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Abstract: 

In spatial statistics, Ripley’s K function (Ripley (1977)) is a classical tool to analyse spatial point 
patterns. Yet, it faces two major limits: it is only pertinent for homogeneous point processes and it 
does not allow the weighting of points. 

We generalize it to get a new function, M, which oversteps these limits and detects spatial structures 
of inhomogeneous populations of weighted points. 
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 2

1 Introduction 

The basic analysis of a point set relies on its first-order property, that is to say the average 
values of chosen variables. An example is given by foresters who classically describe a forest 
plot with the histogram of tree diameters. This is enough for forestry management, but some 
scientific fields (like ecology) study the way species interact with each others, tackles new 
questions: how do these trees occupy space? Do trees of the same species aggregate or repulse 
each other? 
New tools have progressively been developed to rigorously answer these more complicated 
questions. A major milestone was established by Clark and Evans (1954). The general method 
was given: measure a pertinent variable (the distance from every object to its nearest 
neighbour) and compare its value to the one that would have been given by randomness. 
Next, a fundamental step was made by Ripley (1976) who wrote the full theory of the second-
order properties of point processes, giving the framework for better tools, taking into account 
all neighbours rather than only the nearest. Ripley (1977) then introduced the K function to 
analyse point-set structures. This function has been widely used for 25 years and became a 
standard measure presented in spatial statistic handbooks (Ripley (1981), Diggle (1983), 
Upton and Fingleton (1985), Cressie (1993)). However, Ripley’s K function faces two 
important limits: it supposes homogeneous space, and considers all points as equivalent (i.e. 
points’ characteristics do not matter). Therefore, this tool seems to be inappropriate to analyse 
obviously non-stationary point sets or objects whose size matters, like the study of the spatial 
structure of manufacturing plants (Marcon and Puech (2003a)). A first solution was given by 
Cuzick and Edwards (1990) who developed a non-parametric test able to detect clustering in a 
non-homogeneous point set, followed by Diggle and Chetwynd (1991) who introduced the D 
function, defined as the difference between the K function for studied points (called cases) 
and the K function for the others (called controls). This is not completely satisfactory yet 
because, since both K functions are computed separately, all the data contained in the relative 
position of cases and control is lost.4 Baddeley et al. (2000) generalize K to inhomogeneous 
point processes. They give a clean theoretical framework but practical applications are 
difficult, as we will se here. Therefore, the purpose of this study is to give a mathematical 
framework of a new measure, namely the M function, which oversteps these limits and 
actually detects spatial structures of inhomogeneous populations of weighted points.5 
The paper is organised as follows. The next two parts recall the important features of point 
processes and that of Ripley’s K function. Part 4 constitutes a discussion on some features of 
Ripley’s K function to open the way (part 5) for its generalisation to inhomogeneous space 
and weighted points, introducing the M function. A comparison with Baddeley’s Kinhom is 
developed. 

2 Point processes 

A point process is the equivalent of a random variable whose result is a point, defined by its 
coordinates (x, y) in a pre-defined area that we will call the domain, known and delimited. 

                                                 
4 We will not detail hereinafter all tools derived from the K function but the reader should refer to the literature 
cited, including the definition of a standardised version of D proposed by Feser and Sweeney (2000). 
5 Note that an ad hoc economic version of the M function was introduced in Marcon and Puech (2003b). 
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 3

Point processes are used as mathematical tools to characterize and eventually model events 
whose spatial repartition is known, such as trees in a forest. 
An interesting way to describe an unknown-law process is through its first and second-order 
properties. 

2.1 First-order property 

Definition 

Consider an area A supplying a realization of a point process. N is the actual number of points 
inside A. Each point is defined by its coordinates (x, y). We denote N(S) the number of points 
inside a given sub-area S. 
The process first-order property is its density, denoted λ(x, y). Its definition is: 

dS
dSNEyx

dS

)]([lim),(
0→

=λ  (1)

where dS is the elementary area around (x, y). 
If λ(x, y) is a constant, we will say the point process is homogeneous or stationary, and the 
density will just be denoted λ. 

Probability to find a point in an elementary area 

We will only consider ordered point processes (Diggle (1983), p.47), i.e. the magnitude of the 
probability to find several points in an elementary area dS is smaller than dS. In other words, 
we will be allowed to write that the probability to find several points in dS is almost equal to 
the probability to find one only. 
This assumption is not restrictive. To get convinced, consider a process providing 
independent points. The probability to find two points in dS is (PdS)2. According to the first-
order property, it equals 2]),([ dSyxλ . Since dS is small, (dS)2 is negligible compared to dS. 
This property establishes the linkage between probability and density. The existence of a 
point in dS is the result of a Bernoulli proof of parameter PdS. The number of points in dS thus 
follows a Bernoulli law and its expectation is PdS. According to equation (1), this expectation 
is λ(x, y). 
The probability to find at least one point in the elementary area dS around the point located at 
(x, y) is consequently: 

dSyxPdS ),(λ=  (2)

This relation is verified as long as dS is small enough for the probability to find two points 
remains negligible. 

