x. Thus, if P is a path that makes the skew cutset B non-balanced,
then P ∪x induces an odd hole of G. If Q is an antipath that makes the skew cutset
B non-balanced, then Q ∪ x induces an odd antihole of G. 2

The following lemma is useful to establish formally that Theorem 2.1 really
implies Theorems 1.2, 1.3 and 1.4. But we also need it at several places in the next
section.

Lemma 3.4 Let G be a Berge graph. Then:

• If G has a flat path P of length at least 3 then either G is bipartite, or G has
a balanced skew partition or P is the path-side of a proper path 2-join of G.

• If G is a path-cobipartite graph, a path-double split graph or has an homo-
geneous 2-join, then either G has a proper 2-join or G has a balanced skew
partition or G is a bipartite graph, the complement of a bipartite graph, or a
double split graph.

proof — Let us prove the first item. Let P be a flat path of G of length at least 3.
So (P, V (G) \ P ) is a path 2-join of G. Let (P,X2, {a1}, {b1}, A2, B2) be a split of
this 2-join. If (P,X2) is not proper, then either there is a component of X2 that
does not meet one of A2, B2, or X2 induces a path of length 1 or 2. In the last case,
G is bipartite, and in the first one, we may assume that there is a component C
of X2 that does not meet B2. But then, {a1} ∪ (A2 \ C) is a star cutset of G that
separates C from B2, and so by Lemma 3.3, G has a balanced skew partition.

The second item follows easily: if G is a path-cobipartite graph, then we may
assume that G is not the complement of a bipartite graph. If G is a path-double
split graph then we may assume that G is not a double split graph. In both cases,
G has a flat path of length at least 3. If G has an homogeneous 2-join then it also
has a flat path of length at least 3. In every case, the conclusion follows from the
first item. 2

The following is well known for double split graphs (mentioned in [7]):

Lemma 3.5 A path-double split graph G has exactly one skew partition and this
skew partition is not balanced.

proof — Let V (G) be partitioned into sets A,B,C,D,E like in the definition of
path-double split graphs. Obviously, (A ∪ B ∪ E,C ∪ D) is a non-balanced skew
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partition of G. Every vertex of A∪B∪E has a non neighbor in every anticomponent
of C ∪ D. Hence, every subset of V (G) strictly containing C ∪ D is anticonnected.
So, if X 6= C ∪D is a skew cutset of G, we may assume that X does not contain c1.
So, c1 is in a component of G \ X, and there is a vertex y of G that is in another
component. Up to a symmetry, we have two cases to consider:

First case: y = d1. Hence, every vertex of C ∪D \ {c1, d1} must be in X. Every
vertex in A∪B ∪E has a non neighbor in every anticomponent of C ∪D \ {c1, d1}.
So, since X is not anticonnected, we have X = C ∪ D \ {c1, d1}. This contradicts
G \ X being disconnected.

Second case: y is on a path P from a1 to b1 whose interior is in E. Since P
has a vertex adjacent to c1, at least a vertex of P must be in X. If this vertex
u is in E then we may assume up to a symmetry b1 ∈ X since u and c1 must
have a common neighbor in X because X is not anticonnected. Else we may also
assume b1 ∈ X. Note that a1 /∈ X, because either a1 and b1 are not adjacent,
and then cannot be both in X because they have no common neighbor; or a1 and
b1 are adjacent and then y = a1 is the only possibility left for y. Hence, X is
a skew cutset that separates a1 from c1. Now, for every 2 ≤ j ≤ n, one of cj ,
dj is a common neighbor of a1, c1. Hence, up to a symmetry, we may assume
{c2, . . . , cn} ⊂ X. Every vertex of V (G) \ {b1, c2, . . . , cn} has a non neighbor in
the unique anticomponent of {b1, c2, . . . , cn}. Hence, X = {b1, c2, . . . , cn}. So, X is
anticonnected. This contradicts X being a skew cutset. 2

The following is needed twice in the proof of Theorem 2.1:

Lemma 3.6 Let G be a Berge graph. Suppose that G has a vertex u of degree 3
whose neighborhood induces a stable set. Moreover, G has a stable set {x, y, z} such
that x, y, z all have degree at least 3. Then G is not a path-cobipartite graph, not a
path-double split graph and G has no non-degenerate homogeneous 2-join.

proof — In a path-cobipartite graph the vertices of degree at least 3 partition
into 2 cliques. Since {x, y, z} contradicts this property, G is not a path-cobipartite
graph.

In a path-double split graph, every vertex of degree exactly 3 must have an edge
in his neighborhood. Since u contradicts this property, G is not a path-double split
graph.

If G has a non-degenerate homogeneous 2-join (A, B, C, D, E, F ), then every
vertex in F has degree at least 4. Every vertex in A,B has an edge in his neigh-
borhood. Every vertex in C has a neighbor in C or F for otherwise, (A, B, C, D,
E, F ) is degenerate. Thus, every vertex in C, and by the same way every vertex in
D, has an edge in his neighborhood. Every vertex in E has degree 2. Hence, u is in
none of A, B, C, D, E, F , a contradiction. 2

3.1 Paths and antipaths overlapping 2-joins

Here, we state easy facts about 2-joins. Some of them are well known but they
need to be stated and proved clearly, especially because most of them are needed
for possibly non-proper 2-joins.
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Lemma 3.7 Let G be a Berge graph with a connected 2-join (X1,X2). Then all the
paths with an end A1, an end in B1, no interior vertex in A1 ∪B1, and all the paths
with an end A2, an end in B2, no interior vertex in A2 ∪ B2 have same parity.

proof — Note that since (X1,X2) is connected there actually exists in G[X1] a
path P1 with an end in A1, an end in B1 and interior in C1. There exists a similar
path in G[X2] from A2 to B2. The paths P1, P2 have same parity because P1 ∪ P2

induces a hole. Let P be a path from A1 to B1 with no interior vertex in A1 ∪ B1

(the proof is the same for an a path from A2 to B2). Let P ∗ be the interior of P .
Then one of P ∪ P2, P ∗ ∪ P1 induces a hole. Hence, P,P1, P2 have same parity. 2

Lemma 3.8 Let G be a Berge graph with a 2-join (X1,X2). Let i be in {1, 2}. Then
every outgoing path from Ai to Ai (resp. from Bi to Bi) has even length. Every
antipath of length at least 2 whose interior is in Ai (resp. Bi) and whose ends are
outside Ai (resp. Bi) has even length.

proof — Note that we do not suppose (X1,X2) being connected, so Lemma 3.7
does not apply. Let P be an outgoing path from A1 to A1 (the other cases are
similar). If P has a vertex in A2, then P has length 2. Else, P must lie entirely
in X1 except possibly for one vertex in B2. If P lies entirely in X1, then P ∪ {a2}
where a2 is any vertex in A2 induces a hole, so P has even length. If P has a vertex
b2 ∈ B2, then we must have P = a−· · ·−b−b2−b′−· · ·−a′ where a−P−b and b′−P−a′

are paths with an end in A1, an end in B1 and interior in C1. Suppose that P has
odd length. Let a2 be a vertex of A2. Then V (P ) ∪ {a2} induces an odd cycle of G
whose only chord is a2b2. So one of V (a−P−b2)∪{a2}, V (a′−P−b2)∪{a2} induces
an odd hole of G, a contradiction.

Let Q be an antipath of length at least 2 whose interior is in A1 and whose ends
are outside A1 (the other cases are similar). If Q has length at least 3, then the ends
of Q must have a neighbor in A1 and a non-neighbor in A1. Hence these ends are
in X1. Thus, Q∪ {a}, where a is any vertex of A2 is an antihole of G. Thus, Q has
even length. 2

Lemma 3.9 Let G be a graph with a 2-join (X1,X2). Let P be a path of G whose
end-vertices are in X2. Then either:

1. There are vertices a ∈ A1, b ∈ B1 such that V (P ) ⊆ X2 ∪ {a, b}. Moreover, if
a, b are both in V (P ), then they are non-adjacent.

2. P = c−· · ·−a2−a−· · ·−b−b2−· · ·−c′ where: a ∈ A1, b ∈ B1, a2 ∈ A2, b2 ∈ B2.
Moreover V (c−P−a2) ⊂ X2, V (b2−P−c′) ⊂ X2, V (a−P−b) ⊂ X1.

proof — If P has no vertex in X1, then for any a ∈ A1, b ∈ B1, the first outcome
holds. Else let c, c′ be the end-vertices of P . Starting from c, we may assume that
first vertex of P in X1 is a ∈ A1. Note that a is the only vertex of P in A1. If a has
its two neighbors on P in X2, then P has no other vertex in X1, except possibly a
single vertex b ∈ B1 and the first outcome holds. If a has only one neighbor on P
in X2, then let a2 be this neighbor. Note that P must have a single vertex b in B1.
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Let b2 be the neighbor of b in X2 along P . Vertices a2, a, b, b2 show that the second
outcome holds. 2

Lemma 3.10 Let G be a Berge graph with a 2-join (X1,X2). Let P be a path of G
whose end-vertices are in A1 ∪ X2 (resp. B1 ∪ X2) and whose interior vertices are
not in A1 (resp. B1). Then either:

1. P has even length.

2. There are vertices a ∈ A1, b ∈ B1 such that V (P ) ⊆ X2 ∪ {a, b}. Moreover, if
a, b are both in V (P ), then they are non-adjacent.

3. P = a−· · ·−b−b2−· · ·−c where: a ∈ A1, b ∈ B1, b2 ∈ B2, c ∈ X2.

Moreover V (a−P−b) ⊂ X1 and V (b2−P−c) ⊂ X2.

(resp. P = b−· · ·−a−a2−· · ·−c where: b ∈ B1, a ∈ A1, a2 ∈ A2, c ∈ X2.

Moreover V (b−P−a) ⊂ X1 and V (a2−P−c) ⊂ X2.)

proof — Note that we do not suppose (X1,X2) being proper. Suppose that the
end-vertices of P are in A1 ∪ X2 (the case when the end-vertices of P are all in
B1 ∪ X2 is similar).

If P has its two end-vertices in A1, then by Lemma 3.8, P has even length and
Output 1 of the lemma holds.

If P has exactly one end-vertex in A1, let a be this vertex. Let c ∈ X2 be the
other end-vertex of P . Let a′ be the neighbor of a along P . If a′ is in A2, then we
may apply Lemma 3.9 to a′−P−c: Outcome 2 is impossible and Outcome 1 yields
Outcome 2 of the lemma we are proving now since P has exactly one vertex in A1.
If a′ is not in A2, then let b be the last vertex of X1 along P and b2 the first vertex
of X2 along P . Outcome 3 of the lemma holds.

If P has no end-vertex in A1 then Lemma 3.9 applies to P . The second outcome
is impossible. The first outcome implies that there is a vertex b ∈ B1 such that
V (P ) ⊆ X2∪{b} since no interior vertex of P is in A1. So, Outcome 2 of the lemma
we are proving now holds. 2

Lemma 3.11 Let G be a graph with a 2-join (X1,X2). Let Q be an antipath of G
of length at least 4 whose interior vertices are all in X2. Then there is a vertex a in
A1 ∪ B1 such that V (Q) ⊆ X2 ∪ {a}.

proof — Let c, c′ be the end-vertices of Q. Note that N(c)∩N(c′)∩X2 have to be
non-empty and that N(c)∩X2 must be different of N(c′)∩X2, because c, c′ are the
end-vertices of an antipath of length at least 4. No pair of vertices in X1 satisfies
these two properties, so at most one of c, c′ is in V (Q) ∩ X1. If none of c, c′ are in
X1, then let a be any vertex in A1, else let a be the unique vertex in X1 among c, c′.
Since c, c′ must have a neighbor in X2, a ∈ A1 ∪B1 and clearly V (Q) ⊆ X2 ∪{a}. 2

13

ha
ls

hs
-0

01
15

62
5,

 v
er

si
on

 1
 - 

22
 N

ov
 2

00
6



Lemma 3.12 Let G be a Berge graph with a 2-join (X1,X2). Let Q be an antipath
of G of length at least 5 whose interior vertices are all in A1 ∪ X2 (resp. B1 ∪ X2)
and whose end-vertices are not in A1 (resp. B1). Then either:

1. Q has even length.

2. There is a vertex a ∈ A1 ∪ B1 such that V (Q) ⊆ X2 ∪ {a}.

proof — We suppose that the interior vertices of Q are all in A1 ∪ X2. The case
when the interior vertices of Q are all in B1 ∪ X2 is similar.

If Q has at least 2 vertices in A1, then let a 6= a′ be two of these vertices. Since
the end-vertices of Q are not in A1, a, a′ may be chosen in such a way that there are

vertices c, c′ /∈ A1 such that c−a−Q−a′−c′ is an antipath of G. Since c must miss
a while seeing a′, c must be in X1 \ A1, and so is c′. But the interior vertices of Q
cannot be in X1 \ A1, so c, c′ are in fact the end-vertices of Q. Also, every interior
vertex of Q must be adjacent to at least one of c, c′. If all the interior vertices of
Q are in A1 then by Lemma 3.8, Q has even length. Else, Q must have at least an
interior vertex b ∈ X2. Since b must see at least one of c, c′ we have b ∈ B2, so b
misses both a, a′. Hence a−b−a′ is an induced subgraph of Q and b must see both
c, c′, so c, c′ ∈ B1. Now we observe that Q = c−a−b−a′−c′, contradicting Q having
length at least 5.

If Q has exactly one vertex a in A1 then by assumption, a is an interior vertex
of Q. Let c, c′ be the ends of Q. Suppose c ∈ X1. Since Q has length at least 5, c
must have a neighbor in the interior Q that is different of a, hence c ∈ B1. Since Q
has length at least 5, a and c must have a common neighbor, that must be c′ since
it must be in X1. Hence c′ ∈ X1, implying c′ ∈ B1 since c′ must have a neighbor in
X2. Now the non-neighbor of c′ along Q is not a, so it must be a vertex of X2 while
seeing c and missing c′, a contradiction. We proved c ∈ X2, and similarly c′ ∈ X2.
Hence V (Q) ⊂ X2 ∪ {a}.

If Q has no vertex in A1 then Lemma 3.11 applies: there is a vertex a ∈ A1 ∪B1

such that V (Q) ⊆ X2 ∪ {a}. 2

3.2 Balanced skew partitions overlapping 2-joins

Let G be a Berge graph and (X1,X2, A1, B1, A2, B2) be a split of a proper 2-join
of G. The blocks of G with respect to (X1,X2) are the two graphs G1, G2 that we
describe now. We obtain G1 by replacing X2 by a flat path P2 from a vertex a2

complete to A1, to a vertex b2 complete to B1. This path has the same parity than
a path from A1 to B1 whose interior is in C1. There is such a path since (X1,X2)
is proper and all such paths have same parity by Lemma 3.7. The length of P is
decided as follow: if (X1,X2) is a path 2-join with path-side X2 then P has length 1
or 2, else it has length 3 or 4. The block G2 is obtained similarly by replacing X1

by a flat path.
It is convenient to consider a degenerated kind of 2-join that implies the existence

of a balanced skew partition. A 2-join (X1,X2) is said to be degenerate if either:

• there exists i ∈ {1, 2} and a vertex v in Ai (resp. Bi) that has no neighbor in
Xi \ Ai (resp. in Xi \ Bi);
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• one of A1 ∪ A2, B1 ∪ B2 is a skew cutset of G;

• the 2-join (X1,X2) is not connected (ie, there exists i ∈ {1, 2} and a component
of Xi that does not meet both Ai, Bi);

• there exists i ∈ {1, 2} and a vertex in Ai that is complete to Bi or a vertex in
Bi that is complete to Ai;

• there exists i ∈ {1, 2} and a vertex in Ci that is complete to Ai ∪ Bi.

Lemma 3.13 Let G be a Berge graph and (X1,X2) be a degenerate substantial 2-
join of G. Then G has a balanced skew partition and at least one of the blocks G1, G2

of G has a balanced skew partition.

proof — Let us look at the possible reasons why (X1,X2) is degenerate.
If there is a vertex v in A1 that has no neighbor in X1 \ A1 then suppose first

|A1| > 1. So (A1 \ {v}) ∪ A2 is a skew cutset separating v from the rest of the
graph. Hence, in G there is a star cutset of center v, and by Lemmas 3.3 and 3.2, G
has a balanced skew partition. Hence we may assume A1 = {v}. Since (X1,X2) is
substantial, |X1| ≥ 3. Thus, for any b ∈ B1, {b} ∪ B2 is a star cutset that separates
v from X1 \{b, v} and G has a balanced skew partition by Lemma 3.3. By the same
way, the block G1 has a balanced skew partition. The cases with A2, B1, B2 are
similar.

If A1∪A2 is a skew cutset of G then let us check that this skew cutset is balanced
(the case when B1 ∪B2 is a skew cutset is similar). Since A1 is complete to A2, any
outgoing path from A1∪A2 to A1 ∪A2 is either outgoing from A1 to A1 or outgoing
from A2 to A2. Thus, such a path has even length by Lemma 3.8. If there is an
antipath Q of length at least 5 with its interior in A1 ∪ A2 and its ends in the rest
of the graph, then it must lie entirely in X1 or X2, say X1 up to symmetry. Thus,
such an antipath has even length by Lemma 3.8. By the same way A1 ∪{a2}, where
a2 is the vertex of G1 that represents A2, is a balanced skew cutset of G1

If (X1,X2) is not connected, then let for instance Y be a component of X1 that
does not meet B1. If Y ∩ C1 6= ∅ then A1 ∪ A2 is a skew cutset of G that separates
Y ∩ C1 from B1. So, by the preceding paragraph, G and G1 have a balanced skew
partition and we may assume that Y ⊂ A1. Hence, every vertex in Y has no
neighbor in X1 \ A1. So, by the penultimate paragraph, G and G1 have a balanced
skew partition.