2.2 Second-order property 

Definition 

The second-order property of a point process, denoted λ2((x1,y1),(x2,y2)), is defined by: 
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21

21

0,22112
)]()([lim)),(),,((

21 dSdS
dSNdSNEyxyx

dSdS →
=λ  (3)

 

Probability to find two points in two elementary areas 

The joint probability to find at least one point in each elementary area around (x1,y1) and 
(x2,y2) is denoted PdS1,dS2. Once again, the probability to find more than one point in an area is 
negligible. The event “find both a point in dS1 and in dS2” realizes a Bernoulli proof with 
parameter PdS1,dS2, so: 

)),(),,(( 2211221, 21
yxyxdSdSP dSdS λ=  (4)

Introducing the first-order property: 

),(),(
)),(),,((

2211

22112
, 2121 yxyx

yxyx
PPP dSdSdSdS λλ

λ
=  (5)

The expression 
),(),(
)),(),,((

2211

22112

yxyx
yxyx

λλ
λ

, ratio of the second-order to the first-order property, is 

called radial distribution function (Diggle (1983)), or point-pair correlation function (Cressie 
(1993)). We follow Ripley (1977) and the following literature, denoting it g((x1,y1),(x2,y2)). 
Common usage (for instance Ripley (1977), Stoyan et al. (1987)) imposed g rather than λ2 as 
the measure of the second-order property. We will follow it: 

21

21 ,
2211 )),(),,((

dSdS

dSdS

PP
P

yxyxg =  (6)

If the process is isotropic, g(•) only depends on the distance between points and it will be 
denoted g(r). In the case of an independent point distribution, the joint probability is equal to 
the product of the individual ones, thus g(•)=1. An independent point process is isotropic. 

2.3 The homogeneous Poisson process particular case 

Complete Spatial Randomness (CSR) is defined by homogeneity and independency. 
The homogeneous Poisson point process gives completely random points. Inversely, a 
completely random point process is a homogeneous Poisson process (proof in Diggle (1983), 
p.50-51). 

First-order property 

A realization of a homogeneous Poisson process with parameter λA on the area A is a 
completely random point set of density λ. The number of points follows a Poisson law with 
parameter λA, that is to say that: 
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k!
AekP(N

k
A )() λλ−==  (7)

This property remains true for any area S chosen within A. The number of points inside it 
follows a Poisson law: its expectation is λS, its variance is λS (a completely random 
distribution is not regular). A non-homogeneous Poisson point process is defined similarly, 
with λ depending on the location. In what follows, we will only consider homogeneous 
Poisson processes (except if it is explicitly mentioned). 

Second-order property 

Since point are distributed independently from each other, g(•)=1. 
The Poisson process will be used as the reference for complete spatial randomness (CSR), to 
compare the actual point distributions with.6 

3 Ripley’s K function 

The K function, defined by Ripley (1976); Ripley (1977) is a good indicator for spatial 
structures (Besag (1977), Diggle (1983), Cressie (1993)). Here, we will only consider 
homogeneous and isotropic point processes. 

3.1 Introduction: probability to find a neighbour at a given distance 

We call a point i’s neighbours all the points located at a distance lower than or equal to a 
given value r (basically, it represents the count of neighbours in a circle of radius r centered 
on the point i). The number of neighbours’ expectation is denoted v(r). Its estimator, the 
observed number of neighbours, is denoted V(r). Ripley (1977) showed that: 

∫
=

=
r

dgrv

0

2)()(

ρ

ρπρρ
λ

 (8)

3.2 Definition of the K function 

Ripley (1977) defined the K function as: 

∫
=

=
r

dgrK
0

2)()(
ρ

ρπρρ  (9)

If points are distributed independently from each other, g(ρ)=1 for all values of ρ, so 
K(r)=πr2. This value is used as a benchmark: 

• K(r)> πr2 indicates that the average value of g(ρ) is greater than 1. The probability to 
find a neighbour at the distance ρ is then greater than the probability to find a point in 
the same area anywhere in the domain: points are aggregated. 

                                                 
6 Diggle (1983), p.50, calls it the “cornerstone eon which  the theory of spatial point processes is built”. 
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 6

• Inversely, K(r)< πr2 indicates that the average neighbour density is smaller than the 
average point density on the studied domain. Points are dispersed. 