If there is a vertex a ∈ A1 that is complete to B1 (the other cases are symmetric)
then suppose first |A1| > 1. Consider a′ 6= a in A1. Hence ({a} ∪N(a)) \ a′ is a star
cutset of G separating a′ from B2. So, by Lemma 3.3, we may assume A1 = {a}.
If |B1| > 1, consider b 6= b′ in B1. Hence, ({b} ∪ N(b)) \ b′ is a star cutset of G
separating b′ from A2. So we may assume B1 = {b}. Since (X1,X2) is substantial,
|X1| ≥ 3, and there is a vertex c in V (G) \ (A1 ∪ B1). Now, {a, b} is a star cutset
separating c from X2. By the same way, G1 has a balanced skew partition.

If there is a vertex c complete to Ai ∪ Bi then we may assume Ci = {c} for
otherwise there is another vertex c′ in Ci and {c}∪Ai∪Bi is a star cutset separating
c′ from the rest of the graph. By the preceding paragraph, we may assume that there
is a vertex a ∈ A1 and a vertex b ∈ B1 missing a. Then a−c−b is an outgoing path of
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even length from Ai to Bi. By the penultimate paragraph, we may assume (X1,X2)
connected. Thus by Lemma 3.7, there is no edge between Ai and Bi. If there are
two vertices a 6= a′ ∈ Ai then {a} ∪ N(a) \ {a′} is a star cutset of G separating
a′ from B3−i. Thus may assume |Ai| = 1, and similarly |Bi| = 1. Thus, Xi is an
outgoing path of length 2 from Ai to Bi contradicting (X1,X2) being substantial.
By the same way, G1 has a balanced skew partition. 2

Lemma 3.14 Let G be a graph with a non-degenerate 2-join (X1,X2). Let i be in
{1, 2}. Then for every vertex v ∈ Xi there is a path Pa = a−· · ·−v and a path
Pb = b−· · ·−v such that:

• a ∈ Ai, b ∈ Bi;

• Every interior vertex of Pa, Pb is in Xi \ (Ai ∪ Bi).

proof — Note that (X1,X2) is connected since it is not degenerate. Suppose first
v ∈ Xi \ (Ai ∪Bi). By the definition of connected 2-joins, the connected component
Xv of v in G[Xi] meets both Ai, Bi and there is at least one path from v to a vertex
of Bi in G[Xi]. If every such path of G[Xi] from v to Bi goes through Ai, then Ai

is a cutset of G[Xi] that separates v from Bi. Thus A1 ∪ A2 is a skew cutset of G,
so (X1,X2) is degenerate, a contradiction. So there is a path Pb as desired, and by
the same way, Pa exists.

If v ∈ Ai, then Pa exists and have length 0: put Pa = v. The vertex v has a
neighbor w in Xi\Ai otherwise (X1,X2) is degenerate. By the preceding paragraph,
there is a path Q from w to b ∈ Bi whose interior vertices lie in Xi \ (Ai ∪ Bi). So
Pb exists: consider a shortest path from v to b in G[V (Q) ∪ {b}]. 2

Lemma 3.15 Let G be a Berge graph with a non-degenerate 2-join (X1,X2). Let
F be a balanced skew cutset of G. Then for some i ∈ {1, 2} either:

• F ( Xi;

• F ∩ Xi ( Xi and one of (F ∩ Xi) ∪ A3−i, (F ∩ Xi) ∪ B3−i is a balanced skew
cutset of G.

proof — We consider three cases:
Case 1: F ∩ A1, F ∩ A2, F ∩ B1, F ∩ B2 are all non-empty.

If there is a vertex a ∈ A1 ∩F non-adjacent to a vertex b ∈ B1 ∩F then there is
an antipath of length at most 3 between any vertex of F and a, contradicting G[F ]
being disconnected. Thus A1 ∩ F is complete to B1 ∩ F , and similarly A2 ∩ F is
complete to B2∩F . Similarly, we prove F ∩C1 = F ∩C2 = ∅. If A1 ⊂ F then there is
a vertex in B1 that is complete to A1, contradicting (X1,X2) being non-degenerate.
Thus A1 \ F 6= ∅, and similarly A2 \ F 6= ∅, B1 \ F 6= ∅, B2 \ F 6= ∅.

Let E1 be the component of G \ F that contains (A1 \ F ) ∪ (A2 \ F ). Let E2 be
another component of G \ F . Up to a symmetry we assume E2 ∩X2 6= ∅. We claim
that F ′ = (F ∩X2)∪A1 is a skew cutset of G that separates E1 ∩X2 from E2 ∩X2.
For suppose not. This means that there is a path P of G\F ′ with an end in E1∩X2
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and an end in E2 ∩X2. If P has no vertex in X1 then P ⊂ G \F and P contradicts
E1, E2 being components of G \ F . If P has a vertex in X1 then this vertex b is
unique and is in B1 because A1 ⊂ F ′. By replacing b by any vertex of B1 \ F , we
obtain again a path that contradicts E1, E2 being components of G \ F . Thus F ′ is
a skew cutset of G. Note that this skew cutset is included in A1 ∪ A2 ∪ B2. Let us
prove that this skew cutset is balanced.

Let P be an outgoing path from F ′ to F ′. Let us apply Lemma 3.10 to P . If
Outcome 1 of the lemma holds then P has even length. If Outcome 2 of the lemma
holds then V (P ) ⊂ X2 ∪ {a, b}. Let a1 be a vertex of A1 ∩ F and b1 be a vertex
of B1 \ F such that a1 misses b1. Note that b1 exists for otherwise (X1,X2) is a
degenerate 2-join of G. After possibly replacing a by a1 and b by b1, we obtain an
outgoing path from F to F that has same length than P . Thus, P has even length
since F is a balanced skew cutset. If Outcome 3 of the lemma holds then P has one
end in A1 and one end in B2 and P is a path from A1 to B1 whose interior is in
C1, plus one edge. Note that there is an edge between A2 and B2 so by Lemma 3.7
every path from A1 to B1 whose interior is in C1 has odd length. Hence in every
case P has even length.

Let Q be an antipath with both ends in G \ F ′ and interior in F ′. If Q has
length 3 then Q may be seen as an outgoing path from F ′ to F ′, so we may assume
that Q has length at least 5. By Lemma 3.12 applied to Q, either Q has even length
or V (Q) ⊂ X2 ∪ {a}. If a ∈ A1 let us replace a by a vertex of F ∩ A1 and if a ∈ B1

let us replace a by a vertex of B1 \F . We obtain an antipath that have same length
than Q, that has both ends outside of F and interior in F . Thus Q has even length
because F is a balanced skew cutset.
Case 2: one of F ∩ A1, F ∩ A2, F ∩ B1, F ∩ B2 is empty and F ∩ X1, F ∩ X2 are
both non-empty.

We assume up to a symmetry that one of B1 ∩F , B2 ∩F is empty. Since F ∩X1

and F ∩X2 are both non-empty, there is a least an edge between F ∩X1 and F ∩X2

because G[F ] is disconnected. Thus we know that F ∩ A1 and F ∩ A2 are both
non-empty. If (F ∩ X1) \ A1 and (F ∩ X2) \ A2 are both non-empty then there is a
vertex of F in one of C1, C2 since one of B1∩F , B2∩F is empty. Up to a symmetry,
suppose C1 ∩ F 6= ∅. Then G[F ] is connected since every vertex in it can be linked
to a vertex of C1 by an antipath of length at most 2, a contradiction. Hence one
of (F ∩ X1) \ A1 and (F ∩ X2) \ A2 is empty. Thus we may assume F ⊂ X2 ∪ A1.
Suppose B2 ⊂ F . Then B2 and F ∩ A1 are in the same component of G[F ], thus
there must be a vertex v in F that is complete to B2 ∪ (F ∩A1). So, v is in A2, and
v is complete to B2, contradicting (X1,X2) being non-degenerate. We proved that
there is at least a vertex u in B2 \ F . In particular, F ∩ X2 ( X2. By Lemma 3.14
there is a path from every vertex of X1\F to u whose interior is in X1\A1, thus there
is a component E1 of G\F that contains X1 \F and u. There is another component
E2 included in X2. Thus (F ∩X2)∪A1 is a skew cutset of G that separates B1 from
E2. We still have to prove that the skew cutset (F ∩ X2) ∪ A1 is balanced.

Let P be an outgoing path from (F ∩ X2) ∪ A1 to (F ∩ X2) ∪ A1. Let us apply
Lemma 3.10 to P . If Outcome 1 of the lemma holds then P has even length. If
Outcome 2 of the lemma holds then V (P ) ⊂ X2∪{a, b}. Let a1 be a vertex of A1∩F
and b1 be a vertex of B1 such that a1 misses b1. Note that b1 exists for otherwise
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(X1,X2) is a degenerate 2-join of G. After possibly replacing in P a by a1 and b
by b1, we obtain an outgoing path from F to F that has the same length than P .
Thus, P has even length since F is a balanced skew cutset. If Outcome 3 of the
lemma holds then P = a−· · ·−b−b2−· · ·−c. Let a1 be in A1 ∩ F . By Lemma 3.14
there is a path P1 of G[X1] from a1 to a vertex b1 ∈ B1. Moreover, P1 has an end
in A1, an end in B1 and interior in C1. Note that by Lemma 3.7, P1 and a−P−b
have same parity. Thus a1−P1−b1−b2−P−c is an outgoing path from F to F that
has the same parity that P . Thus P has even length.

If Q is an antipath with both ends in G \ ((F ∩ X2) ∪ A1) and its interior in
(F ∩ X2) ∪ A1, we prove that Q has even length like in Case 1.
Case 3: One of F ∩ X1, F ∩ X2 is empty.

Since F ( X2 is an output of the lemma, we may assume up to a symmetry
F = X2 an look for a contradiction. If there is a path of odd length from A2 to B2

whose interior is in C2, then there is by Lemma 3.7 a similar path P from A1 to B1

of odd length. Hence A2 is complete to B2 because a pair of non-adjacent vertices
yields together with P an outgoing path of odd length from F to F , contradicting F
being a balanced skew cutset. In particular, there is a vertex of A2 that is complete
to B2, implying (X1,X2) being degenerate, a contradiction. If there is a path of even
length from A2 to B2 whose interior is in C2 then by Lemma 3.7 there are no edges
between A2 and B2. Since X2 = F is not anticonnected, there is a vertex in C2 that
is complete to A2 ∪ B2, implying again (X1,X2) being degenerate, a contradiction.
2

Lemma 3.16 Let G be a Berge graph and (X1,X2) be a proper 2-join of G. If G
has a balanced skew partition then at least one of the blocks of G has a balanced skew
partition.

proof — If (X1,X2) is degenerate, then the conclusion holds by Lemma 3.13. From
now on, we assume that (X1,X2) is non-degenerate. Suppose that G has a balanced
skew partition (E,F ). By Lemma 3.15 and up to a symmetry either F ( X2, or
(F ∩ X2) ( X2 and A1 ⊂ F , after possibly replacing F by (F ∩ X2) ∪ A1.

If F ( X2 then we claim that F is a balanced skew cutset of G2. Note that
there is at least a component E of G \ F that has some vertex in X2 but no vertex
in A2 ∪B2. Else every component of G\F has neighbors in A1 or B1, and therefore
contains A1∪B1 because (X1,X2) is connected. This implies G\F being connected,
a contradiction. Thus, F is a skew cutset of G2 that separates E from V (G2) \ X2.
Let P be an outgoing path of G2 from F to F . Note that G2 has an obvious 2-
join, (V (G2) \ X2,X2), possibly non-substantial. Let us apply Lemma 3.9 to P .
If Outcome 1 of the Lemma holds then after possibly replacing a by any a1 ∈ A1

and b by any b1 ∈ B1 non-adjacent to a1, P may be viewed as an outgoing of G
from F to F , thus P has even length. Note that b1 may be chosen non-adjacent
to a1 because (X1,X2) is non-degenerate. If Outcome 2 of the lemma holds, then
P = c−· · ·−a2−a1−· · ·−b1−b2−· · ·−c′. Let P ′ be any path from A1 to B1 whose
interior is in C1. Then c−· · ·−a2−P ′−b2−· · ·−c′ is an outgoing path of G from
F to F that has same parity than P by Lemma 3.7. Thus P has even length. Let
Q be an antipath of G2 with its ends out of F and its interior in F . Let us apply
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Lemma 3.11 to Q: V (Q) ⊆ X2 ∪ {a}. Thus, after possibly replacing a by a vertex
in A1 ∪B1, Q may be seen as an antipath of G that has same length than Q. Thus
Q has even length.

If (F ∩ X2) ( X2 and A1 ⊂ F then we put F ′ = (F ∩ X2) ∪ {a1}. We claim
that F ′ is a balanced skew cutset of G2. Exactly as above, we prove that F ′ is a
skew cutset of G2 that separates b1 from a component of G \ F that has vertices in
X2 but no vertex in B2. Let P be an outgoing path from F ′ to F ′. As above we
prove that P has even length by Lemma 3.10. Let Q be an antipath of G2 with its
ends out of F ′ and its interior in F ′. As above, we prove that Q has even length by
Lemma 3.12. 2

Lemma 3.17 Let G be a Berge graph and (X1,X2) be a non-cutting substantial
2-join of G. Then G has a balanced skew partition if and only if one of the blocks
of G has a balanced skew partition.

proof — If G has a balanced skew partition then by Lemma 3.16 one of the blocks
of G has a balanced skew partition. If (X1,X2) is degenerate, then the conclusion
holds by Lemma 3.13. From now on, we assume that (X1,X2) is non-degenerate. In
particular, it is connected and proper. Let us suppose that one of G1, G2 (say G2 up
to a symmetry) has a balanced skew cutset F ′. We denote by P1 = a1−· · ·−b1 the
path induced by V (G2) \ X2. Note that G2 has an obvious connected path 2-join:
(P1,X2), possibly non-substantial.

(1) Either:

• F ′ ( X2;

• F ′ ∩X2 ( X2 and one of (F ′ ∩X2)∪ {a1}, (F ∩X2)∪ {b1} is a balanced skew
cutset of G2.

If P1 has length 3 or 4, then (P1,X2) is proper. It is non-degenerate because (X1,X2)
is non-degenerate. Let us apply Lemma 3.15. The conclusion F ′ ( X1, is impossible
since then by Lemma 3.14, G2\F ′ is connected. Also (F ′∩P1)∪A2 and (F ′∩P1)∪B2

cannot be skew cutsets of G2, because a1, b1 cannot be both in a skew cutset of G2

since they are non adjacent with no common neighbors. Hence, Lemma 3.14 proves
that (F ′ ∩P1)∪A2 and (F ′ ∩P1)∪B2 are not cutsets of G2. Thus (1) is simply the
only possible conclusion of Lemma 3.15.

If P1 has length 2 then P1 = a1−c1−b1. If a1, b1 are both in F ′, then F ′ =
{a1, c1, b1} because c1 is the only common neighbor of a1, b1 in G2. This means
that G2[X2] = G[X2] is disconnected, implying that (X1,X2) is a cutting 2-join of
type 1, a contradiction. By Lemma 3.14 applied to G2[X2] = G[X2], none of a1, b1

can be the center of a star cutset of G. Hence, c1 /∈ F ′. Thus, F ∩X2 ( X2 because
any induced subgraph of P1 containing c1 is connected. We proved (1) when P1 has
length 2.

We are left with the case when P1 = a1 − b1. If a1, b1 are both in F ′ then
F ′ ⊂ {a1, b1} ∪A2 ∪B2. If F ′ ∩A2 6= ∅ and F ′ ∩B2 6= ∅ then putting A3 = F ′ ∩A2

and B3 = F ′∩B2 we see that (X1,X2) is a cutting 2-join of type 2 of G. Indeed, A3
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is complete to B3 for otherwise, F ′ is anticonnected. The requirements on the parity
of paths and antipaths are satisfied because F ′ is a balanced skew cutset. If at least
one of F ′ ∩ A2 and F ′ ∩ B2 is empty then we see that (X1,X2) is a cutting 2-join
of type 1. Both cases contradict (X1,X2) being non-cutting. Thus we know that at
most one of a1, b1 is in F . Also F ′∩X2 ( X2 because every induced subgraph of P1

is connected. This proves (1).

By (1), we may assume that not both a1, b1 are in F ′. Up to a symmetry, we
assume b1 /∈ F ′. If a1 ∈ F ′, put A′

1 = A1, else put A′

1 = ∅. Now F = (F ′ ∩X2)∪A′

1

is a skew cutset of G that separates a vertex of X2 from X1 \ A′

1. The proof that
F is a balanced skew cutset of G is entirely similar to the similar proofs above: we
consider an outgoing path of G from F to F . Lemma 3.9 or Lemma 3.10 shows that
P has the same parity than an outgoing path of G2 from F ′ to F ′. We consider an
antipath Q of G of length at least 2 with all its interior vertices in F and with its
end-vertices outside of F . Lemma 3.11 or Lemma 3.12 shows that Q has the same
parity than a similar antipath with respect to F ′ in G2. 2

Lemma 3.18 Let G be a Berge graph and (X1,X2) be a non-path proper 2-join of
G. Then G has a balanced skew partition if and only if one of the blocks of G has a
balanced skew partition.

proof — Clear by Lemma 3.17 since a non-path 2-join is a non-cutting 2-join. 2

3.3 Balanced skew partitions overlapping homogeneous 2-joins

An homogeneous 2-join (A,B,C,D,E, F ) is said to be degenerate if either:

• there is a vertex x ∈ C with no neighbor in E ∪ D or a vertex y ∈ D with no
neighbor in E ∪ C;

• there is a vertex x ∈ C such that N(x) ⊂ A ∪ D ∪ E or a vertex y ∈ D such
that N(y) ⊂ B ∪ C ∪ E.