K(r) is estimated by the ratio of the average number of neighbours on the density, estimated 

itself by the total number of points divided by the domain area ( A
N=

∧

λ ): 

A
N

rVrvrK )()()( == ∧

∧
∧

λ
 (10)

The average number of neighbours can be expressed more explicitly by defining the indicator 
c(i,j,r)=1 if the distance between points i and j is at most r, 0 otherwise: 

∑ ∑= ≠=∧

∧

=
N

i

N

jij
rjic

N
rK

1 ,1
),,(1)(

λ
 (11)

3.3 Correction of the edge effects 

Points located close to the domain borders are problematic because a part of the circle inside 
which points are supposed to be counted is outside the domain. Ignoring this edge effect 
results in underestimating K. 

Ripley’s correction 

Ripley (1977) proposed to correct the indicator c(i,j,r) introduced in equation (11). 
We denote Ljr the portion of the circle of radius r centred on the point i located inside the 
domain. If a part of the crown of width dr inside which a neighbour is counted is outside the 
domain, the neighbour is given a weight equal to the inverted ratio between the inside part of 
crown (Ljrdr) and the whole crown (2πrdr). The idea is that the outside part of the crown 
could have contained the same neighbour density than the inside part. The correction is: 

∑ ∑= ≠=∧

∧

=
N

i

N

jij
ir

rjic
L

r

N
rK

1 ,1
),,(21)( π

λ
 (12)

Besag’s correction 

Besag (1977), in his discussion of Ripley’s paper, underlined that this correction gave an 
excessive weight to the farthest neighbours. The greater the radius r, the smaller Ljr, and the 
bigger the correction. He proposed an alternative: correct the edge effect not for each 
neighbour, but for all of them the same way. 
We denote Air the part of the area of the circle of radius r centred on the point i located inside 
the domain. We count the number of neighbours inside the circle and we correct it by the ratio 
between the circle’s area and its inside part. We suppose that the outside part of the circle 
would have contained the same neighbour density than the inside part. Finally: 
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∑ ∑= ≠=∧

∧

=
N

i

N

jij
ir

rjic
A
r

N
rK

1 ,1

2

),,(1)( π

λ
 (13)

Even though these edge-effect corrections methods are used alternatively, Ripley’s is still 
widely applied in the literature (see for instance Haase (1995)). 

Ward and Ferrandino’s correction 

Ward and Ferrandino (1999) introduced a global correction, arguing that local correction 
methods depend on the number and position of points close to the borders, thus introducing 
more variability in K’s estimator. 
They proposed to evaluate the expectation of the number of points concerned with edge-effect 
correction for a given radius (this is not a problem since the point process is supposed to be 
homogeneous), compute the correction for them (by the Besag’s method) and finally calculate 
the global underestimation of the number of point pairs which only depends on the domain’s 
geometry. They denoted KA (A for analytical) their estimator of K defined by: 

∑ ∑= ≠=∧

∧

−
=

N

i

N

jijA rjic
rCN

rK
1 ,1

),,(
)()1(

1)(
λ

 (14)

C(r) is the global correction factor. For a rectangular (L by W) domain, they found (as long as 
r < W/2): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ +−=

WL
r

W
r

L
r)r(C

2

1
3
11

3
41

ππ
 (15)

Note that they did not justify the replacement of N by N-1 in the denominator of the estimator. 
We will explain the importance of this change, further. 
Additionally, the authors calculated the variance of their estimator and its confidence interval. 
They claimed that their estimator both reduces K’s estimation bias and increases its efficiency 
and they justified this by several examples. 

Other correction methods 

The other correction methods are much more anecdotic. The most simple of all consists in 
using a buffer zone around the domain. The buffer is used to count neighbours but reference 
points (the points i) are never taken inside it. The buffer width is equal to the largest value of r 
so no edge effect ever appears. Since the buffer zone contains as much data as the domain, 
considering that most of the work is collecting data, the temptation is great to include the 
buffer into the domain: this method is very rarely used (examples can be found in Szwagrzyk 
and Czerwczak (1993), Kuuluvainen and Rouvinen (2000), fig.1a, p.803). The toroidal 
correction consists in treating the domain as a torus, that is to wrap it so that its opposite 
borders are in contact, supposing of course that its shape allows it. A good illustration is given 
by Haase (1995), fig.3, p.578. This solution is intuitively little satisfactory because it 
considers that the opposite points as very close. It was used by Peterson and Squiers (1995) 
and Kuuluvainen and Rouvinen (2000). 
Empirical issues due to the edge-effect correction may be considerable. Getis and Franklin 
(1987) give formulas for a rectangular domain, Diggle (1983), p.72, for a rectangle and a 
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circle. Haase (1995) reviews and compares correction methods: Ripley’s, the buffer zone, and 
the torus. He notices and corrects an error in Diggle’s list of cases needing a correction, 
leading to a serious underestimation of K and a little error leading to a slight overestimation in 
Getis and Franklin’s formulas. Goreaud and Pélissier (1999) developed algorithms to study 
more complex domains, implemented in ADE software (Thioulouse et al. (1997)). Treating 
complex geographical limits such as a country’s boundaries is possible, but was never applied 
in the literature: the domain is always a polygon (Sweeney and Feser (1998), fig.1, p.52, 
Rowlingson and Diggle (1993), fig.5, p.634), or, more rarely, a circle (Pancer-Koteja et al. 
(1998), fig.1-3, p.757). 