Lemma 3.19 Let G be a Berge graph with a degenerate homogeneous 2-join. Then
G has a balanced skew partition.

proof — Suppose first that there exists a vertex x ∈ C with no neighbor in E ∪D
(the case with y ∈ D is similar). Then, (A ∪ C ∪ F ) \ {x} is a skew cutset that
separates x from the rest of the graph. Thus, G has a star cutset centered at x. By
Lemma 3.3, G has a balanced skew partition and by Lemma 3.2 so is G.

Suppose now that there exists x ∈ C such that N(x) ⊂ A∪D∪E (the case with
y ∈ D is similar). Let Dx be the set of those vertices of D that are the ends of a
path from C to D whose interior is in E and starting from x. Note that all such
paths have odd length (possibly 1). If a vertex f ∈ F misses d ∈ Dx, then consider
a pair a ∈ A, b ∈ B of non-adjacent vertices. Then {a, b, f} ∪ P , where P is a path
from x to d whose interior is in E, induces an odd hole. Thus F is complete to Dx.
Thus, for any f ∈ F , {f} ∪N(F ) \B is a star cutset of G that separates x from B.
Thus, by Lemma 3.3, G has a balanced skew partition. 2
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4 Proof of Theorems 2.1 and 1.5

4.1 Proof of Theorem 2.1

For any graph G, let f(G) be the number of maximal flat paths of length at least 3
in G. Let us consider G, a counter-example to Theorem 2.1 such that f(G) + f(G)
is minimal. Since G is a counter-example and since G is Berge, by Theorem 1.3 and
up to a complementation of G, we may assume that:

a. G is not basic, none of G,G is a path-cobipartite graph, none of G,G is a
path-double split graph, G has no balanced skew partition, none of G,G has
a non-path proper 2-join, none of G,G has an homogeneous 2-join;

b. G has a path proper 2-join.

Since G has a path proper 2-join, G has flat path of length at least 3, implying
f(G) ≥ 1. We choose such a flat path X1 inclusion-wise maximal. Note that by
Lemma 3.4, (X1, V (G) \ X1) is a proper 2-join of G since G is not basic and has
no balanced skew partition. Let us consider (X1,X2, A1, B1, A2, B2) a split of this
2-join. Note that G[X2] is not a path since G is not bipartite. We denote by a1 the
only vertex in A1 and by b1 the only vertex in B1. We put C1 = X1 \ {a1, b1}, and
C2 = X2 \ (A2 ∪ B2).
If one of G, G has a degenerate proper 2-join, a degenerate homogeneous 2-join
or a star cutset then one of G,G has a balanced skew partition by Lemma 3.13,
Lemma 3.19 or Lemma 3.3. So G has a balanced skew partition by Lemma 3.2.
This contradicts G being a counter-example. Thus:

c. G and G have no degenerate proper 2-join, no degenerate homogeneous 2-join
and no star cutset.

Suppose that a1 has degree 2 in G. Since X1 is the path-side of a path 2-join, this
means that the unique neighbor a of a1 in X2 sees at least a neighbor b ∈ X2 of b1.
Otherwise, X1∪{a} is flat path contradicting X1 being maximal. Hence, b is a vertex
of B2 complete to A2 = {a}, implying (X1,X2) being degenerate, a contradiction.
Hence:

d. a1, b1 both have degree at least 3 in G.

Let us study the connectivity of G. If G[X2] is disconnected, then let X ′

2 be any
component of G[X2]. Since (X1,X2) is proper, the sets A2∩X ′

2 and B2∩X ′

2 are not
empty. So (V (G) \X ′

2,X
′

2) is a 2-join of G. Let us suppose that X ′

2 is not a path of
length 1 or 2 from A2 to B2 whose interior is in C2. This implies that (V (G)\X ′

2,X
′

2)
is a proper 2-join. So since G is a counter example, we know that (V (G) \ X ′

2,X
′

2)
is a path 2-join of G. Since X1 is a maximal flat path of G, V (G) \ X ′

2 cannot be
the path side of this 2-join. Thus G[X ′

2] is the path side of this 2-join. Hence we
know that every component of X2 is a path from A2 to B2 whose interior is in C2.
This implies that G is bipartite contradicting G being a counter example. Hence:

e. G[X2] is connected.
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Since by Property c, (X1,X2) is non-degenerate, the following is a direct consequence
of Lemma 3.14:

f. In G[X2], there exists a path from A2 to B2 whose interior is in C2. Moreover,
for every A′

2 ⊆ A2, B′

2 ⊆ B2 the graphs G[A′

2 ∪ C2 ∪ B2 ∪ {b1}] and G[B′

2 ∪
C2 ∪ A2 ∪ {a1}] are connected.

The six properties listed above will be referred as the properties of G in the rest of
proof. We denote by ε ∈ {0, 1} the parity of the length of the path X1. We now
consider three cases according to the properties of (X1,X2). In each case, we will
consider a graph G′ obtained from G by destroying the path 2-join (X1,X2), and we
will show that G′ is a counter-example that contradicts f(G)+f(G) being minimal.

Case 1: X1 may be chosen in such a way that (X1,X2) is cutting of type 1.
Up to a symmetry we assume that G[X2 \ A2] is disconnected. Let X be a

component of G[X2 \A2]. If X is disjoint from B2 then {a1} ∪A2 is a star cutset of
G separating X from X2 \ X, contradicting the properties of G. Thus X intersects
B2, and by the same proof so is any component of X2 \X. Hence, there are two non-
empty sets B3 = B2 ∩X and B4 = B2 \X. Also we put C3 = C2 ∩X, C4 = C2 \X.
Possibly, C3, C4 are empty. There are no edges between B3 ∪ C3 and B4 ∪ C4.

We consider the graph G′ obtained from G by deleting X1 \ {a1, b1}. Moreover,
we add new vertices: c1, c2, b3, b4. Then we add every possible edge between b3 and
B3, between b4 and B4. We also add edges a1c1, c2b3, c2b4. If ε = 0, we consider for
convenience c1 = c2, so that c1 is always a vertex of G′. Else we consider c1 6= c2

and we add an edge between c1 and c2. Note that in G′, N(b1) = B2. Here are
seven claims about the parity of various kinds of paths and antipaths in G′.

(1) Every path of G′ from B2 to A2 with no interior vertex in A2 ∪B2 has length of
parity ε.

If such a path contains one of a1, b3, b4, c1, c2 then it has length 4 + ε. Else such a
path may be viewed as a path of G from B2 to A2. By Lemma 3.7 it has parity ε.
This proves (1).

(2) Every outgoing path of G′ from B2 to B2 has even length.

For suppose there is such a path P = b−· · ·−b′, b, b′ ∈ B2. If P goes through b1

then it has length 2. If P goes through b3 and b4 it has length 4. If P goes through
only one of b3, b4 then either P has length 2 or we may assume up to a symmetry
that P = b−b3−c2−c1−a1−a−· · ·−b′ where a ∈ A2. So, a−P−b′ is a path from A2

to B2 whose interior is in C2 and by (1) it has parity ε. So, P has even length. If
P goes through c2 or c1 then it must goes through at least one of b3, b4, and by the
discussion above it must have even length. So we may assume that P goes through
none of c1, c2, b1, b3, b4. Hence P may be viewed as a path of G. Thus, P has even
length by Lemma 3.8. In every case, P has even length. This proves (2).

(3) Every outgoing path of G′ from A2 to A2 has even length.

For suppose there is such a path P = a−· · ·−a′, where a, a′ ∈ A2. If P goes through
a1 then it has length 2. So we may assume that P does not go through a1. Note
that if c1 6= c2 then P does not go through c1.
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If P goes through c2 or through both b3, b4 then we may assume P = a−· · ·−b−
b3−c2−b4−b′−· · ·−a′ where b ∈ B3 and b′ ∈ B4. By (1) b−P−a and a′−P−b′ have
both parity ε. Thus, P has even length. If P goes through B3, b1 and B4 then we
prove that it has even length by the same way. So we may assume that P neither
goes through c2 nor through both b3, b4 nor through B3, b1 and B4.

If P goes through exactly one of b3, b4, say b3 up to a symmetry, then just like
above P = a−· · ·−b−b3−b′−· · ·−a′, where both b−P−a and a′−P−b′ are paths
from B2 to A2. So by (1), they both have parity ε. Thus, P has even length. If P
goes through b1 and exactly one of B3, B4, then we prove that it has even length by
the same way. So we may assume that P goes though none of b1, b3, b4.

Now P goes through none of a1, c1, c2, b1, b3, b4, so P may be viewed as an out-
going path of G from A2 to A2. It has even length by Lemma 3.8.

In every case, P has even length. This proves (3).

(4) Every outgoing path of G′ from B3 to B3 (resp. B4 to B4) has even length.

Suppose that there is an outgoing path P = b−· · ·−b′ from B3 to B3 (the case with
B4 is similar). Note that P may have interior vertices in B4, so (2) does not apply
to P . If P goes through b1 or b3 it has length 2. So we may assume that P does
not go through {b1, b3}. If P has no vertex in A2, then P has no interior vertices in
B4 since B3 and B4 are in distinct components of G \ ({b1, b3} ∪A2). So (2) applies
and P has even length.

So we may assume that P has at least a vertex in A2. Let us then call B-segment
of P every subpath of P whose end vertices are in B2 and whose interior vertices
are not in B2. Note that P is edgewise partitioned into its B-segment. Similarly,
let us call A-segment of P every subpath of P whose end-vertices are in A2 and
whose interior vertices are not in A2. By (3), every A-segment has even length or
has length 1. An A-segment of length 1 is called an A-edge. Suppose that P has
odd length. Let b, b′ ∈ B2 be the end-vertices of P . Along P from b to b′, let us call
a the first vertex in A2 after b, and a′ the last vertex in A2 before b′. So b−P −a
and a′−P−b′ are both paths from B2 to A2, and by (1) they have same parity. So
a−P −a′ is a path of odd length that is edgewise partitioned into its A-segment,
and that contains all the A-segments of P . Thus P has an odd number of A-edges.
Since P is edgewise partitioned into into its B-segments, there is a B-segment P ′

of P with an odd number of A-edges. Let β, β′ be the end-vertices of P ′. Along
P ′ from β to β′, let us call α the first vertex in A2 after β, and α′ the last vertex
in A2 before β′. So P ′′ = α−P ′−α′ is a path that is edgewise partitioned into its
A-segment with an odd number of A-edge. Thus P ′′ has odd length. Since β−P−α
and α′−P−β′ are both paths from B2 to A2, they have same parity by (1). Finally,
P ′ is of odd length, outgoing from B2 to B2, and contradicts (2). Thus P has even
length. This proves (4).

(5) Every antipath of G′ with length at least 2, with its end vertices in V (G′) \ A2,
and all its interior vertices in A2 has even length.

Let Q be such an antipath. We may assume that Q has length at least 3. So each
end-vertex of Q must have a neighbor in A2 and a non-neighbor in A2. So none of
a1, c1, c2, b1, b3, b4 can be an end-vertex of Q, and Q may be viewed as an antipath
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of G. So Q has even length by Lemma 3.8. This proves (5).

(6) Every antipath of G′ with length at least 2, with its end vertices in V (G′) \ B2,
and all its interior vertices in B2 has even length.

Let Q be such an antipath. We may assume that Q has length at least 3. So each
end-vertex of Q must have a neighbor in B2 and a non-neighbor in B2. So none
of a1, b1, c1, c2 can be an end-vertex of Q. If b3 is an end-vertex of Q, then the
other end-vertex must be adjacent to b3 while not being in B2 ∪ {a1, b1, c1, c2}, a
contradiction. So b3 is not an end-vertex of Q and by a similar proof, neither is b4.
So none of a1, c1, c2, b1, b3, b4 is in Q and Q may be viewed as an antipath of G. So
Q has even length by Lemma 3.8. This proves (6).

(7) Every antipath of G′ with length at least 2, with its end vertices in V (G′) \ B3

(resp. V (G′) \ B4), and all its interior vertices in B3 (resp. B4) has even length.

Let Q be such an antipath whose interior is in B3 (the case with B4 is similar). We
may assume that Q has length at least 3. So each end-vertex of Q must have a
neighbor in B3. So no vertex of B4 can be an end-vertex of Q. Thus (6) applies and
Q has even length. This proves (7).

(8) Let Q be an antipath of G′ of length at least 4. Then Q does not go through
c1, c2. Moreover Q goes through at most one of a1, b1, b3, b4.

In an antipath of length at least 4, each vertex either is in a square of the antipath
or in a triangle of the antipath. So, c1, c2 are not in Q since they are not in any
triangle or square of G′. In an antipath of length at least 4, for any pair x, y of
non-adjacent vertices, there must be a third vertex adjacent to both x, y. Thus, Q
goes through at most one vertex among a1, b3, b4. Suppose now that Q also goes
through b1. Then it does not go through a1 since a1, b1 have no common neighbours.
So, up to a symmetry we may assume that Q goes through b3 and b1. There is no
vertex in G′ \ c2 seeing b3 and missing b1. So b1 is an end of Q. Along Q, after b1 we
meet b3. The next vertex along Q must be in B4. The next one, in B3. The next
one must see b3 and must have a neighbor in B4, a contradiction. This proves (8).

(9) G′ is Berge.

Let H be a hole of G′. Suppose first that H goes through a1. If H does not go
through c1, then H \ a1 is a path of even length by (3), so H has even length. If H
goes through c1 then H goes though exactly one of b3, b4, say b3 up to symmetry,
and H \ {a1, c1, c2, b3} is a path P . If P does not go through b1 then it has parity ε
by (1). If P goes through b1, then P = b−b1−b′−. . .−a where b′−P−a is from B4

to A2. So, again P has parity ε by (1). So H has even length and we may assume
that H does not go through a1. If c1 6= c2 then H does not go through c1. If H goes
through c2 then the path H \ {b3, c2, b4} has even length by (2), so H is even. If H
goes through b1 then the path H \ {b1} has even length by (2), so H is even. So we
may assume that H does not go through b1, c2. If H goes through both b3, b4 then
H \ {b3, b4} is partitioned into two outgoing paths from B2 to B2 that both have
even length by (2). Thus H has even length. If H goes through b3 and not through
b4, then H \ b3 is an outgoing path from B3 to B3. By (4) it has even length, so H
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is even. If H goes through b4 and not through b3 then H is even by a similar proof.
So we may assume that H goes through none of b3, b4. Now, H goes through none
of a1, c1, c2, b1, b3, b4. So H may be viewed as a hole of G, and so it is even. So every
hole of G′ is even.

Let us now consider an antihole H of G′. Since the antihole on 5 vertices is
isomorphic to C5, we may assume that H has at least 7 vertices. Let v be a vertex
of H that is not in {a1, c1, c2, b1, b3, b4}. By (8) applied to H \ {v}, H does not
go through c1, c2 and goes through at most one vertex of {a1, b1, b3, b4}. If H goes
through a1, the antipath H \ a1 has all its interior vertices in A2 and by (5), H \ a1

has even length, thus H is even. If H goes through b1 then the antipath H \ b1 has
all its interior vertices in B2 and by (6), H \ b1 has even length, thus H is even. If
H goes through one of b3, b4, say b3 up to a symmetry, the antipath H \ b3 has all
its interior vertices in B3 and by (7), H \ b3 has even length, thus H is even. If H
goes through none of a1, c1, c2, b1, b3, b4 then H may be viewed as an antihole of G.
So every antihole of G′ has even length. This proves (9).

(10) G′ has no balanced skew partition.

Let (F ′, E′) be a balanced skew partition of G′ with a split (E′

1, E
′

2, F
′

1, F
′

2). Start-
ing from F ′, we shall build a balanced skew cutset F of G which contradicts the
properties of G.

Let us first suppose c1 6= c2 and c1 ∈ F ′. Then, F ′ must contains at least a
neighbor of c1. If F ′ contains a1 and not c2, then F ′ is a star cutset of G′ centered
at a1. But this contradicts Property f of G. If F ′ contains c2 and not a1, then F ′

is a star cutset of G′ centered at c2. But this again contradicts Property f of G.
So, F ′ must contain a1 and c2. Since a1, c2 have no common neighbors we have
F ′ = {a1, c1, c2}. This is a contradiction since G′ \ {a1, c1, c2} is connected by
Property f of G. So if c1 6= c2 then c1 /∈ F ′.

Suppose c2 ∈ F ′. By Property f of G, no subset of {c2, b3, b4} can be a cutset
of G. So, F ′ must be a star cutset centered at one of b3, b4. This again contradicts
Property f of G. So c2 /∈ F ′. Not both b3, b4 can be in F ′ since they have no common
neighbors in F ′. So we assume b4 /∈ F ′

Up to a symmetry, we may assume {c1, c2, b4} ⊂ E′

1. Also, {a1, b3} ∩ E′ ⊂ E′

1.
We claim that {b1} ∩ E′ ⊂ E′

1. Else, F ′ separates b1 from c2. Hence we must have
B4 ⊂ F ′. Now b3 ∈ F ′ is impossible since there is no vertex seeing b3 and having
a neighbor in B4. So, B3 ⊂ F ′. Since there is no edge between B3 and B4, there
must be a vertex in F ′ that is complete to B3 ∪ B4 = B2. The only place to find
such a vertex is in A2. But this implies (X1,X2) being degenerate, contradicting
Property c of G.