3.4 Besag’s L function 

Ripley’s function is not very convenient to use. Comparing a computed value to its 
benchmark, πr2, implies more computing and the hyperbolic chart is not very expressive. 
Besag (1977) proposed to normalize the function to obtain a benchmark of zero: 

rrKrL −=
π

)()(  (16)

3.5 Significance 

The estimated values of K and L are compared to benchmarks given by a homogeneous 

Poisson process. To test whether a value of )(rL
∧

is significantly different from 0, the most 
common way is using the Monte Carlo technique (Diggle (1983)): 

• A great number of random data sets is generated. Each of them is consistent with the 
null hypothesis tested. 

• A confidence threshold α is chosen. 

• For each value of r, )(rL
∧

 values are sorted in increasing order. The nth value is 

denoted )(rLn
∧

. 
• Extreme values are eliminated: the null hypothesis confidence interval limits are 

)()2( rLN α

∧

 and )()21( rL N α−

∧

. For N=1000 and α=5%, we retain the 26th and the 974th 
values. 

• )(rL
∧

 is considered significantly different from 0 if its value is outside the interval 

)]();([ )21()2( rLrL NN αα −

∧∧

. 
Attempts to directly calculate the confidence interval can be found in the literature. Ripley 

(1979) respectively proposed 
1

42,1
−

±
N

A
 and 

1
68,1

−
±

N
A

 as approximations of the interval 

limits at 5% and 1% thresholds. These values were obtained from simulations. Due to the lack 
of theoretical background, these values are very little used (for example by Szwagrzyk and 
Czerwczak (1993)). 
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4 Discussions on Ripley’s K function 

4.1 Global confidence intervals 

4.2 Edge-effect corrections 

Correcting the edge effects by Ripley’s method, equation (12), is impossible if a single value 
of Ljr equals 0, that is, as soon as r is big enough for a circle around a point to be completely 
outside the domain. If the domain is a rectangle, K’s computation is thus limited to half of its 
length. Diggle (1983), p.72, gave correction formulas applicable up to half of the width. 
Goreaud and Pélissier (1999) improved the edge-effect correction to allow computing K up to 
half of the rectangle’s length. 
We will rather use Besag’s method, equation (13), which is not limited. Detailing the density 
estimator, we get the expression of K, corrected from the edge effect: 

∑ ∑= ≠=

∧

=
N

i

N

jij
ir

rjic
A
r

N
ArK

1 ,1

2

2 ),,()( π  (17)

4.3 Correction of K’s bias 

Let us calculate )(rK
∧

 according to equation (17) for a great value of r, such as the part of 
domain area included in each circle is the domain itself: Air=A for all points i. Thus, every 
point’s distance to any other is smaller than r: c(i,j,r)=1. We can calculate K: 

N
Nr

A
r

N
ArK N

i

N

jij

11)( 2
1 ,1

2

2

−
== ∑ ∑= ≠=

∧

ππ  (18)

This result is problematic: the point set structure is homogeneous by assumption, so K should 
tend to πr2. This issue is rarely mentioned in the literature because Ripley’s edge-effect 
correction method limits r to a fraction of the domain’s size. Getis (1984) remarks that the 
number of point pairs is N(N-1), so an unbiased estimator of the squared density is N(N-1)/A². 
Getis and Franklin (1987) use it without further explanations. Diggle and Chetwynd (1991) 
indirectly evoked it when they gave a different formulation for K “to get an unbiased 
estimator of K”, without explaining the reason. Sweeney and Feser (1998) used the methods 
from Diggle and Chetwynd (1991) including their unbiased estimator. Moeur (1993) wrote 
that the estimator is biased, but only slightly, and used the same formula. Finally, Jones et al. 
(1996) used an unbiased formulation consistent with equation (19), below, justifying it by the 
loss of one degree of freedom. 
The issue’s cause must be searched in λ's estimator. The density estimator used in equation 
(19) is not the number of points divided by the area (N/A) because one of the points is 
necessarily at the centre of the circle and cannot be found in the crown. The unbiased density 
estimator is (N-1)/A. We can write an unbiased estimator for K: 
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∑ ∑= ≠=

∧

−
=

N

i

N

jij
ir

rjic
A
r

NN
ArK

1 ,1

2

),,(
)1(

)( π  (19)

4.4 Alternative point of view 

Equation (19) can be rearranged: 

A
N

N
A

rjic

r
rK

N

i
ir

N

jij

1

),,(

)( 1
,1

2

−
=

∑
∑

=

≠=
∧

π
 

(20)

This formulation of Ripley’s function, without dimension, is easier to interpret. 