We proved {c1, c2, b4} ⊂ E′

1 and {a1, b1, b3}∩E′ ⊂ E′

1. Let v be any vertex of E′

2.
Since {a1, c1, c2, b1, b3, b4} ∩ E′ ⊂ E′

1, we have v ∈ X2. If b3 is in F , put B′

1 = {b1},
else put B′

1 = ∅. Now F = (F ′ \ {b3}) ∪ B′

1 is a skew cutset of G that separates v
from the interior vertices of the path induced by X1. Indeed, either F = F ′, or F ′

is obtained by deleting b3 and adding b1. Since N(b3) ∩ X2 ⊂ N(b1) ∩ X2, F is not
anticonnected and is a cutset. It suffices now to prove that F is a balanced skew
cutset of G.
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Let P be an outgoing path of G from F to F . We shall prove that P has even
length.

If a1, b1 /∈ F , then F ⊂ X2 and the end-vertices of P are both in X2. So
Lemma 3.9 applies to P . Suppose that the first outcome of Lemma 3.9 is satisfied:
V (P ) ⊆ X2 ∪ {a1, b1}. Note that by the definition of F , b1 /∈ F implies b1 /∈ F ′.
Hence, P may be viewed as an outgoing path from F ′ to F ′, so P has even length
since F ′ is a balanced skew cutset of G′. Suppose now that the second outcome of
Lemma 3.9 is satisfied: P = c−· · ·−a2−a1−X1−b1−b2−· · ·−c′. Put i = 3 if b2 ∈ B3

and i = 4 if b2 ∈ B4. Put P ′ = c−P−a2−a1−c1−c2−bi−b2−P−c′. Note that by
the definition of F , b1 /∈ F implies b3 /∈ F ′. The paths P and P ′ have same parity
and P ′ is an outgoing path of G′ from F ′ to F ′. So P ′ and P has even length since
F ′ is a balanced skew cutset of G′.

If a1 ∈ F , note that b1 /∈ F since a1, b1 are non-adjacent with no common
neighbors (in both G,G′). We have F ′ = F ⊂ X2 ∪ {a1}, the end-vertices of P are
both in X2∪{a1} and no interior vertex of P is in {a1} since a1 ∈ F . So Lemma 3.10
applies. If Outcome 1 of the lemma holds, then P has even length. If Outcome 2
of the lemma holds, then just like in the preceding paragraph, we can build a path
P ′ of G′ that is outgoing from F to F and that has a length with the same parity
than P . So P has even length. If Outcome 3 of the lemma holds, the proof is again
similar to the preceding paragraph.

If b1 ∈ F then a1 /∈ F , F ⊂ X2 ∪{b1}, and Lemma 3.10 applies. If Outcome 1 of
the lemma holds, then P has even length. If Outcome 2 of the lemma holds, we may
assume that b1 that is in F \ F ′ and that b1 is an end of P , for otherwise the proof
works like in the paragraph above. Then we build a path P ′ of G′ that is outgoing
from F ′ to F ′ and that has a length with same parity than P , by replacing {b1}
by {b3} (if P goes through B3) or by {b3, c2, b4} (if P goes through b4). So P has
even length. If Outcome 3 of the lemma holds then P = b1−X1−a1−a2−· · ·−c
where a2 ∈ A2, c ∈ X2. Note that one of b1, b3 is in F ′. If b3 ∈ F ′, then we
put P ′ = b3−c2−c1−a1−a2−P−c. If b3 /∈ F ′ then up to a symmetry, we assume
V (a2−P−c) ⊂ A2∪C3. Note that b1 ∈ F ′. We put P ′ = b1−b−b4−c2−c1−a1−a2−P−c
where b is any vertex in B4. It may happen that P ′ is not a path of G′ because of
the chord a2b. But then we put P ′ = b1−b−a2−P−c. In every case, P ′ is outgoing
from F ′ to F ′, and has same parity than P . Hence, P has even length.

Now, let Q be an antipath of G of length at least 2 with all its interior vertices
in F and with its end-vertices outside of F . We shall prove that Q has even length.
Note that we may assume that Q has length at least 5, because if Q has length 3,
it may be viewed as an outgoing path from F to F , that have even length by the
discussion above on paths.

If both a1, b1 /∈ F , then F ⊂ X2 and the interior vertices of Q are all in X2. So
Lemma 3.11 applies: V (Q) ⊆ X2 ∪ {a} where a ∈ {a1, b1}. So Q may be viewed as
an antipath of G′ that has even length because F ′ is a balanced skew cutset of G′.

If a1 ∈ F , let us remind that b1 /∈ F . We have F ⊂ X2 ∪ {a1}, the interior
vertices of Q are in X2∪{a1} and the end-vertices of Q are not in {a1} since a1 ∈ F .
So Lemma 3.12 applies. We may assume that Outcome 2 holds. Once again, Q may
be viewed as an outgoing path of G′ that has even length because F ′ is balanced.
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If b1 ∈ F , we have to consider the case when b1 /∈ F ′ (else the proof is like in the
paragraph above). Since b1 /∈ F ′, we have b3 ∈ F ′. Note that B4 ∩ F ′ = B4 ∩ F = ∅
since there are no edges between b3, B4 and no vertex seeing b3 while having a
neighbor in B4. So, if Q is an antipath whose interior is in F , then Q does not go
through B4. Hence, if we replace b1 by b3, we obtain an antipath Q′ whose interior
is in F ′ and whose ends are not. Hence, Q has even length.

In every case, Q has even length. This proves (10).

(11) G′ and G′ have no degenerate substantial 2-join, no degenerate homogeneous
2-join and no star cutset.

If one of G′, G′ has a degenerate substantial 2-join, a degenerate homogeneous 2-join
or a star cutset then G′ has a balanced skew partition by Lemma 3.13, 3.19 or 3.3.
This contradicts (10). This proves (11).

(12) G′ is not basic, not a path-cobipartite graph, not a path-double split graph and
has no homogeneous 2-join.

If G′ is bipartite then all the vertices of A2 are of the same color because of a1.
Because of b1 all the vertices of B2 have the same color. By Property f of G, there is
a path from A2 to B2 whose interior is in C2 that has parity ε by (1). So, the number
of colors in A2 ∪B2 is equal to 1 + ε, implying that G is bipartite and contradicting
the properties of G. Hence G′ is not bipartite.

One of the graphs G′[c2, c1, b3, b4], G′[a1, c1, b3, b4] is a claw, so G′ is not the
line-graph of a bipartite graph by Theorem 3.1. Let us choose b ∈ B3, b

′ ∈ B4. The
graph G′[a1, c1, b, b

′] is a diamond, so G′ is not the line-graph of a bipartite graph
by Theorem 3.1.

Note that b, b′ both have degree at least 3 in G′ because since (X1,X2) is not
degenerate, b, b′ have neighbors in A2 ∪ C2. Also a1 has degree at least 3 in G′ by
Property d of G. So, there exist in G′ a stable set of size 3 containing vertices of
degree at least 3 ({a1, b, b

′}), and a vertex of degree 3 whose neighborhood induces
a stable set (c1). Hence, by Lemma 3.6, G′ is not a path-cobipartite graph (and
in particular, it is not the complement of a bipartite graph), not a path-double
split graph (and in particular, it is not a double split graph) and G′ has no non-
degenerate homogeneous 2-join. Hence by (11), G′ has no homogeneous 2-join. This
proves (12).

We now give five claims describing the proper 2-joins of G′.

(13) There exist no sets Y1, Z1, Y2, Z2 such that:

• Y1, Z1, Y2, Z2 are pairwise disjoint and Y1 ∪ Z1 ∪ Y2 ∪ Z2 = X2;

• there are every possible edges between Y1 and Y2, and these edges are the only
edges between Y1 ∪ Z1 and Y2 ∪ Z2;

• A2 ⊂ Y1 ∪ Z1 and B2 ⊂ Y2 ∪ Z2.

Suppose such sets exist. Note that Y1 6= ∅ and Y2 6= ∅ since by Property e of G,
G[X2] is connected. Note that Z1, Z2 can be empty. Suppose Y2 ∩ B2 6= ∅ and pick
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a vertex b ∈ Y2 ∩ B2. Up to a symmetry we assume b ∈ B3 and we pick a vertex
b′ ∈ B4. Since B2 ⊂ Y2 ∪ Z2 we have b′ ∈ Y2 ∪ Z2. Now {b} ∪ N(b) is a star cutset
of G that separates a1 from b′, contradicting the properties of G. Thus Y2 ∩B2 = ∅.
Hence (Y2 ∪Z2, V (G)\ (Y2 ∪Z2)) is a 2-join of G. This 2-join is proper (the check of
connectivity relies on the fact that (X1,X2) is connected and on Lemma 3.14). By
the properties of G, this 2-join has to be a path 2-join. Since X1 is a maximal flat
path of G, Y2∪Z2 is the path-side of the 2-join. This is impossible because |B2| ≥ 2.
This proves (13).

Implicitly, when (X ′

1,X
′

2) is a 2-join, we consider a split (X ′

1,X
′

2, A
′

1, B
′

1, A
′

2, B
′

2).
We also put C ′

1 = X ′

1 \ (A′

1 ∪ B′

1) and C ′

2 = X ′

2 \ (A′

2 ∪ B′

2).

(14) If G′ has a proper 2-join (X ′

1,X
′

2) then either {c1, c2} ⊂ X ′

1 or {c1, c2} ⊂ X ′

2.

Suppose not. We may assume that there is a 2-join (X ′

1,X
′

2) such that c1 ∈ X ′

2

and c2 ∈ X ′

1. In particular, c1 6= c2. Up to a symmetry, we assume c1 ∈ A′

2 and
c2 ∈ A′

1. Then, a1 ∈ X ′

2 for otherwise c1 is isolated in X ′

2, contradicting (X ′

1,X
′

2)
being proper. Also one of b3, b4 must be in X ′

1 for otherwise c2 is isolated in X ′

1. Up
to a symmetry we assume b3 ∈ X ′

1.
By Property f of G there is a path P = h1 −· · ·−hk from A2 to B3 whose

interior is in C2, with h1 ∈ A2, hk ∈ B3. We denote by H the hole induced by
V (P ) ∪ {a1, c1, c2, b3}. Note that H has an edge whose ends are both in X ′

1 (it
is c2b3) and an edge whose ends are both in X ′

2 (it is a1c1). So H is vertex-wise
partitioned into a path from A′

1 to B′

1 whose interior is in X ′

1 and a path from B′

2 to
A′

2 whose interior is in X ′

2. Hence, starting from c1, then going to a1 and continuing
along H, one will first stay in X ′

2, will meet a vertex in B′

2, immediately after that,
a vertex in B′

1, and after that will stay in X ′

1 and reach c2. We now discuss several
cases according to the unique vertex x in H ∩ B′

2.
If x = a1 then a1 ∈ B′

2. So b3 ∈ C ′

1. This implies step by step B3 ⊂ X ′

1, B3 ⊂ C ′

1,
b1 ∈ X ′

1, b1 ∈ C ′

1, B4 ⊂ X ′

1, B4 ⊂ C ′

1, b4 ∈ X ′

1. Let v a vertex in C2 (if any). Then
by Property f of G there is a path Q from v to B2 with no vertex in A2. If v ∈ X ′

2,
then Q must contain a vertex in A′

1 ∪ B′

1. This is impossible since no vertex in
C2∪B2 sees a1 or c1. So, C2 ⊂ C ′

1. Let v be a vertex in A2. Note that by Property f
of G, v must have a neighbor in C2 ∪ B2. So, v ∈ X ′

1 since C2 ∪ B2 ⊂ C ′

1. Finally,
we proved X ′

2 = {a1, c1}. This is impossible since (X ′

1,X
′

2) is proper.
If x = hi with 1 ≤ i < k, then hi ∈ B′

2 ∩ (A2 ∪ C2) and hi+1 ∈ B′

1. Note that
b3 ∈ C ′

1 since b3 misses c1 and h1. So, B3 ⊂ X ′

1. By the definition of x, we know
that a1 ∈ C ′

2. So, A2 ⊂ X ′

2. We consider now two cases.
First case: b4 ∈ X ′

1. Since there are no edges between {b3, b4} and {c1, hi} we
know that {b3, b4} ⊂ C ′

1. This implies B3 ∪B4 ⊂ X ′

1. Also, b1 ∈ X ′

1 for otherwise b1

is isolated in X ′

2. Now, A′

1∪B′

1 ⊂ (B2∪C2). Let us put: Y1 = B′

2, Z1 = (X ′

2∩X2)\Y1,
Y2 = B′

1, Z2 = (X ′

1 ∩ X2) \ Y2. These four sets yield a contradiction to (13).
Second case: b4 ∈ X ′

2. Then b4 ∈ A′

2 and A′

1 = {c2}. If there is a vertex v of X ′

1

in B4 then v ∈ A′

1. This is impossible since v misses c1 ∈ A′

2. So, B4 ⊂ X ′

2. Hence,
if b1 ∈ X ′

1 then b1 ∈ A′

1 ∪ B′

1. But this is impossible since b1 misses c1 and hi. So,
b1 ∈ X ′

2. Since B3 ⊂ X ′

1, we know B3 = B′

1 and b1 ∈ B′

2. So b3 is a vertex of C ′

1

complete to A′

1 ∪ B′

1, implying (X ′

1,X
′

2) being degenerate, a contradiction.
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If x = hk then a1 ∈ C ′

2 and A2 ⊂ X ′

2. Let v be a vertex of C2∪B3∪B4∪{b1, b4}.
By Property f of G there is a path Q from v to A2 with no interior vertex in B3∪A2. If
v ∈ X ′

1, then Q must have a vertex u 6= v in A′

2∪B′

2. Note u /∈ B3.This is impossible
because u misses c2 and b3. So, v ∈ X ′

2. Hence, X ′

1 = {c2, b3} contradicting (X ′

1,X
′

2)
being proper. This proves (14).

(15) If G′ has a proper 2-join (X ′

1,X
′

2) then either {c1, c2, b3, b4} ⊂ X ′

1 or
{c1, c2, b3, b4} ⊂ X ′

2.

Suppose not. By (14), we may assume that there is a 2-join (X ′

1,X
′

2) such that
c1, c2 ∈ X ′

1 and b3 ∈ X ′

2. Up to a symmetry, we assume c2 ∈ A′

1 and b3 ∈ A′

2.
At least one vertex of B3 is in X ′

2 for otherwise b3 is isolated in X ′

2. So let b be a
vertex of X ′

2 ∩ B3. We claim that there is a hole H that goes through b3, c2, c1,
a1, h1 ∈ A2, . . .hk = b, with at least an edge in X ′

1 and at least an edge in X ′

2. If
c1 6= c2 then our claim hold trivially: c1c2 ∈ X ′

1 and b3b ∈ X ′

2. If c1 = c2, suppose
that our claim fails. Then a1 ∈ X ′

2, implying A′

1 = {c2} and a1 ∈ A′

2. We have
b4 ∈ X ′

1 for otherwise c2 is isolated in X ′

1. If b4 ∈ B′

1 then (X ′

1,X
′

2) is degenerate
since b4 is complete to A′

1. So, b4 ∈ C ′

1 implying B4 ⊂ X ′

1. If b1 ∈ X ′

1 then b ∈ B′

1

since b ∈ X ′

2. So B′

2 ⊂ B3 and b3 is a vertex of A′

2 that is complete to B′

2, implying
(X ′

1,X
′

2) being degenerate, a contradiction. So b1 ∈ X ′

2. Hence B′

1 = B4 because
no vertex of B′

1 can be in B3 since b3 ∈ A′

2. So b4 ∈ C ′

1 is complete to A′

1 ∪ B′

1,
implying (X ′

1,X
′

2) being degenerate, a contradiction. Thus our claim holds: H has
an edge in X ′

1 and an edge in X ′

2. So there is a unique vertex x in H ∩B′

2. We now
discuss according to the place of x.

If x = a1 then by the discussion above c1 6= c2. Also, a1 ∈ B′

2 and c1 ∈ B′

1.
Suppose that X ′

1 ∩X2 and X ′

2∩X2 are both non-empty. The vertices of A′

2 ∪B′

2 are
not in X2 because they have to see either c1 or c2. So there are no edges between
X ′

1 ∩ X2 and X ′

2 ∩ X2. Hence, G′[X2] is not connected, contradicting Property e of
G. So either X2 ⊂ X ′

1 or X2 ⊂ X ′

2. If X2 ⊂ X ′

1 then X ′

2 ⊂ {a1, b1, b3, b4}, so X ′

2 is
a stable set, contradicting (X ′

1,X
′

2) being proper. If X2 ⊂ X ′

2 then b1 is in X ′

2 for
otherwise it is isolated in X ′

1. So, X ′

1 ⊂ {c1, c2, b4}. This is a contradiction since no
subset of {c1, c2, b4} can be a side of a proper 2-join of G′.

If x = h1 then h1 ∈ B′

2 and a1 ∈ B′

1. If b4 ∈ X ′

1 then b4 ∈ C ′

1 because of b3

and h1. So, B4 ⊂ X ′

1. But in fact, by the same way, B4 ⊂ C ′

1, and b1 ∈ C ′

1. So,
B3 ⊂ X ′

1, contradicting hk ∈ X ′

2. We proved b4 ∈ X ′

2 implying A′

1 = {c2}. If a
vertex v of X2 ∪ {b1} is in X ′

1, then by Lemma 3.14 applied to (X ′

1,X
′

2) there is a
path of X ′

1 from v to A′

1 = {c2} with no interior vertex in B′

1, a contradiction. So
X2 ∪ {b1} ⊂ X ′

2. We proved X ′

1 = {a1, c1, c2} contradicting (X ′

1,X
′

2) being proper.
If x = hi, 2 ≤ i ≤ k then hi ∈ B′

2, hi−1 ∈ B′

1. Since a1 ∈ C ′

1 we have A2 ⊂ X ′

1.
If b4 ∈ X ′

1 then b4 ∈ C ′

1 implying B4 ⊂ X ′

1. If b1 ∈ X ′

2 then b1 must be in A′

2 ∪ B′

2,
a contradiction since b1 misses c2 and hi−1. So, b1 ∈ X ′

1. Since hk ∈ X ′

2, we know
b1 ∈ B′

1. Thus B′

2 ⊂ B3. Hence b3 is a vertex of A′

2 that is complete to B′

2, implying
(X ′

1,X
′

2) being degenerate, a contradiction. We proved b4 ∈ X ′

2. Now A′

2 = {b3, b4}.
Suppose that there is a vertex v of X ′

1 in B3 ∪ B4. Then v must be in A′

1 since
v sees one of b3, b4. But this is a contradiction since v misses one of b3, b4. We
proved B3 ∪ B4 ⊂ X ′

2. Also, b1 ∈ X ′

2 for otherwise, b1 is isolated in X ′

1. Let us put:
Y1 = B′

1, Z1 = (X ′

1 ∩ X2) \ Y1, Y2 = B′

2, Z2 = (X ′

2 ∩ X2) \ Y2. These four sets yield
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a contradiction to (13). This proves (15).

(16) If G′ has a proper 2-join (X ′

1,X
′

2) then either {c1, c2, b1, b3, b4} ⊂ X ′

1 or
{c1, c2, b1, b3, b4} ⊂ X ′

2.

Suppose not. By (15), we may assume that there is a 2-join (X ′

1,X
′

2) of G′ such
that c1, c2, b3, b4 ∈ X ′

1 and b1 ∈ X ′

2. If {b3, b4} ∩ (A′

1 ∪ B′

1) = ∅ then {b3, b4} ⊂ C ′

1,
so B3 ∪ B4 ⊂ X ′

1. Hence b1 is isolated in X ′

2, a contradiction.
If |{b3, b4}∩ (A′

1 ∪B′

1)| = 1, then up to a symmetry we may assume b3 ∈ A′

1 and
b4 ∈ C ′

1. Thus B4 ⊂ X ′

1. Since b1 ∈ X ′

2, we have B4 ⊂ A′

1 ∪ B′

1. But no vertex x
of B4 can be in A′

1 because x and b3 have no common neighbors, so B4 ⊂ B′

1. Thus
b1 ∈ B′

2. Because of b3, A′

2 ⊂ B3. So b1 is a vertex of B′

2 that is complete to A′

2,
implying (X ′

1,X
′

2) being degenerate, a contradiction. We proved {b3, b4} ⊂ (A′

1∪B′

1).
Since b3, b4 have no common neighbors in X ′

2, we may assume up to a symmetry
that b3 ∈ A′

1 and b4 ∈ B′

1. So b1 have non-neighbors in both A′

1, B
′

1. This implies
b1 ∈ C ′

2, and B3∪B4 ⊂ X ′

2. Hence A′

2 = B3 and B′

2 = B4. Now, b1 ∈ C ′

2 is complete
to A′

2 ∪B′

2, implying (X ′

1,X
′

2) being degenerate, a contradiction. This proves (16).

(17) G′ has no proper non-path 2-join.

Let (X ′

1,X
′

2) be a proper 2-join of G′. By (16), we may assume {c1, c2, b1, b3, b4} ⊂
X ′

2. If b3 /∈ C ′

2 and b4 /∈ C ′

2 then up to a symmetry we may assume b3 ∈ A′

2, b4 ∈ B′

2

since b3, b4 have no common neighbors in X ′

1. So, there is a vertex of A′

1 in B3 and
a vertex of B′

1 in B4 implying b1 ∈ A′

2 ∩ B′

2, a contradiction. We proved b3 ∈ C ′

2

or b4 ∈ C ′

2. Up to a symmetry we assume b3 ∈ C ′

2, implying B3 ⊂ X ′

2. Note that
X ′

1 is a subset of V (G). If A′

1 ∩ B4, B
′

1 ∩ B4 are both non-empty then b1 must be
in A′

2 ∩ B′

2, a contradiction. Thus we may assume A′

1 ∩ B4 = ∅. If a1 ∈ X ′

1 and
B′

1 ∩ B4 6= ∅ then a1 /∈ B′

1 since a1 misses b1. Thus we may assume B′

1 ∩ {a1} = ∅.
Let us now put: X ′′

1 = X ′

1, X ′′

2 = V (G)\X ′′

1 , A′′

1 = A′

1, B′′

1 = B′

1, B′′

2 = B′

2 \{b4}.
If a1 ∈ A′

1 then A′′

2 = (A′

2∩X2)∪(NG(a1)∩X1) else A′′

2 = A′

2. Note that A′′

2∩B′′

2 = ∅.
Also, if b4 ∈ B′

2 then b1 ∈ B′

2 and b1 ∈ B′′

2 . From the definitions it follows that
(X ′′

1 ,X ′′

2 ) is a partition of V (G), that A′′

1 , B
′′

1 ⊂ X ′′

1 , A′′

2 , B
′′

2 ⊂ X ′′

2 , that A′′

1 is
complete to A′′

2, that B′′

1 is complete to B′′

2 and that there are no other edges between
X ′′

1 and X ′′

2 . So, (X ′′

1 ,X ′′

2 ) is a 2-join of G.
We claim that (X ′′

1 ,X ′′

2 ) is a proper 2-join of G. Note that G[X ′′

1 ] is not a path of
length 1 or 2 from A′′

1 to B′′

1 whose interior is in C ′′

1 , because X ′′

1 = X ′

1 and because
(X ′

1,X
′

2) is a proper 2-join of G′. Also G[X ′′

2 ] is not a path from A′′

2 to B′′

2 whose
interior is in C ′′

2 because b1 has at least 2 neighbors in X ′′

2 (one in X1, one in B3)
while having degree at least 3 because of B4. Hence (X ′′

1 ,X ′′

2 ) is substantial. So it is
connected and proper for otherwise it is degenerate contradicting (11). This proves
our claim.

Since (X ′′

1 ,X ′′

2 ) is proper, we know by the properties of G that (X ′′

1 ,X ′′

2 ) is a
path 2-join of G. If X ′′

2 is the path-side of (X ′′

1 ,X ′′

2 ) then b1 is an interior vertex of
this path while having degree at least 3, a contradiction. Hence, X ′′

1 is the path-side
of (X ′′

1 ,X ′′

2 ). Since X ′′

1 = X ′

1, (X ′

1,X
′

2) is a path 2-join of G′. This proves (17).

(18) G′ has no proper 2-join.
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In the proof of (18), the word “neighbor” refers to the neighborhood in G′. Let
(X ′

1,X
′

2) be a proper 2-join of G′.
Suppose c1 6= c2. In G′, c1 has degree n−3, so up to a symmetry we may assume

c1 ∈ A′

1. In B′

2 there must be a non-neighbor of c1. Also, since (X ′

1,X
′

2) cannot be
a degenerate 2-join of G′, vertex c1 must have a non-neighbor in B′

1. So we have
two cases to consider. Case 1: a1 ∈ B′

1, c2 ∈ B′

2. Then c2 must have a non-neighbor
in A′

2 for otherwise (X ′

1,X
′

2) is degenerate. This non-neighbor must be one of b3, b4.
But this is impossible since b3, b4 both see a1 in G′. Case 2: a1 ∈ B′

2, c2 ∈ B′

1. Then
A′

2 ⊂ {b3, b4}. So, a1 ∈ B′

2 is complete to A′

2. Again, (X ′

1,X
′

2) is degenerate.
Suppose c1 = c2. Up to a symmetry we assume c1 ∈ X ′

1. If c1 ∈ C ′

1 then the only
possible vertices in X ′

2 are a1, b3, b4, so G′[X ′

2] induces a triangle. So, any vertex
of A′

2 is complete to B′

2 and (X ′

1,X
′

2) is degenerate, a contradiction. So, c1 /∈ C ′

1.
Up to a symmetry, we assume c1 ∈ A′

1. So, B′

2 ⊂ {a1, b3, b4} and at least one of
a1, b3, b4 (say x) must be in B′

2. Since (X ′

1,X
′

2) is not degenerate, c1 must have a
non-neighbor in B′

1. So, one of a1, b3, b4 (say y) must be in B′

1. Since (X ′

1,X
′

2) is not
degenerate, x must have a non-neighbor z in A′

2. But z must also be a non-neighbor
of y. This is impossible because in G′ \ c1, N(a1), N(b3), N(b4) are disjoint. This
proves (18).

(19) G′ is not path-cobipartite, not a path-double split graph, has no homogeneous
2-join and has no flat path of length at least 3.

Else, by Lemma 3.4 there is a contradiction with one of (12), (10) or (18). This
proves (19).

(20) f(G′) + f(G′) < f(G) + f(G).

Every vertex in {a1}∪B3∪B4 has degree at least 3 in G′. For a1, this is the property d
of G and for vertices in B3 ∪ B4, this is because (X1,X2) is not degenerate. Hence
no vertex in {a1} ∪ B3 ∪ B4 can be an interior vertex of a flat path of G′, and no
vertex in {c1, c2, b3, b4, b1} can be in a maximal flat path of G′ of length at least 3.
Hence, every maximal flat path of G′ of length at least 3 is a maximal flat path of
G, implying f(G′) ≤ f(G). But in fact f(G′) < f(G) because X1 is a flat path of
G that is no more a flat path in G′. By (19) we know 0 = f(G′) ≤ f(G). We add
these two inequalities. This proves (20).

Let us now finish the case. By (9), G′ is Berge. By (12), G′ is not basic, not
path-cobipartite, not a path-double split graph, and has no homogeneous 2-join.
By (10), G′ has no balanced skew partition. By (17), G′ has no proper non-path
2-join. By (18) G′ has no proper 2-join. By (19), G′ is not a path-cobipartite graph,
a path-double split graph and has no homogeneous 2-join. So, G′ is a counter-
example to the theorem we are proving now. Hence there is a contradiction between
the initial choice of G and (20). This completes the proof in Case 1.

Case 2: X1 may be chosen in such a way that there are sets A3, B3 satisfying the
items 1–5 of the definition of cutting 2-joins of type 2.

The frame of the proof is very much like in Case 1, but the details differ and
are simpler. We consider the graph G′ obtained from G by deleting X1 \ {a1, b1}.
Moreover, we add new vertices: c1, c2, a3, b3. Then we add every possible edge
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between a3 and A3, between b3 and B3. We also add edges a1c1, c1c2, c2b1, a3b3,
c1a3, c2b3. Here are six claims about the parity of various kinds of paths and
antipaths in G′.

(21) Every path of G′ from B2 to A2 with no interior vertex in A2 ∪ B2 has odd
length.

If such a path contains one of a1, b1, a3, b3, c1, c2 then it has length 3 or 5. Else such
a path may be viewed as a path of G from B2 to A2. By Lemma 3.7 it has odd
length. This proves (21).

(22) Every outgoing path of G′ from A2 to A2 (resp. B2 to B2) has even length.

For suppose there is such a path P from A2 to A2 (the case with B2 is similar). If P
goes through a1 then it has length 2. If P goes through at least one of c1, c2, a3, b3, b1

then P is the union of two edge-wise-disjoint paths from A2 to B2. Thus P has even
length by (21). Else, P may be viewed as an outgoing path of G from A2 to A2, that
has even length by Lemma 3.8. In every case, P has even length. This proves (22).

(23) Every outgoing path of G′ from A3 to A3 (resp. B3 to B3) has even length.

For suppose there is such a path P from A3 to A3 (the case with B3 is similar). If
P goes through a1, a3 or B3 then it has length 2. From now on, we assume that P
goes through none of a1, a3, B3. Hence P cannot go through b3, c1, c2.

If P goes through b1 then P is the edge-wise-disjoint union of two outgoing paths
of G from A3∪{b1} to A3∪{b1}. Thus P has even length by the definition of cutting
2-joins of type 2. Thus we may assume that P does not go through b1.

Now P may be viewed as an outgoing path of G from A3 to A3, that does not
go through b1. Thus P is outgoing from A3 ∪ {b1} to A3 ∪ {b1}, it has even length
by the definition of cutting 2-joins of type 2. This proves (23).

(24) Every antipath of G′ with length at least 2, with its end vertices in V (G′) \ A2

(resp. V (G′) \ B2), and all its interior vertices in A2 (resp. B2) has even length.

Let Q be such an antipath whose interior is in A2 (the case with B2 is similar).
We may assume that Q has length at least 3. So each end-vertex of Q must have
a neighbor in A2 and a non-neighbor in A2. So none of a1, c1, c2, b1, b3 can be an
end-vertex of Q. If a3 is an end of Q then the other end of Q must be a neighbor of
a3, a contradiction. Thus Q may be viewed as an antipath of G. By Lemma 3.8, Q
has even length. This proves (24).

(25) Every antipath of G′ with length at least 2, with its end vertices in V (G′) \ A3

(resp. V (G′) \ B3), and all its interior vertices in A3 (resp. B3) has even length.

Let Q be such an antipath whose interior is in A3 (the case with B3 is similar). We
may assume that Q has length at least 3. So each end-vertex of Q must have a
neighbor in A3 and a non-neighbor in A3. So none of a1, a3, c1, c2, b1, b3 can be an
end-vertex of Q. Thus Q may be viewed as an antipath of G. It has even length by
the definition of cutting 2-joins of type 2. This proves (25).
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(26) Let Q be an antipath of G′ of length at least 5. Then Q does not go through
c1, c2. Moreover one of V (Q) ∩ {a1, a3}, V (Q) ∩ {b1, b3} is empty.

Let Q be such an antipath. In an antipath of length at least 5, each vertex is in a
triangle of the antipath. So, c1, c2 are not in Q since they are not in any triangle of
G′.

Suppose V (Q)∩ {a1, a3}, V (Q)∩ {b1, b3} are both non-empty. In an antipath of
length at least 6, for every pair u, v of vertices, there is a vertex x seeing both u, v.
Thus Q has length 5 because no vertex of G′ have neighbors in both {a1, a3}, {b1, b3}.
Let q1, . . . , q6 be the vertices of Q in there natural order. Since V (Q) ∩ {a1, a3},
V (Q)∩{b1, b3} are both non-empty there are two vertices of Q that have no common
neighbors in G′. These vertices must be q2 and q5, and up to a symmetry we must
have q2 = a3, q5 = b3. Thus q3 must be a vertex of B3 and q4 must be a vertex of
A3. There is a contradiction since by the definition of cutting 2-joins of type 2, A3

is complete to B3. This proves (26).

(27) G′ is Berge.

Let H be a hole of G′.
If H goes through both c1, c2 then H has length 4 or it must contains one of

{a1, b1}, {a1, b3}, {b1, a3}. In the first case, H is edge-wise partitioned into two
paths from A2 to B2. Thus H has even length by (21). In the second case H is
edge-wise partitioned into two paths outgoing from B3 ∪ {a1} to B3 ∪ {a1}, one of
them of length 4, the other one included in V (G). Thus H has even length by the
definition of cutting 2-joins of type 2. The third case is similar. From now on, we
assume that H goes through none of c1, c2. If H goes through both a1, a3 then it has
length 4. If H goes through a2 and not through a3 then H has even length by (22).
If H goes through a3 and not through a2 then H has even length by (23). Thus, we
may assume that H goes through none of a1, a3. Similarly, we may assume that H
goes through none of b1, b3. Now H may be viewed as a hole of G. In every case, H
has even length.

Let us now consider an antihole H of G′. We may assume that H has length
at least 7. Let v be a vertex of V (H) \ {a1, b1, c1, c2, a3, b3}. By (26) the antipath
V (H) \ v does not go through c1, c2 and we may assume up to a symmetry that
V (Q) ∩ {b1, b3} is empty. If H goes through both a1, a3 then H must contains a
vertex that sees a3 and misses a1, a contradiction. If H goes through a1 and not
through a3 then H has even length by (24). If H goes through a3 and not through
a1 then H has even length by (25). If H goes through none of a1, a3 then H may
be viewed as an antihole of G. In every case, H has even length. This proves (27).

(28) G′ has no balanced skew partition.

Suppose that G′ has a balanced skew partition (E′, F ′) with a split (E′

1, E′

2, F ′

1, F ′

2).
Starting from F ′, we shall build a balanced skew cutset F of G which contradicts
the properties of G.

By Property f of G, F ′ cannot be a star cutset centered at one of a1, b1, c1, c2,
a3, b3. For the same reason, F ′ cannot be a subset of one of {c1, c2, a3, b3}, {a1, c1,
a3} ∪A3, {b1, c2, b3} ∪B3. Thus, c1 /∈ F ′ and c2 /∈ F ′. Since a1, b1 are non-adjacent
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with no common neighbors, they are not both in F ′ and we may assume b1 /∈ F ′.
Up to symmetry we may assume {c1, c2} ⊂ E′

1, implying {a1, a3, c1, c2, b1, b3}
∩E′ ⊂ E′

1. Let v be any vertex of E′

2. Since {a1, a3, c1, c2, b1, b3}∩E′ ⊂ E′

1, we have
v ∈ X2.