Around each point i, 
ir

N

jij

A

rjic∑ ≠= ,1
),,(

 is the density of neighbours; its average value for all 

points is an estimator of rD , the density of neighbours at the distance r. The density of 

neighbours on the whole domain, denoted AD , equals 
A

N 1− . 

Thus K can be written as: 

A

r

D
D

r
rK

=2
)(

π
 

(21)

K(r), normalized by the area of the circle of radius r, is the ratio between the density of 
neighbours at the distance r and the density of neighbours on the whole domain. 

The expression 2

)(
r
rK

π
 is an advantageous substitute to L(r). The benchmark is 1. Its estimated 

value is a ratio of densities. 2

)(
r
rK

π
 peaks occur at distances at which the density of neighbours 

is the greatest. 

5 Generalization of Ripley’s K function 

At this step, we are able to generalize Ripley’s K function to non-homogeneous weighted 
point processes. We will first reconsider it from a probabilistic point of view instead of the 
classical geometric approach. Then, we will assume heterogeneity and different point weights 
by using appropriate probability laws. 

5.1 Probabilistic estimator of K 

Let us define a Bernoulli proof consisting in searching a neighbour around a point i in an 
elementary area dS in the circle of radius r. Its success probability is λrdS. The expectation of 
the number of neighbours in the circle is v(r)= λrπr² (obtained by summing the elementary 
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areas point number’s expectation). Its estimator is the observed average number of neighbours 
around all points i. 
Another Bernoulli proof can be defined by searching a neighbour around the point i, but this 
time, on the whole domain. Its success probability is λAdS. The expectation of the number of 
neighbours in the circle follows is λAA. Its estimator is N-1. 
In equation (21), we put the stress on the fact that K(r)/ πr² equals the ratio of density Dr to 
DA. It comes immediately that: 

A

r

A

r

P
P

dS
dS

r
rK

==
λ
λ

π 2
)(  

(22)

K(r)/ πr² can be estimated by the ratio of two Bernoulli-law probabilities that we will denote 
Pr and PA. 

5.2 Heterogeneous space 

The definitions of Bernoulli proofs can be easily modified to take into account space 
heterogeneity, i.e. not to assume that the underlying point process is stationary. Rather than 
searching neighbours with an equal probability in a homogeneous space, we will search 
particular type neighbours among all existing points, whose locations are considered as given. 
Following Diggle (1983), we call cases the NSk special points and controls the others. The 
Bernoulli proof consists in searching cases among all point i’s neighbours. Its success 
probability is estimated by the average ratio of cases to both controls and cases located inside 
the considered area (the circle of radius r or the whole domain). More precisely, we define the 
indicator cSk(i,j,r)=1 if both points i and j are cases and the distance between them is at most r, 
0 otherwise: 

• Pr is estimated by the average value (on all cases) of the ratio of the number of 
neighbour cases to the number of neighbour points (controls plus cases): 

∑
∑

∑
=

≠=

≠=Sk

Sk

N

i N

jij

N

jij Sk

Sk rjic

rjic

N 1

,1

,1

),,(

),,(1  (23)

• PA is estimated in the same way, but its expression is simpler: for any point i, the 
number of neighbour cases on the whole domain is 1−SkN  and the number of 
neighbour points is 1−N . 

We define the function K’, generalizing K to heterogeneous space: 

1
1),,(

),,(

)('
1

,1

,1

−
−

=

∑
∑
∑

=

≠=

≠=

N
N

N

rjic

rjic

rK Sk

Sk

N

i N

jij

N

jij Sk

Sk

Sk

Sk

 
(24)

5.3 Point weights 

Point weights can be attributed to each realization of the Bernoulli proof to define the M 
function. This time: 
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• Pr is estimated by the average value (on all cases) of the ratio of the weight of 
neighbour cases to the weight of neighbour points (controls plus cases): 

∑
∑

∑
=

≠=

≠=Sk

Sk

N

i N

jij

N

jij Sk

Sk rjiw

rjiw

N 1

,1

,1

),,(

),,(1  

• PA is estimated in the same way but its expression is not as simple as that of identical 

points. For each point, the ratio is 
i

iSk

wW
wW

−
−

, so its value changes according to i. Its 

average value is ∑ = −
−SkN

i
i

iSk

Sk wW
wW

N 1

1  

After simplifications, we will retain the following definition for M: 

∑∑
∑
∑

==

≠=

≠=

−
−

= SkSk

Sk

N

i
i

iSkN

i N

jij

N

jij Sk
Sk wW

wW
rjiw

rjiw
rM

11
,1

,1

),,(

),,(
)(  (25)

Points with no neighbour, verifying w(i,j,r)=0 cannot be taken into account: there are just 
ignored in the sums. 

5.4 Case-Control design 

A particular attention must be paid to case-control designs. For instance, spatial clustering of 
diseases is a major field of research (Diggle and Chetwynd (1991), Kingham et al. (1995), 
Gatrell and Bailey (1996), Gatrell et al. (1996) among others). All cases of disease are 
carefully referenced but the control point set, i.e. all the population, is just sampled. The aim 
is to characterise the structure of the cases compared to the controls. This approach is of 
course not limitative to geographical epidemiology. 
The usual M function defined above could be slightly modified to take into account this 
feature. Since the controls are chosen to be a representative sample of the population at every 
scale, the weight of neighbours of any kind is replaced by the weight of controls. After 
simplifications, M can be rewritten as follows: 

controls

casesCasesN

i N

j controls

N

jij cases
cases W

NW
rjiw

rjiw
rM cases

controls

cases

)1(
),,(

),,(
)(

1
1

,1 −
= ∑

∑
∑

=

=

≠=  (26)

Note that this holds if the weight of the controls is proportional to the weight of the 
neighbours anywhere in the studied area. 

5.5 Significance 

The null hypothesis to compare the M function with is, like before, a random distribution of 
points. However, space is no longer homogeneous, so the homogeneous Poisson process is no 
longer appropriate. The first-order property must be controlled for to allow the detection of 
the second-order property of the process. Thus, a point distribution generated according to the 
null hypothesis must respect, on the one hand, the first-order property (local values of the 
density) of the process the point distribution is a realisation of, and, on the other hand, its 
points must be distributed independently from each other. 
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The practical difficulty comes from the lack of knowledge of the point process that gave the 
point distribution, which is its unique available realisation. Its first-order property is 
consequently widely unknown. We can only assume that the actual set of point locations is a 
good approximation of it. Consequently, we will generate random data sets by randomly 
distributing the actual points set (type and weight couples) on the actual location set 
(coordinates). The confidence interval of the null hypothesis will then be computed by the 
Monte Carlo technique, as explained above. 

5.6 Comparison with Kinhom (Baddeley et al. (2000)) 

Kinhom is a generalisation of Ripley’s K to non stationary processes. Stationarity is required for 
the second-order property: this property is understated as soon as interactions between points 
are evaluated at a given distance. 

Definition 

Kinhom can be defined as an integration of the radial distribution function g on the circle of 
radius r., equation (9). When the density is not a constant, the result is (E denotes expectation 
and λ(i) is the process density at the point i): 

⎥
⎦

⎤
⎢
⎣

⎡
= ∑ ∑= ≠=

N

i

N

jijin ji
rjicE

A
rK

1 ,1hom )()(
),,(1)(

λλ
 (27)

It can be estimated by: 

∑ ∑= ≠=

∧

=
N

i

N

jijin
ji

rjic
A

rK
1 ,1hom

)()(
),,(1)(

λλ
 (28)

The indicator c(i,j,r) is then corrected by Ripley’s method. 
From a theoretical point of view, the problem is perfectly solved. Yet, applications are not 
straightforward. The difficulty arises in the estimation of the local densities. The natural 
solution consists in using a kernel estimation (Diggle (1985), Silverman (1986)). 

Discussion 

The authors mention a severe bias in Kinhom’s estimation when they apply this method to an 
aggregated process. The reason is quite clear: in the aggregates, the observed density is 
greater than the actual density of the process. It includes the effects of the aggregation 
process. The authors propose an improved technique for inhomogeneous Poisson processes 
but do not treat the other cases, including segregated processes. 
Practically, the Kinhom computing software was developed by Baddeley under R. Its inputs are 
the point set and the associated local densities, which must be pre-processed. 
 
The M function is also a generalisation of K, by a different approach. It compares the number 
of neighbours to that of all points around each case. This reference is analogous to λ(j). We 
can ignore the question of K’s bias, not taken into account by Baddeley, and consider a point 
set large enough for the denominator of M to be constant. Then, M can be rewritten in a 

formally close way to Kinhom: ∑ ∑= ≠=
=

N

i

N

jij j
rjic

N
krM

1 ,1 )(
),,(1)(

λ
, where k is a constant for a 
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given radius, including the denominator of M, the area of the circle of radius r and the domain 
area). Both functions are quite close, but with a few noticeable differences: 

• Kinhom ignores the individual weights. The limit can not be by-passed considering each 
w weighted individual as a superposition of w points, or aggregation will be 
dramatically overestimated. 