We claim that F = F ′ \ {a3, b3} is a skew cutset of G that separates v from the
interior vertices of the path induced by X1. Since F ′ is not a star cutset centered
at one of a3, b3, we know that if a3 ∈ F ′ (resp b3 ∈ F ′) then a3 (resp. b3) is not
the only vertex in its anticomponent of F ′. Hence, F is not anticonnected. If P is
a path of G \ F from v to a vertex u in the interior of X1 then up to a symmetry,
P = v−· · ·−a1−X1−u. Hence v−P−a1−c1 is a path of G′ \ F ′ contradicting F ′

being a cutset of G′. We proved our claim. Let us prove that the skew cutset F is
balanced.

Let P be an outgoing path of G from F to F . We shall prove that P has even
length. If a1 /∈ F , then F ⊂ X2 and the end-vertices of P are both in X2. So
Lemma 3.9 applies to P . Suppose that the first outcome of Lemma 3.9 is satisfied:
V (P ) ⊆ X2 ∪ {a1, b1}. Hence, P may be viewed as an outgoing path from F ′ to F ′,
so P has even length since F ′ is a balanced skew cutset of G′. Suppose now that the
second outcome of Lemma 3.9 is satisfied: P = c−· · ·−a2−a1−X1−b1−b2−· · ·−c′. Put
P ′ = c−P−a2−a1−c1−c2−b1−b2−P−c′. The paths P and P ′ have same parity and P ′

is an outgoing path of G′ from F ′ to F ′. So P ′ and P has even length since F ′ is a
balanced skew cutset of G′. If a1 ∈ F then F ⊂ X2 ∪ {a1} and Lemma 3.10 applies.
If Outcome 1 of the lemma holds, then P has even length. If Outcome 2 of the
lemma holds then P may be viewed as an outgoing path of G′ from F ′ to F ′. Hence
P has even length. If Outcome 3 of the lemma holds then P = a1−X1−b1−b2−· · ·−c
where b2 ∈ B2, c ∈ X2. We put P ′ = a1−c1−c2−b1−b2−P−c. So P ′ is outgoing from
F ′ to F ′ in G′ while having same parity than P . In every case P has even length.

Now, let Q be an antipath of G of length at least 5 with all its interior vertices
in F and with its end-vertices outside of F . We shall prove that Q has even length.
If a1 /∈ F , then F ⊂ X2 and the interior vertices of Q are all in X2. So Lemma 3.11
applies: V (Q) ⊆ X2 ∪ {a} where a ∈ {a1, b1}. So Q may be viewed as an antipath
of G′ that has even length because F ′ is a balanced skew cutset of G′. If a1 ∈ F ,
the proof is similar. Hence, Q has even length. This proves (28).

(29) G′ and G′ have no degenerate 2-join, no degenerate homogeneous 2-join and
no star cutset.

If one of G′, G′ has a degenerate proper 2-join, a degenerate homogeneous 2-join or
a star cutset, then G′ has a balanced skew partition by Lemma 3.13, 3.19 or 3.3.
This contradicts (28). This proves (29).

(30) G′ is not basic, not a path-cobipartite graph, not a path-double split graph and
has no homogeneous 2-join.

If G′ is bipartite then all the vertices of A2 are of the same color because of a1.
Because of b1 all the vertices of B2 have the same color. By Property f of G, there is
a path from A2 to B2 that has odd length by (21). Thus G is bipartite, contradicting
the properties of G. Hence G′ is not bipartite.
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The graph G′[c2, c1, a1, a3] is a claw, so G′ is not the line-graph of a bipartite
graph. G′[a1, b1, a3, b3] is a diamond, so G′ is not the line-graph of a bipartite graph.

Note that b1 has degree at least 3 in G′ by Property d of G. So, there exist in G′

a stable set of size 3 containing vertices of degree at least 3 ({b1, b3, c1}), and a vertex
of degree 3 whose neighborhood induces a stable set (c1). Hence, by Lemma 3.6,
G′ is not a path-cobipartite graph (and in particular, it is not the complement of a
bipartite graph), not a path-double split graph (and in particular, it is not a double
split graph) and G′ has no non-degenerate homogeneous 2-join. Hence by (29), G′

has no homogeneous 2-join. This proves (30).

(31) If G′ has a proper 2-join (X ′

1,X
′

2) then either {c1, c2, a3, b3} ⊂ X ′

1 or {c1, c2,
a3, b3} ⊂ X ′

2.

Suppose not. Up to a symmetry, we have five cases to consider according to X ′

1∩{c1,
c2, a3, b3}. Each of them leads to a contradiction:

Case {c1} ⊂ X ′

1 and {c2, a3, b3} ⊂ X ′

2:
Up to a symmetry, we assume c1 ∈ A′

1 and c2, a3 ∈ A′

2. Note that A′

1 = {c1}
because c1 is the only vertex in X ′

1 that sees both c2, a3. Note that a1 is in X ′

1 for
otherwise c1 is isolated in X ′

1. Also if a vertex x of A3 is in X ′

1 then x must be in
A′

1 since it sees a3. This is impossible since x misses c2. Thus x ∈ X ′

2. Since x sees
a1 ∈ X ′

1, x must be in B′

2 and a1 must be in B′

1. So, a1 is a vertex of B′

1 that is
complete to A′

1, implying (X ′

1,X
′

2) being degenerate, contradicting (29).

Case {a3} ⊂ X ′

1 and {c1, c2, b3} ⊂ X ′

2:
This case is like the previous one, we just sketch it. We assume a3 ∈ A′

1, implying
c1, b3 ∈ A′

2. Thus A′

1 = {a3}. There is a x vertex of X ′

1 in A3. Also, a1 ∈ X ′

2 for
otherwise a1 ∈ A′

1 while missing b3, a contradiction. Thus x ∈ B′

1, and x is a vertex
of B′

1 that is complete to A′

1, a contradiction.

Case {c1, c2} ⊂ X ′

1 and {a3, b3} ⊂ X ′

2:
Up to a symmetry, we assume c1 ∈ A′

1, a3 ∈ A′

2, c2 ∈ B′

1, b3 ∈ B′

2. Since by (29)
(X ′

1,X
′

2) is not degenerate, a3 must have a non-neighbor x in B′

2. Since x must
see c2 we have x = b1 and b1 ∈ B′

2. Similarly, b3 must have a non-neighbor in A′

2,
implying a1 ∈ A′

2. Now put Y1 = X2 ∩ X ′

1 and Y2 = X2 ∩ X ′

2. Note that Y1 6= ∅ for
otherwise X ′

1 = {c1, c2} and (X ′

1,X
′

2) is not proper. Also Y2 6= ∅ for otherwise, a1 is
isolated in X ′

2. If there is an edge of G′ with an end in Y1 and an end y in Y2, then
y2 must be in one of A′

2, B
′

2. This is a contradiction since y misses both c1, c2. Thus
there is no edge with an end in Y1 and an end Y2. This contradicts G[X2] being
connected (Property e of G).

Case {c1, a3} ⊂ X ′

1 and {c2, b3} ⊂ X ′

2:
Up to a symmetry, we assume c1 ∈ A′

1, a3 ∈ B′

1, c2 ∈ A′

2, b3 ∈ B′

2. Since by (29)
(X ′

1,X
′

2) is not degenerate, a3 must have a non-neighbor x in A′

1. Since x must
see c2 we have x = b1 and b1 ∈ A′

1. Similarly, b3 must have a non-neighbor in A′

2,
implying a1 ∈ A′

2. So, b1 ∈ A′

1, a1 ∈ A′

2 and a1b1 /∈ E(G′), a contradiction.

Case {c1, b3} ⊂ X ′

1 and {c2, a3} ⊂ X ′

2:
Up to a symmetry, we assume c1 ∈ A′

1, a3 ∈ A′

2, c2 ∈ A′

2, b3 ∈ A′

1. There is a
vertex x of X ′

1 in B3 for otherwise b3 is isolated in X ′

1. Also, b1 ∈ X ′

2 for otherwise c2
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is isolated in X ′

2. But b sees x. Since b1 ∈ A′

2 is impossible because b1 misses c1 we
have b1 ∈ B′

2. Similarly, we prove a1 ∈ B′

1. So, b1 ∈ B′

2, a1 ∈ B′

1 and a1b1 /∈ E(G′),
a contradiction. This proves (31).

(32) G′ has no non-path proper 2-join.

By (31), we may assume {c1, c2, a3, b3} ⊂ X ′

2. We claim that at most one of c1, c2,
a3, b3 is in A′

2 ∪ B′

2. For otherwise, up to a symmetry there are four cases. First
case, a3 ∈ A′

2, b3 ∈ B′

2, implying A′

1 ⊂ A3 and B′

1 ⊂ B3, implying (X ′

1,X
′

2) being
degenerate because any vertex of A′

1 is complete to B′

1, contradicting (29). Second
case, c1 ∈ A′

2, c2 ∈ B′

2, implying A′

1 = {a1}, B′

1 = {b1}, a3, b3 ∈ C ′

2, A3 ∪ B3 ⊂ X ′

2.
Hence, X ′

1 ∩X2 6= ∅ and A3 ∪B3 are in different components of G[X2] contradicting
Property e of G. Third case, a3 ∈ A′

2, c1 ∈ B′

2 implying A′

1 ⊂ A3, a1 ∈ B′

1, implying
(X ′

1,X
′

2) being degenerate because a1 ∈ B′

1 is to complete to A′

1, contradicting (29).
Fourth case, a3 ∈ A′

2, c2 ∈ B′

2 implying b1 ∈ B′

1. Also b3 ∈ C ′

2 because b3, c2 (resp.
b3, a3) have no common neighbors in X ′

1. So B3 ⊂ X ′

2 and because of b1, B3 ⊂ B′

2.
Because of a3 there is a vertex a of A′

1 in A3. Hence a is a vertex of A′

1 that has a
neighbor in B′

2, a contradiction. All four cases yield a contradiction, so our claim is
proved.

Thus up to a symmetry we assume that we are in one of the three cases that we
describe below:

• a3 ∈ A′

2. Moreover, a1 ∈ X ′

2 because c1 ∈ C ′

2. Because of a3, there is a vertex
of X ′

1 in A3, implying a1 ∈ A′

2 and B3 ⊂ A′

2.

• c1 ∈ A′

2. This implies a1 ∈ A′

1. Since a3 ∈ C ′

2, we have A3 ⊂ X ′

2 and A3 ⊂ A′

2

because of a1. Note that A′

1 = {a1} because a1 is the only neighbor of c1 in
X ′

1.

• a2 /∈ A′

2 and c1 /∈ A′

2. Moreover, a1 ∈ X ′

2 and A3 ⊂ X ′

2.

In every case, c2, b3 ∈ C ′

2, implying {b1} ∪ B3 ⊂ X ′

2. Note that X ′

1 ⊂ V (G). Let
us now put: X ′′

1 = X ′

1, X ′′

2 = V (G) \ X ′′

1 , A′′

1 = A′

1, B′′

1 = B′

1, B′′

2 = B′

2. If c1 ∈ A′

2

then put A′′

2 = (A′

2∩X2)∪ (NG(a1)∩X1). If c1 /∈ A′

2 then put A′′

2 = A′

2 \{a3}. From
the definitions it follows that (X ′′

1 ,X ′′

2 ) is a partition of V (G), that A′′

1, B
′′

1 ⊂ X ′′

1 ,
A′′

2 , B
′′

2 ⊂ X ′′

2 , that A′′

1 is complete to A′′

2, that B′′

1 is complete to B′′

2 and that there
are no other edges between X ′′

1 and X ′′

2 . So, (X ′′

1 ,X ′′

2 ) = (X ′

1, V (G) \X ′

1) is a 2-join
of G.

Note that G[X ′′

1 ] is not a path of length 1 or 2 from A′′

1 to B′′

1 whose interior is
in C ′′

1 , because (X ′

1,X
′

2) is a proper 2-join of G′ and because X ′′

1 = X ′

1. Also G[X ′′

2 ]
is not a outgoing path from A′′

2 to B′′

2 whose interior is in C ′′

2 because b1 has at least
2 neighbors in X ′′

2 (c2 and one in B3) while having degree at least 3 by Property d
of G. This proves that (X ′′

1 ,X ′′

2 ) is substantial. It is connected for otherwise it is
degenerate, contradicting (29). So (X ′′

1 ,X ′′

2 ) is proper and we know by the properties
of G that (X ′′

1 ,X ′′

2 ) is a path 2-join of G. If X ′′

2 is the path-side of (X ′′

1 ,X ′′

2 ) then b1

is an interior vertex of this path while having degree at least 3 by Property d of G,
a contradiction. Hence, X ′′

1 is the path-side of (X ′′

1 ,X ′′

2 ). Thus (X ′′

1 ,X ′′

2 ) is a path
2-join of G because X ′′

1 = X ′

1. This proves (32).
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(33) G′ has no proper 2-join.

In the proof of (33), the word “neighbor” refers to the neighborhood in G′. Let
(X ′

1,X
′

2) be a proper 2-join of G′.
If c1 ∈ C ′

1 then X ′

2 ⊂ {a1, a3, c2} implying (X ′

1,X
′

2) being degenerate or non-
proper, contradicting (29). Thus, we may assume c1 ∈ A′

1. Similarly c2 must be in
one of A′

1, A′

2, B′

1, B′

2. But c2 ∈ A′

2 is impossible because c2 is not a neighbor of c1.
Also c2 ∈ A′

1 is impossible because otherwise B′

2 = ∅ since no vertex of G′ can be a
non-neighbor of both c1, c2. Thus c2 is in one of B′

1, B
′

2.
If c2 ∈ B′

1 then A′

2 ⊂ {b1, b3} because of c2 and B′

2 ⊂ {a1, a3} because of c1. But
b1 must be in A′

2 because it is a common neighbor of c1, a1, a3. Thus b1 is a vertex of
A′

2 that is complete to B′

2, implying (X ′

1,X
′

2) being degenerate, contradicting (29).
If c2 ∈ B′

2 then there is a non-neighbor of c2 in A′

2 for otherwise (X ′

1,X
′

2) is
degenerate. Thus at least one of b1, b3 is in A′

2. Similarly, because of c1, at least one
of a1, a3 must be in B′

1. But since there is no edge of G′ between B′

1, A
′

2, we have
a3 ∈ B′

1, b3 ∈ A′

2. Since a3, b3, c2 are neighbors of a1, we know a1 ∈ B′

2. Now b1 is a
neighbor of c1 ∈ A′

1, a3 ∈ B′

1, a1 ∈ B′

2, b3 ∈ A′

2, a contradiction. This proves (33).

(34) G′ is not path-cobipartite, not a path-double split graph, has no homogeneous
2-join and has no flat path of length at least 3.

Else, by Lemma 3.4 there is a contradiction with one of (30), (28) or (33). This
proves (34).

(35) f(G′) + f(G′) < f(G) + f(G).

Every vertex in {a1, b1} ∪ A3 ∪ B3 has degree at least 3 in G′. For a1, this is the
property d of G and for vertices in A3 ∪ B3, this is clear. Hence no vertex in
{a1, b1} ∪ A3 ∪ B3 can be an interior vertex of a flat path of G′, and no vertex in
{c1, c2, a3, b3} can be in a maximal flat path of G′ of length at least 3. Hence, every
maximal flat path of G′ of length at least 3 is a maximal flat path of G, implying
f(G′) ≤ f(G). But in fact f(G′) < f(G) because X1 is a flat path of G that is no
more a flat path in G′. By (34) we know 0 = f(G′) ≤ f(G). We add these two
inequalities. This proves (35).

Let us now finish the case. By (27), G′ is Berge. By (30), G′ is not basic, not
path-cobipartite, not a path-double split graph, and has no homogeneous 2-join.
By (28), G′ has no balanced skew partition. By (32), G′ has no proper non-path
2-join. By (33) G′ has no proper 2-join. By (34), G′ is not a path-cobipartite graph,
a path-double split graph and has no homogeneous 2-join. So, G′ is a counter-
example to the theorem we are proving now. Hence there is a contradiction between
the initial choice of G and (35). This completes the proof in Case 2.

Case 3: We are neither in Case 1 nor in Case 2. In particular :

(36) G has no cutting 2-join.

We consider the graph G′ obtained from G by replacing X1 by a path of length
2 − ε from a1 to b1. Possibly, this path has length 2. In this case we denote by c1

its unique interior vertex. Else, this path has length 1, and for convenience we put
c1 = a1 (thus c1 is a vertex of G′ whatever ε). Note that (V (G′) \ X2,X2) is not a
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proper 2-join of G since V (G′) \ X2 is a path of length 1 or 2 from a1 to b1. Note
that a1−c1−b1 a flat path of G′ (possibly of length 1 when a1 = c1) because if there
is a common neighbor c of a1, b1, then (X1,X2) is not a 2-join of G. Note that G′ is
what we call in section 3.2 the block G2 of G with respect to the 2-join (X1,X2).

(37) G′ has no balanced skew partition, and none of G, G′ has a star cutset, a
degenerate substantial 2-join or a degenerate homogeneous 2-join.