• The issue of the local density estimation is solved by M considering it as a constant 
within the circle of radius r around each point and computing it as simply as possible, 
counting all control points. If the cases are aggregated, the estimated density will not 
be biased. 

• The indicator does not need to be corrected from edge effects when computing M. 
This is a decisive advantage to treat complex shapes such as country boundaries. 

• Both functions are the average of reference point (the centres of the circles) values. 
Their weight is the same for all when computing M whereas points are weighted by 
the inverse of the local density λ(i).in Kinhom. If the purpose is to evaluate the process 
properties, the g function for example, M overweights the points in dense areas. On 
the other hand, if one tries to characterize individual behaviours such as location 
choice, giving each individual the same weights seems more appropriate. 

Conclusion 

The function developped by Baddeley et al. (2000) constitutes a theoretical milestone in the 
effort for characterising non homogeneous point processes. However, as far as we know, it 
was never used in the empirical literature. Its fundamental issue is the great difficulty, both 
theoretical and practical, to estimate local densities. The M function keeps the real advantage 
to be easily tractable. 

6 Examples 

6.1 Theoretical examples 

Three examples are given. Two of them illustrate very simple point patterns on a 
homogeneous space for a comparison of L and M functions. The third one computes a non-
homogeneous, independent point process to show how the M function controls for the first-
order property of point processes. No theoretical example is given with weighted points 
because they are not so easy to understand visually. Confidence intervals are computed at a 
1% confidence level generated from 1000 simulations and all curves are computed at 0.1 
intervals. 

Aggregates 

We consider a point set of three different kinds. The first two subsets (squares and circles) are 
made of 100 points completely randomly distributed. The last (triangles) is generated by a 
Neyman-Scott process: 5 aggregates (radius 0.5) of 5 points. Every point weight equals 1. The 
map is in Figure 1, the curves are in Figure 2. 
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Figure 1: Aggregates, Point map Figure 2: Aggregates, L and M functions for 
the aggregated point set 

The M curve shape is similar to L’s: positive peaks denote concentration. Nevertheless, while 
L peaks approximately correspond to the aggregates’ diameter (Goreaud (2000)), M peaks 
occur at distances at which the local density is the greatest, that is approximately the distance 
between points in the aggregates. 
We consider a point set made of three different point types. The first two of them (squares and 
circles) are constituted of 100 completely randomly distributed points. The last one (triangles) 
is a perfectly even distribution of 100 points located on a square, 1 by 1 grid. All points’ 
weights equal 1. 
The first part of the M curve is made of 0 values, showing the absence of neighbours at any 
distance smaller than the grid size. Note that the L curve shape is different since its original 
value is 0 and its minimum slope is -1 by construction. 
At the grid size, M value suddenly increases (the curve continuity is actually an artefact due to 
interpolation between points). It decreases again between each point-to-point distance 
( 44,12 ≈  is the diagonal length, then 2, 24,25 ≈  and so on). 
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Regularity 
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Figure 3: Regular point set, Map point Figure 4: Regular point set, L and M functions 
for the regular point set 

Inhomogeneous point set 

We generated two completely random point sets (squares and circles) in a 10-by-10 domain. 
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Figure 5: Inhomogeneous point set, Point map Figure 6: Inhomogeneous point set, L and M 
functions 
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Then, we transformed the points’ coordinates: after having calculated the polar coordinates 
(r,θ) of each point from the centre of the point set, we squared the distance to get (r²,θ). The 
result is a non-homogeneous Poisson pattern, in Figure 5. Both point types have the same 
random distribution, but the centre of the map shows a greater density, this pattern can be 
compared with a plants distribution around an industrial centre. 
The L function is not applicable: assuming homogeneity, it will interpret the point distribution 
as a single big aggregate. 
The M function is able to control for density variations. Figure 6 shows the M values for the 
first point kind: since its pattern does not differ from the other, its value is around 1. 

6.2 Empirical examples 

We retained two concrete examples of applications of the M function computed from real data 
in two different fields: spatial economics and geographical epidemiology. Hereinafter, 
weighted points are considered. 