Since G′ is a block of G, and since (X1,X2) is not cutting, by Lemma 3.17, if G′

has a balanced skew partition then so is G, contradicting the properties of G. By
Lemma 3.3, 3.13 and 3.19, G,G have no star cutset, no degenerate 2-join and no
degenerate homogeneous 2-join. This proves (37).

(38) G′ is Berge.

Any hole H ′ of G′ yield a hole of G of the same parity after possibly subdividing the
flat path a1−c1−b1. Also, a1, b1 cannot both be in an odd antihole of G′ because in
an antihole of length at least 7, any pair of vertex have a common neighbor. Also,
if c1 6= a1 then c1 does not lie in an antihole of G′ of length at least 7 because c1 has
degree 2. Thus, any antihole of G′ may be viewed as an antihole of G. Thus, every
hole and every antihole in G′ are even. This proves (38).

(39) G′ has no proper non-path 2-join.

Let (X ′

1,X
′

2, A
′

1, B
′

1, A
′

2, B
′

2) be a split of a proper non-path 2-join of G′. If a1 ∈ X ′

1,
b1 ∈ X ′

1 then c1 ∈ X ′

1 since otherwise c1 is isolated in X ′

2. If c1 6= a1 then c1 ∈ C ′

1

because c1 has degree 2. So, by subdividing a1−c1−b1 we obtain a non-path proper
2-join of G, contradicting the properties of G. Thus, since a1−c1−b1 is a flat path
of G′, up to a symmetry, we may assume c1 ∈ B′

1, b1 ∈ B′

2.
Suppose |B′

2| = 1. Then no vertex of A′

2 has a neighbor in B′

2 for otherwise,
(X1,X2) is degenerate. Thus, (X ′

1 ∪ B′

2,X
′

2 \ B′

2) is a non-path proper 2-join of G′,
and by subdividing a1−c1−b1, we obtain a non-path proper 2-join of G, contradicting
the properties of G. Thus, |B′

2| ≥ 2. In particular, c1 = a1, and similarly |B′

1| ≥ 2.
In G, a1 is complete to B′

2 \ {b1}, and b1 is complete to B′

1 \ {a1}. We put
A3 = B′

2 \ {b1}, B3 = B′

1 \ {a1}. In G, X1 is a flat path from a1 to b1, A3 ⊂ A2 and
B3 =⊂ B2 and A3 is complete to B3. We claim that every path of G outgoing from
A3 ∪{b1} to A3∪{b1} has even length. Note that after possibly deleting the interior
of X1, such a path P may be viewed as a path P ′ of G′ that has same parity than
P . In G′, P ′ is an outgoing path from B′

1 to B′

1 and by Lemma 3.8, P has even
length as claimed. We claim that every antipath of G whose interior is in A3 ∪ {b1}
and whose ends are outside of A3 ∪{b1} has even length. Let Q be such an antipath
of length at least 5. Note that the interior vertices of X1 are not in Q since every
vertex in Q have degree at least 3. Thus Q is an antipath of G′ whose interior is in
B′

1 and whose ends are not in B′

1 and by Lemma 3.8, Q has even length as claimed.
The same properties hold with B3 ∪ {a1}. Now, A3, B3 show that (X1,X2) satisfies
the items 1–5 of the definition of cutting 2-joins of type 2, contradicting that we are
not in Case 2 of the proof of our theorem. This proves (39).

(40) G′ has no proper 2-join.
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Let us consider a proper 2-join of G′ with a split (X ′

1,X
′

2, A
′

1, B
′

1, A
′

2, B
′

2). If c1 6= a1

then c1 has degree n − 3 in G′. Thus, up to a symmetry, we may assume c1 ∈ B′

1.
Since (X ′

1,X
′

2) is not degenerate, c1 must have a non-neighbor in A′

1. Thus, up to a
symmetry, we may assume a1 ∈ A′

1, b1 ∈ A′

2. Now, since (X ′

1,X
′

2) is not degenerate,
there exists a vertex of B′

2 that is a common neighbor of a1, b1 in G, contradicting
a1−c1−b1 being a flat path of G. We proved a1 = c1.

Since a1, b1 form a flat edge of G′, they must be non-adjacent in G′ with no
common non-neighbor. Thus, up to a symmetry we have to deal with three cases:

Case a1 ∈ C ′

1, b1 ∈ X ′

2:
Since in G′ a1b1 is flat, in G′ a1 is complete to A′

1 ∪ B′

1 or up to a symmetry
b1 ∈ A′

2 while being complete to B′

2. Thus, (X ′

1,X
′

2) is a degenerate 2-join, a
contradiction.

Case a1 ∈ A′

1, b1 ∈ B′

2:
Since in G′, a1b1 is flat, in G′, a1 must be complete to (A′

1 ∪ C ′

1) \ {a1}.
Suppose first C ′

1 6= ∅. There is at least a vertex of C ′

1 that has a neighbor in B′

1

for otherwise A′

1 ∪A′

2 is a skew cutset of G′, implying (X ′

1,X
′

2) being degenerate. If
a1 has a neighbor in B1 then by Lemma 3.7 every path from A′

1 to B′

1 whose interior
is in C ′

1 has odd length. Thus, a1 must see every vertex of B′

1 that has a neighbor
in C ′

1. This implies that A′

1 ∪ (N(a1)∩B′

1) is a star cutset of G′, centered at a1 and
separating C ′

1 from X ′

2. Thus, a1 has no neighbor in B1. Hence, there is at least an
outgoing path of even length from A′

1 to B′

1, implying that no vertex in A′

1 has a
neighbor in B′

1. If |A′

1| ≥ 2 then {a1} ∪ C ′

1 ∪ B′

2 is a star cutset centered at a1 that
separates A′

1 \{a1} from B′

2. Thus, |A1| = 1. Since, every path from A′

1 to B′

1 whose
interior is in C ′

1 has even length, we know that every path from A′

2 to B′

2 whose
interior is in C ′

2 has even length. Thus, C ′

2 6= ∅. By the same proof than above, this
implies B′

2 = {b1}. Note that every vertex in C ′

1 has a neighbor in B′

1 because a
vertex of C ′

1 with no neighbor in B′

1 can be separated from the rest of the graph by
a star cutset centered at a1. Every vertex in C ′

1 has a non-neighbor in B′

1 because a
vertex of C ′

1 complete to B′

1 would imply (X ′

1,X
′

2) being degenerate. Note also that
every vertex in B′

1 has a neighbor in C ′

1 for otherwise (X ′

1,X
′

2) is degenerate. Every
vertex in B′

1 has a non-neighbor in C ′

1 because if there is a vertex b ∈ B′

1 complete
to C ′

1 then |B′

1| ≥ 2 implies that {b} ∪ C ′

1 ∪ B′

2 is a star cutset separating B′

1 \ {b}
from A′

2, and |B′

1| = 1 implies that every vertex in C ′

1 is complete to A′

1 ∪ B′

1, a
case already treated. Let us come back to G: in G, X1 is a path from a1 to b1. Let
us denote by E its interior. We observe that (C ′

1, B
′

1, {b1}, {a1}, E,A′

2 ∪ C ′

2) is an
homogeneous 2-join of G (the last condition of the definition of homogeneous 2-joins
is satisfied by (36)). This contradicts the properties of G.

We proved C ′

1 = ∅. By the same way, C ′

2 = ∅. Thus, (X ′

1,X
′

2) is a non-path
proper 2-join of G′, contradicting (39).

Case a1 ∈ A′

1, b1 ∈ B′

1:
Since a1 − b1 is a flat edge of G′, C ′

2 = ∅. If C ′

1 = ∅, then just like above
(X ′

1,X
′

2) is a non-path proper 2-join of G′, contradicting (39). So, C ′

1 6= ∅. Hence,
(A′

2, B
′

2, B
′

1, A
′

1,X1 \ {a1, b1}, C
′

1) is an homogeneous 2-join of G (the last condition
of the definition of homogeneous 2-joins is satisfied by (36)). This contradicts the
properties of G. This proves (40).
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(41) G′ is neither a bipartite graph nor the line-graph of a bipartite graph.

Subdividing flat paths of a line-graph of a bipartite graph (resp. of a bipartite
graph) into a path of the same parity yields a line-graph of a bipartite graph (resp.
a bipartite graph). Thus, if G′ is the line-graph of a bipartite graph or a bipartite
graph, then so is G, contradicting the properties of G. This proves (41).

(42) G′ is not the line-graph of a bipartite graph.

Suppose that G′ is the line-graph of bipartite graph. If c1 6= a1 then by the properties
of G there exists a path of even length from A2 to B2 whose interior is in C2. Thus,
there is a vertex c ∈ C2. Since (X1,X2) is not degenerate, c has at least a non-
neighbor b in one of A2, B2, say B2 up to symmetry. Now {a1, c1, c, b} induces a
diamond of G′, a contradiction. We prove a1 = c1.

Let B be a bipartite graph such that G′ = L(B). Let (X,Y ) be a bipartition of
B. So, a1, b1 may be seen as edges of B. Let us suppose a1 = aXaY and b1 = bXbY

where aX , bX ∈ X and aY , bY ∈ Y . Note that these four vertices of B are pairwise
distinct since in L(B) = G′, a1 misses b1. Since a1b1 is flat in G′, every edge of B
is either adjacent to aX , aY , bX or bY . Thus, the vertices of L(B) = G′ different of
a1, b1 partition into six sets:

• AX , the sets of the edges of B seeing aX and missing bY ;

• AY , the sets of the edges of B seeing aY and missing bX ;

• BX , the sets of the edges of B seeing bX and missing aY ;

• BY , the sets of the edges of B seeing bY and missing aX ;

• possibly a single vertex c representing the edge aXbY ;

• possibly a single vertex d representing the edge aY bX .

Suppose |AX | ≥ 2. Then, |BX | 6= ∅ for otherwise one of {a1}, {a1, c} is a star
cutset of G′ separating AX from b1. We observe that (AX ∪BX , V (G′)\ (AX ∪BX))
is a 2-join of G′. This 2-join is substantial since |AX | ≥ 2 and by (37) it is non
degenerate and therefore proper, contradicting (40). Thus, |AX | ≤ 1, and similarly
|BX | ≤ 1, |AX | ≤ 1, |BY | ≤ 1. Note that if |AX | = 1, |BX | = 1 then there is an edge
between AX , BX for otherwise one of {a1}, {a1, c} is a star cutset separating AX

from BX . Similarly, if |AY | = 1, |BY | = 1 then there is an edge between AY , BY . In
the case when |AX | = |BX | = |AY | = |BY | = 1 and when c, d are both vertices of G′,
we observe that G′ is the self-complementary graph L(K3,3 \ e) (depicted Figure 3).
Hence, G′ is an induced subgraph of the line-graph of a bipartite graph, and G′ is
the line-graph of a bipartite graph, contradicting (41). This proves (42).

(43) G′ is not a path-cobipartite graph (and in particular, not a cobipartite graph).

If G′ is a path-cobipartite graph then let A, B, P , a, b be like in the definition.
Suppose first P = ∅. If a1 ∈ A, b1 ∈ A, then since a1b1 is a flat edge of G′ we
have |A| = 2. If a vertex c of B sees none of a1, b1 then B \ c is a star-cutset of
G′ separating c from a1b1. Thus {a1} ∪ N(a1) and {b1} ∪ N(b1) are two cliques
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of G′ that partition V (G′). Thus, we may always assume that a1 ∈ A, b1 ∈ B.
So, G is obtained by subdividing a1b1 implying G being a path-cobipartite graph,
contradicting the properties of G.

Thus P 6= ∅. Note that (P ∪{a, b}, A\{a}∪B \{b}) is a path 2-join of G′. Also,
G′[(A∪B)\{a, b}] is not a single edge, for otherwise G′ is a hole, contradicting (41).
Thus this 2-join is proper, and so it is not degenerate. In particular, every vertex in
A \ {a} has a neighbor and a non-neighbor in B \ {b}, implying |A| ≥ 3, |B| ≥ 3. If
at least one a1, b1 is on P then the graph G obtained by subdividing a1b1 is again a
path-cobipartite graph, contradicting the properties of G. Thus since a1b1 is a flat
edge of G′, we may assume a1 ∈ A \ {a}, b1 ∈ B \ {b}. The graph G is obtained
by subdividing a1b1 into a path Q. Now (P ∪ Q ∪ {a, b}, V (G) \ (P ∪ Q ∪ {a, b}) is
a 2-join of G. By the properties of G this 2-join must be either a path 2-join or a
non-proper 2-join, meaning that V (G′) \ (P ∪ Q ∪ {a, b}) is a single edge. Now we
observe that G is the line-graph of a bipartite graph (such graphs are called prisms
in [7]), contradicting the properties of G. This proves (43).

(44) G′ is not a path-double split graph.

Suppose that G′ is a path-double split graph. Let A′ = {a′1, . . . , a′m}, B′ = {b′1,
. . . , b′m}, C ′ = {c′1, . . . , c

′
n}, D′ = {d′1, . . . , d

′
n} and E′ be sets of vertices of G′ that

are like in the definition. If a1 ∈ A′ ∪ E′ and b1 ∈ B′ ∪ E′, then G is obtained
from G′ by subdividing the flat path a1−c1−b1. If this yields a path of even length
between a vertex a′i and b′i, then this path together with a neighbor of a′i in C ′ ∪D′

and a neighbor of b′i in C ′ ∪ D′ that are adjacent, yields an odd hole of G. Thus
every path with an end in A′, and end in B′ and interior in E has odd length, and
G is a path-double split graph contradicting the properties of G. The case when
a1 ∈ B′ ∪ E, b1 ∈ A′ ∪ E is symmetric. Since a1−c1−b1 is a flat path of G′, there
is only one case left up to a symmetry: a1 = c1, |C

′| = |D′| = 2, a1 = c′1, b1 = c′2
and for every i ∈ {1, . . . ,m}, a′i sees c′1, d

′

2 and b′i sees d′1, c
′

2. So, G is obtained by
subdividing c′1c

′

2 into a path P . We see that (P ∪ {d′1, d
′

2}, A
′ ∪B′ ∪ E′) is a proper

non-path 2-join of G, contradicting the properties of G. This proves (44).

(45) G′ has no homogeneous 2-join.

Suppose that G′ has an homogeneous 2-join (A,B,C,D,E, F ). If c1 6= a1 then since
c1 has degree 2, c1 must be in E. Thus, by subdividing a1− c1− b1 into a path
P we obtain a graph G with an homogeneous 2-join. Note that in G, the path
definition If c1 = a1 then a1b1 is a flat edge of G′, thus, up to a symmetry, either
a1 ∈ C, b1 ∈ E ∪ D or a1 ∈ C, b1 ∈ A. But the last case is impossible since a1b1

being flat implies N(a1) ⊂ A∪D∪E, implying (A,B,C,D,E, F ) being degenerate,
contradicting (37). Hence, a1 ∈ C and b1 ∈ D∪E. So, by subdividing a1b1 we obtain
a graph G that has an homogeneous 2-join. The last condition of the definition of
homogeneous 2-joins is satisfied by (36). This proves (45).

(46) G′ is not a path-cobipartite graph, not a path-double split graph, has no homo-
geneous 2-join and no flat path of length at least 3.

Else, by Lemma 3.4 either G′ has a proper 2-join, contradicting (40) or G′ has a
balanced skew partition contradicting (37), or G′ is bipartite contradicting (43),
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or G′ is bipartite contradicting (41), or G′ is a double split graph and so is G′,
contradicting (44). This proves (46).

(47) f(G′) + f(G′) < f(G) + f(G).

Every flat path of G′ is a flat path of G thus f(G′) ≤ f(G). But in fact f(G′) < f(G)
since X1 is a flat path of G and not of G′. By (46) 0 = f(G′) ≤ f(G). We add these
two inequalities. This proves (47).

Let us now finish the proof. By (38), G′ is Berge. By (37), G′ has no balanced
skew partition. By (39), G′ has no proper non-path 2-join. By (40) G′ has no
proper 2-join. By (41, 42), none of G′, G′ is the line-graph of a bipartite graph and
G′ is not bipartite. By (43) G′ is not a path-cobipartite graph. By (44) G′ is not a
path-double split graph. By (45) G′ has no homogeneous 2-join. By (46), G′ is not
a path-cobipartite graph, not a path-double split graph and has no homogeneous
2-join. So, G′ is a counter-example to the theorem we are proving now. Hence there
is a contradiction between the initial choice of G and (47). This completes the proof
of Theorem 2.1.

4.2 Proof of Theorem 1.5

Let G be a Berge graph. Note that it is impossible that both G,G have a path
proper 2-join because in a graph with a proper path 2-join, no vertex has degree
n− 3, and this should be the degree of an interior vertex of the path side of a 2-join
of G. Let us now apply Theorem 2.1 to G. If one of G,G is basic, has a non-path
proper 2-join, or a balanced skew partition, we are done. From now on, we assume
that G has no balanced skew partition and is not basic. So up to a complementation
we have three cases to consider. In each case, we have to check that G has at least
a path proper 2-join, and that the contraction of any path proper 2-join leaves the
graph balanced skew partition-free.

If G has an homogeneous 2-join (A,B,C,D,E, F ) then it is not degenerate since
G has no balanced skew cutset. So, every vertex in A ∪ B ∪ C ∪ D ∪ F has degree
at least 3. So every flat path of length at least 3 in G has an end in C, an end in D
and interior in E. Let P be such a flat path. By definition of homogeneous 2-joins,
such a path is the path side of a non cutting 2-join that is also proper. Hence, by
Lemma 3.17, the graph obtained by contracting P has no balanced skew partition.

If G is path-cobipartite then let A,B,P be three sets that partition V (G) like in
the definition. Since G is not basic, P is not empty and is the interior of the unique
maximal flat path P ′ of G with ends a ∈ A and b ∈ B. Since A and B are cliques,
(P ′, V (G) \P ′) is not a cutting 2-join of type 1 of G. If (P ′, V (G) \P ′) is cutting of
type 2, this means that there are non empty sets A3 ⊂ A \ {a} and B3 ⊂ B \ {b},
complete to one another and such that H = G \ (P ′ ∪A3 ∪B3) is disconnected. But
since A,B are cliques, this means that H has exactly two components, say A′ ⊂ A,
and B′ ⊂ B. We observe that A3 ∪ B3 ∪ {a} is a star cutset of G, centered at any
vertex of A3, that separates A′ from B′ ∪ P . This is a contradiction since G has no
balanced skew partition. We proved that the unique proper path 2-join of G is not
cutting. Hence, its contraction does not create a balanced skew partition.

If G is a path double split graph then let V (G) be partitioned into sets
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A,B,C,D,E like in the definition. Since G is not basic, we know E 6= ∅. Hence,
there is a flat path P in G that is the path side of a proper 2-join of G. The con-
traction of any such path P yields a graph G′ that is also a path-double split graph.
By Lemma 3.5 G has no balanced skew partition.

This proves Theorem 1.5.

4.3 On the detection of general skew partitions

As mentioned in the introduction we are not able to prove something like Theo-
rem 1.5 with “skew partition” instead of “balanced skew partition”. Following our
frame, we would have to give up the conditions on the parity of paths in the def-
inition of cutting 2-joins of type 2. But then we would not be able to prove (23),
meaning that the graph G′ in Case 2 of the proof of Theorem 2.1 would possibly be
non-Berge, making the whole proof collapse.

5 Algorithms

By Lemma 3.2, the balanced skew partition is a self-complementary notion. Thus,
for basic graphs, we have to deal only with bipartite graph, line-graphs of bipartite
graphs and double-split graphs. When decomposing, we may switch from the graph
to its complement as often as needed.

5.1 Balanced skew partitions in basic graphs

Lemma 5.1 Let G be a bipartite graph. Then (A,B) a skew partition of G if and
only if it is a balanced skew partition of G.

proof — A balanced skew partition of G is clearly a skew partition. Let us prove
the converse. Since G is bipartite, B is a complete bipartite graph. Every path of
length at least 2 with its ends in B and it interior in A has even length, because its
ends are in the same side of the bipartition. Since G is triangle-free, every antipath
of G has length at most 3. Hence, every antipath of length at least 2, with its ends
in A and it interior in B has even length. Because otherwise such an antipath has
length 3 and may be viewed as a path. 2

By the lemma above, detecting balanced skew partition in bipartite graphs can
be performed by running an algorithm for general skew partitions. Such a fast
algorithm for bipartite graphs has been given by Reed [18]. It is has complexity
O(n5).

Now, we have to decide if the line-graph of a bipartite graph has a balanced
skew partition. Note that every case is possible: line-graphs of bipartite graphs may
have balanced skew partitions, skew partitions and no balanced skew partition, or
no skew partition at all, see figure 3. By Theorem 3.1 the line-graph of a bipartite
graph has no claw and no diamond.

Lemma 5.2 Let G be the line-graph of a bipartite graph with a skew partition
(A,B). Then B is a star or B is a square.
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Figure 3: Three line graph of bipartite graph. The second one is L(K3,3 \ e)

proof — Suppose that G has a skew partition (A,B) such that B has at least 5
vertices. We may assume that B is not a star, so every anticomponent of B has at
least 2 vertices. Let B0 be such an anticomponent, and let b, b′ be non adjacent in B0

(because B0 is anticonnected). If B has at least 3 anticomponents say B0, B1, B2, . . . ,
then for b1 ∈ B1, b2 ∈ B2, {b, b

′, b1, b2} induces a diamond, a contradiction. Thus, B
has 2 anticomponent B0, B1 and we may assume that B0 has at least 3 vertices. If
B0 has no edge, then we can pick 3 vertices b1, b2, b3 in B0 and a vertex c in B1 and
{c, b1, b2, b3} induces a claw, a contradiction. Thus, B0 has at least one edge, say bb′.
Now consider a non edge c, c′ in B1: {b, b

′, c, c′} induces a diamond, a contradiction.
So, we are left with the case where B has at most 4 vertices. The only candidate
for a non-star non-anticonnected graph is the square. 2

Lemma 5.3 Let G be the line-graph of a bipartite graph. Suppose that G has at
least an edge and size at least 5. Then G has a balanced skew partition if and only
if G has a start cutset.

proof — By Lemma 3.3, we know that if G has a star cutset, then it has a
balanced skew partition. Let us prove the converse. Suppose that G has a balanced
skew partition (A,B). We may assume that B is not a star. So by lemma 5.2, B
is a square with vertices say b1, b2, b3, b4 and edges b1b2, b2b3, b3b4, b4b1. Note that
Figure 3, the first graph depicted has a square cutset that is a balanced skew cutset.
Let X be a connected component of G\B. To finish the proof, it suffice to show that
one of the star {b1, b2, b4}, {b2, b3, b4} or {b1, b2, b3} is a cutset. So, let us suppose
for a contradiction that none of these sets is a cutset.

Since {b2, b3, b4} is not a cutset, b1 has a neighbor in X and similarly b3 has a
neighbor in X. Since X is connected, we now that there is a path from b1 to b3

that goes through none of b2, b4. We may choose this path as short as possible, so
it is an induced path, say P = v1−v2−· · ·−vk−1−vk, with v1 = b1 and vk = b3.
Since (A,B) is balanced, P has even length. One of b2, b4 (say b2 by symmetry)
must see v2 for otherwise {b1, v2, b2, b4} induces a claw. If P has length 2, then,
{b1, b2, b3, v2} induces a diamond, a contradiction. So, P has length at least 4. But
then, v2−P−vk−b2−v2 is a cycle of odd length ≥ 5, thus it has a chord b2vi. But i
must equals k−1 for otherwise, b2, b1, b3, vi induces a claw. So H = b2−v2−P−vk−1−b2

is a hole. We rename its vertices h1, . . . , hl.
Since {b1, b2, b3} is not a cutset, there is a path Q that goes through none of

b1, b2, b3, from b4 to a vertex that has a neighbor in H. Let us choose Q = b4−· · ·−x′−x
of minimal length. Note that Q has length at least 1, for otherwise, b4 has a neighbor
vi ∈ H. If 2 < i < k − 1 then {b4, b1, b3, vi} induces a claw and if i = 2 then
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{b1, b2, b4, vi} induces a diamond (i = k−1 is symmetric). If x sees two non-adjacent
vertices y, z in H, then {x, x′, y, z} induces a claw. If x sees only one vertex hi in H
then {hi, hi−1, hi+1, x} induces a claw. So, x has exactly two adjacent neighbors in
H, say hi, hi+1. Since H is an even hole, the induced paths b4−Q−x−hi−H \hi+1−b2

and b4−Q−x−hi+1−H \hi−b2 have different parity. So one of them has odd length,
contradicting (A,B) being balanced. 2

By the previous lemma we know that an algorithm that detects star cutsets is
sufficient to decides whether a line-graph of a bipartite graph has or not a balanced
skew partition. Chvátal [8] gave such an O(nm)-time algorithm. Note that in
[18], Reed gives a fairly optimised algorithm for detecting general skew partitions
in line graphs with complexity O(n2m). So, the obvious algorithm for detecting
a balanced skew partition in the line-graph of a bipartite graph is faster than the
optimised algorithm for general skew partition. This might be general: detecting a
skew partition might be harder than a balanced skew partition for perfect graphs.

The detection of balanced skew partitions in double split graph takes constant
time by Lemma 3.5: answer “No”.

Our main algorithm needs also to recognize basic graphs. This can be done
in linear time for bipartite graphs (this is a classical result) and for line-graphs of
bipartite graphs (see [17, 19]). For double split graphs, this can be done in linear
time by looking at the degrees since vertices of the matching all have degree 1 + n
and vertices of the anti-matching all have degree 2n − 2 + m (these numbers are
different since n ≥ 2,m ≥ 2 implies 2n− 2+m > 1+n). Hence, the recognition can
be performed as follows: compute the degrees, check whether the vertices of smallest
degree induce a matching, that the rest of the graph induces the complement of a
matching, and check for every edge xy of the matching and every non-edge uv of
the antimatching, that {x, y, u, v} induces a path on 4 vertices. The computing of
degrees takes linear time, and the checking to be done afterward do not take more
than O(m) time.

Let us sum up this subsection.

Theorem 5.4 (Several authors) There is an O(n + m) algorithm that decides
whether a given graph is basic. There is an O(n5) algorithm that given a basic graph
G decides whether G has a balanced skew partition or not.

5.2 2-join decomposition

Let us define a decomposition tree TG of a Berge graph G. The root of TG is G
itself. If a node F of the tree is a basic graph then it is a leaf marked with label
“basic”. Else, if F is a graph on at most 10 vertices, then it is a leaf marked with
label “small”. Else, if none of F,F has a substantial 2-join then F is a leaf marked
with label “no decomposition”. Else, one of F,F has a substantial 2-join and has
at least 11 vertices. If possible, we choose this substantial 2-join (X1,X2) non-path.
If (X1,X2) is not connected then F is a leaf marked with label “disconnected”.
Else, up to a complementation, we suppose that the 2-join is in F and we define
the children of F to be the blocks of F with respect to this 2-join (these blocks are
defined Subsection 3.2).
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We claim that TG has size at most O(n). Indeed, we define for every graph F :
φ(F ) = |V (F )|−10. So, in TG every non-leaf node satisfies φ(F ) ≥ 1 since it has size
at least 11. Furthermore, when F1, F2 are the blocks of a graph F with respect to a
2-join (X1,X2) of F then φ(F1)+φ(F2) ≤ φ(F ), because for i = 1, 2, |Fi| ≤ |Xi|+5.
Hence, the total number of leaves in TG is at most 2φ(G) = O(n).

We claim that TG can be constructed in time O(n9). Indeed, testing whether G
is basic is easy (see Theorem 5.4). In [10], an O(n8) algorithm, due to Cornuéjols
and Cunningham [13], for constructing a substantial non-path 2-join of a an input
graph is given. Note that what we call non-path substantial 2-join is simply called
2-join in [10]. Finding substantial path 2-joins is easy in linear time by checking
every vertex of degree 2. Testing for the connectivity of a 2-join is easy. By the
paragraph above, to construct TG in the worst case, we will have to run O(n) times
the O(n8) algorithm that detects non-path substantial 2-joins.

We claim that G has a balanced skew partition if and only if one of the leaves of
TG has a balanced skew partition. Indeed, if G has a balanced skew partition then
Lemma 3.16 shows by an easy induction that at least one of the leaves of TG has a
balanced skew partition. Conversely, if a leaf F of TG has a balanced skew partition
then suppose for a contradiction that G has no balanced skew partition. Among the
nodes of TG, let H be the graph with no balanced skew partition, closest to F along
the unique path of TG from G to F . The graph H is Berge, has no balanced skew
partition, and is not basic. Since it is not a leaf, H has a proper 2-join by definition
of TG. If H has a non-path proper 2-join, then by Lemma 3.18 the children of H
in TG have no balanced skew partitions contradicting the definition of H. Else, by
Theorem 1.5, the children of H have no balanced skew partition, a contradiction
again.

We claim that we can test whether a leaf L of TG has a balanced skew partition
in O(n5). If L is marked “basic”, this is true by Theorem 5.4. If L is marked
“small”, this is trivial. If L is marked “no decomposition”, this is done in constant
time by answering “YES”, the correct answer by Theorem 1.5. If L is marked
“disconnected”, this is done in constant time by answering “YES”, the correct answer
by Lemma 3.13.

By the claims above, detecting balanced skew partitions in a Berge graph G can
be performed as follows: construct TG and test whether a leaf has or not a balanced
skew partition. Note that in the case when G has no balanced skew partition, then
the leaves of TG are all basic.

Theorem 5.5 There is an O(n9)-time algorithm that decides whether a Berge graph
has or not a balanced skew partition.

6 NP-hardness

We recall here a construction due to Bienstock [3]. Let us call Bienstock graph any
graph G that can be constructed as follows. Let n ≥ 3, m ≥ 1 be two integers. For
every 1 ≤ i ≤ n let αi be the graph depicted Figure 4, with vertex set {ti,1, ti,2, ti,3,
ti,4, fi,1, fi,2, fi,3, fi,4, ci,1, ci,2, ci,3, ci,4} and with edge set {ci,1ti,1, ti,1ci,3, ci,1fi,1,
fi,1ci,3, ci,2ti,2, ti,2ti,3, ti,3ti,4, ti,4ci,4, ci,2fi,2, fi,2fi,3, fi,3fi,4, fi,4ci,4, ti,1fi,2, ti,1fi,3,
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fi,1ti,2, fi,1ti,3, ti,3fi,3}. For every 1 ≤ j ≤ m, let βj be the graph depicted Figure 4,
with vertex set {dj,1, dj,2, dj,3, dj,4, rj , zj,1, zj,2, zj,3} and edge set {dj,1rj , rjdj,3,
dj,2zj,1, zj,1dj,4, dj,2zj,2, zj,2dj,4, dj,2zj,3, zj,3dj,4}.

All the graphs αi, βj are pairwise vertex disjoint subgraphs of G that are assem-
bled by adding the following edges: ci,3ci+1,1 and ci,4ci+1,2 for 1 ≤ i < n, dj,3dj+1,1

and dj,4dj+1,2 for 1 ≤ j < m. Add a vertex u adjacent to c1,2, a vertex w adjacent
to c1,1, a vertex s adjacent to w and a vertex v adjacent to dm,3, dm,4. See Figure 4.
For every 1 ≤ j ≤ m and every k ∈ {1, 2, 3} we add exactly 2 edges incident to zj,k.
These edges are either zj,kfi,1, zj,kfi,3 for some i, or zj,kti,1, zj,kti,3 for some i. See
Figure 4. Moreover, for every 1 ≤ k < k′ ≤ 3 and every 1 ≤ j ≤ m, zj,k and zj,k′

are required to have their neighbors in different αi’s.
By 3-SAT’ we mean the usual 3-SAT problem (see [15]) restricted to the sets of

clauses on 3 variables such that every clause is on three pairwise distinct variables.
Bienstock proved an NP-completeness reduction from 3-SAT that when restricted
to 3-SAT’ yields:

Theorem 6.1 (Bienstock [3]) For every instance I of size x of the NP-complete
problem 3-SAT’, there is a Bienstock graph GI of size O(x), obtained from I by a
linear time algorithm and such that the answer to I is YES if and only if there is a
path of GI of odd length joining u and s.

Here is why Bienstock’s construction is related to the Balanced Skew Partition
Problem:

Lemma 6.2 Let G be a Bienstock graph. Let G′ be the graph obtained by adding
two vertices: a vertex a seeing both u, s and a vertex b also seeing both u, s. Then
G′ has a balanced skew partition if and only if there is no path of odd length in G
joining u and s.

proof — The graph G′ is depicted Figure 4. The sets {a, u, s} and {b, u, s} are
clearly skew cutsets. If there is a path of odd length in G between u and s then
these two skew cutset are non-balanced. Else they are clearly both balanced. Hence
if suffices to prove that G′ has no other skew cutset. Note that G′ has no diamonds
and no K4. Hence, every skew cutset of G′ is either a star cutset or is a complete
bipartite graph. Let us check every star and every square in G′.

We observe that G′ has no star cutset centered at: s, u, w, v, ci,k; ti,4, fi,4, ti,2,
fi,2 for 1 ≤ i ≤ n; dj,k for 1 ≤ j ≤ m, k ∈ {1, 2, 3}. Also G′ has no star cutset
centered at zj,k since zj,k has degree 4 and since for k′ ∈ {1, 2, 3} \ k, zj,k′ does not
have its neighbors in the same αi than zj,k. A star centered at a vertex x among
ti,1, fi,1, ti,3, fi,3 is dangerous since x may have large arbitrarily large degree. But
this is no enough to disconnect G′ since x has at most one neighbor in every βj .

The square G′[a, b, s, u] is not a skew cutset of G′. Moreover, since s, u (resp. a,b)
have no common neighbors in G′, no skew cutset can contain {a, b, s, u}. Similarly,
for 1 ≤ i ≤ n, no skew cutset of G′ can contain {ci,1, ti,1, ci,3, fi,1}. No skew cutset of
G′ can contain {d1,2, z1,1, d1,4, z1,2} since z1,3 is the only possible vertex to be added
to the potential skew cutset, and since z1,3 has a neighbor in some αi. By the same
way, no skew cutset can be contained in βj , 1 ≤ j ≤ m. The last squares to be
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checked are those contained in sets consisting of some ti,1, ti,3 (resp. fi,1, fi,3) plus a
collection of zj,k’s complete to {ti,1, ti,3} (resp. fi,1, fi,3). Note that the zj,k’s are all
in different βj ’s. Hence such a set in not a skew cutset. 2

Theorem 6.3 The decision problem whose instance is any graph G and whose ques-
tion is “does G have a balanced skew partition ?” is NP-hard.

proof — Let I be an instance of 3-SAT’. By Theorem 6.1, we construct a graph
GI . By Lemma 6.2 we construct a graph G′

I
. By these two results G′

I
has a balanced

skew partition if and only if the answer to I is YES. 2
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Figure 4: Bienstock’s construction
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