Evaluating the geographic concentration of industries 

The first example is taken from Marcon and Puech (2003b)7. In this article, the location 
pattern of French manufacturing firms located in the whole metropolitan France in 1996 is 
studied. The sample is composed of more than 36,000 firms in fourteen sectors of activity. 
Every firm is weighted by its number of employees. In this case, the M function allows 
measuring the industrial concentration in France for a specific sector (intra-industry 
concentration). 
In every manufacturing sector, significant concentration is detected. However, three main 
conclusions can be drawn. Firstly, the degree of industrial concentration measured by the M 
function noticeably differs from an industry to another. Secondly, the maximum concentration 
(significant concentration peak) does not appear at the same distance for each industry (the 
maximum concentration occurs at small distances, i.e., in a radius of a few kilometres). And 
finally, the range of distances, on which an over-representation of the sector of activity 
compared to the whole area is significant, clearly varies across industries. 
As an example, Figure 7 illustrates M function results for textiles (sector for which the highest 
peak is detected). The confidence interval is computed at a 5% confidence level from 20 
simulations only, due to computing time and considering the clearness of the departure from 
the null hypothesis. Significant concentration is observed up to 200 kilometres. The peak 
reaches around 6.5 at a radius less than 1 kilometre. 
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Figure 7: M function for textiles in France 

                                                 
7 This example is not available in the paper itself, but on the authors’ website as complementary results. 
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This indicates that at this radius, the relative density of employees in textiles is more than six 
times greater around textiles firms than in the whole area. It is worth noting that, in spatial 
economics, using distance-based methods like Ripley’s K is quite new and cluster-based 
methods are more widely employed to evaluate the spatial agglomeration of the economic 
activity. 

Cuzick and Edwards (1990) data set 

Cuzick and Edwards (1990) introduced the first formal way to deal with non-homogeneous 
point processes. They used a data set (published with the paper) concerning the location of 62 
cases of childhood leukaemia between 1974 and 1986 in the North Humberside area, 
England. A control set of 141 children representing the whole concerned population was 
chosen from the birth register. They could conclude that the cases were significantly clumped. 
We use this data set to go further. We are now able to corroborate their conclusion and also to 
precise the size of the aggregates. 
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Figure 8: Childhood Leukemia map Figure 9: Cuzick and Edwards (1990) point set, 
D and M functions 

The map is in Figure 8, cases are represented by circles and controls by crosses. Figure 9 
shows M values for the cases. Note that it was computed according to the case-control design, 
equation (26). We can confirm clumping and precise it: in a 0.7 km radius around a case, the 
average case density is about 70% higher than it would be if the cases followed the control 
pattern (at this distance, the peak of the M function reaches 1.7). 
In the discussion of Cuzick and Edwards (1990), Diggle (p.101) suggested that the D 
function, equal to Kcases-Kcontrols, would lead better results. The next year Diggle and 
Chetwynd (1991) published the mathematical framework of the D function and computed 
their new function on the same dataset. In figure 9, we recomputed D (considering the 
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rectangle domain shown in Figure 88) and estimated the M function. It can be seen that the M 
and D functions give the same results if points are not weighted. Nevertheless, D values can 
not be interpreted easily and not compared across distances. 
Both methods suffer here from a severe lack of power due to the very little number of 
controls. The confidence intervals are computed at 5% and 10% levels (from 1000 
simulations). Increasing the number of controls would not have been a real problem if the 
experimental design had included a distance-based point pattern analyse. 

7 Conclusion 

The M function is defined as a generalization of Ripley’s K function to allow its application to 
inhomogeneous point processes and to take into account point weights. 
We had to reformulate the K function to understand it as a probability ratio, and by the way 
correct a bias remained in its definition despite occasional attempts to eliminate it. We also 
had to choose a definitive edge-effect correction method to make the whole theory consistent. 
The probabilistic approach allows considering spatial heterogeneity. When using the K 
function, we know, or at least we hope, that the point process is stationary, i.e. the probability 
to find a neighbour scales with the area. However, using the M function, we suppose that the 
probability to find a neighbour of the good kind is given by the average proportion of good-
kind neighbours combined with the local density of points. This assumption is very general 
and holds in most cases. Yet, this is an assumption and must be clearly kept in mind. 
We think this is a significant improvement for spatial structure analysis: 

• First of all because the number of situations in which the spatial structure can be 
analysed will dramatically increase (unfortunately, inhomogeneous point processes 
are not uncommon) if we compare it to the possible applications of K. 

• M is more powerful than D because it does not ignore a part of the data. 
• M is more convenient to use than K because no edge-effect correction is required. 

More than this, the domain limits do not have to be known, the point locations are 
enough. Therefore, complete geographical data sets can be treated without 
simplifying the domain shape and eliminating many border points. 

• M does not require a good knowledge of the underlying point process and a pre-
computation of local densities like Kinhom does. 

• Neither K nor D nor Kinhom take into account the points’ weight. 
To allow effective use of the M function, we developed the necessary software, available on 
the authors’ web site9. 
 

                                                 
8 Note that this data set was widely used and gave slightly different results according to the domain definition in 
Diggle and Chetwynd (1991), p. 1160, or Rowlingson and Diggle (1993), p. 634 
9 http://e.marcon.free.fr/Ripley/ (English, French and Italian versions). 
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