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Abstract

This article explores individual incentives to produce information on com-

munication networks. In our setting, efforts are strategic complements along

communication paths with convex decay. We analyze Nash equilibria on a set

of networks which are unambiguous in terms of centrality. We first characterize

both dominant and dominated equilibria. Second, we examine the issue of social

coordination in order to reduce the social dilemma.
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1 Introduction

On communication networks, agents obtain both direct and indirect informational

spillovers. Typically, agents may benefit from the information of their neighbors, the

neighbors of their neighbors, and so on. The related theoretical literature is mainly

concerned with the strategic formation of links. In this paper, we study the individ-

ual incentives to produce information, when agents produce efforts which are strategic

complements1 along communication paths. Let us present two series of relevant exam-

ples.

The first one concerns protective measures, like computer network security, airline

baggage screening, fire safety in apartment buildings, infectious disease vaccination,

protection against bankruptcy and theft (see Heal and Kunreuther [2003] and Kearns

[2005]). To give a flavour, consider the resources devoted by air carriers to luggage

screening for explosives; the network structure arises from baggage transfers between

air carriers. Because risks are correlated, more protective measures set by my neighbor

may improve the return of own increased protection. Further, the level of protection

of my neighbor’s neighbor has an incidence upon my own security level through the

combination of her protection levels and that of my neighbor (the probability that a

bomb passes from my neighbor’s neighbor to me without being detected is a decreasing

function of the protection level of her and of my neighbor).

A second class of applications concerns knowledge production, the cost of which may

be lowered by social coordination. In the context of joint investments in research, some

empirical literature is consistent with the existence of synergies along communication

paths. Breschi and Lissoni (2006) and Singh (2005) suggest that knowledge spillovers

may transit through the social network of inventors (insisting that the probability of

knowledge flow decreases with social distance); Hanaki et al. (2007) recently show

that the probability of alliance formation between firms in IT industry is increasing

in the number of alliances situated at short distance from the partners (typically until

distance 4). Education at school is another case. For example, Hoxby (2000) finds

evidence of synergies in the performance of students in a classroom, and Calvo et al.

1Traditionally, economists conceive two categories of effort spillovers: efforts are either strategic

complements or strategic substitutes. In the former (resp. latter) case, more spillovers increase (resp.

decrease) incentives to produce effort.

2

ha
ls

hs
-0

03
39

15
9,

 v
er

si
on

 1
 - 

17
 N

ov
 2

00
8



(2006) present evidence of networked effects.

The existence of strategic complementarities in efforts naturally exhibits a social dilemma,

in the sense that there exists Pareto-ranked equilibria, and particularly a Pareto-

dominant equilibrium. Given that externalities are networked, we analyze the impact

of the position of players on the issue of social dilemma. In particular, we ask the

following questions: firstly, does there exist a simple characterization of the Pareto-

dominant equilibrium in terms of players’ positions on the network? Secondly, starting

from a Pareto-dominated equilibrium, can we provide some appropriate procedure that

would take account of the network topology, and which would lead to an equilibrium

reducing the social dilemma? Our general answer is that players’ centrality may help

solving both questions.

To address these issues, we set up a model in which agents produce costly synergic

efforts on a fixed communication network. The originality of our approach is that

synergies exist between efforts of both directly and indirectly connected agents. More

precisely, players aggregate the choice of others through an aggregator (which we name

‘inflow of spillovers’) which satisfies simple decay assumptions, and payoffs are strate-

gic complements in the players’ own actions and the aggregation of the other players’

actions. The inflow of spillover is a function of the efforts of other agents along com-

munication paths. We capture the communication aspect by assuming convex decay

along communication paths. Our restrictions are mild; in particular, they encompass

standard geometric decay (with possible upper bound on communication path length).

Some well-know results can be derived from our model. Notably, a dominant equilib-

rium exists (at the dominant equilibrium, every agent produces more effort than what

she produces at any other equilibrium), and it Pareto-dominates all other equilibria.

For the sake of clarity, we begin our analysis with the line network2. We first detect an

equilibrium such that the ranking of efforts is not aligned with agents’ centrality. Can

the dominant equilibrium be such? A first proposition states that under very general

conditions on utility functions, both dominant and dominated equilibria satisfy that

more central agents produce larger effort levels (property P thereafter). This result,

2In our analysis, efforts are defined over a compact set of R. Additional results in the context of

binary effort choice on the line network are available upon request to the authors.
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which may sound as rather intuitive at first glance, is technically hard to show.

First, fixing one equilibrium which both is symmetric (i.e., agents with same structural

position have same effort level) and does not satisfy property P , we build the smallest -

resp. greatest - configuration among those that both dominate - resp. are dominated by

- the equilibrium and satisfy property P ; we name this latter configuration the cover

- resp. covered - configuration of the former one. The first lemma establishes that

if we initiate a simultaneous best-response algorithm (SBRA thereafter) from that

cover - resp. covered - configuration, all individual efforts increase - resp. decrease

- at each step of the algorithm. In short, the lemma presents a simple procedure,

which uses the centrality of agents, and which enables to escape from an equilibrium

that does not satisfy property P . A second lemma addresses the characterization of

equilibria reached through a SBRA. It shows that a SBRA starting from a symmetric

configuration converges to some equilibrium satisfying property P if the equilibrium

dominates the cover configuration of the initial one. Finally, a proposition states that,

when the initial configuration is the cover (resp. covered) configuration of a symmetric

equilibrium, the ‘if’ part of the second lemma holds. The first proposition follows.

The first proposition characterizes the most socially desirable and undesirable equilibria

in terms of the centralities of the agents. One immediate consequence is that, if one

detects some equilibrium such that the respective rankings of efforts and centralities

are not aligned, then for sure a social dilemma exists, although we are not in the worst

case. The second proposition provides another message: if a social dilemma exists,

and specifically if the equilibrium is both symmetric and does not satisfy property

P , then some initial coordinated impulse to certain agents’ efforts, and a dynamic

procedure of myopic revisions, is sufficient to reach a configuration which is beneficial

to all; furthermore this latter configuration satisfies property P so there is no chance

to improve upon by replicating the procedure; last, the initial coordination of impulses

is a task which is not demanding for the agents: it can be done by asking agents to

adjust once their level of effort to that of one of their neighbor.

Keeping up the degree of generality of utility functions, we extend our results to a

class of networks the individual centralities of which are unambiguous. We name it

hierarchical communities. Roughly speaking, this architecture is a mixture of trees

and symmetric networks, in such a way that neighbors have themselves a close number
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of neighbors3. The proofs exhibit no specific difficulty, except that we have to tackle

with the following point: inflows are now a function of the values of all paths between

agents (typically, one can think about functions like max, min, sum, average, · · · ).
Then, selecting either max or sum functions, we generalize the proofs established on

the line network to hierarchical communities networks.

Related literature: This model is related to coordination failures inherent to synergies

and spillovers (Cooper and John [1988]). More specifically, this work inserts in two

literatures.

First, our model is related to communication networks (the spillover aspect). In con-

trast with our article, the literature, issued from the pioneering works of Jackson and

Wolinski (1996) and Bala and Goyal (2000), mainly focuses on strategic network forma-

tion, and does not assume endogenous efforts. Few models of communication network

formation have an explicit treatment of decay4. With respect to this literature, our

paper provides results under very mild restrictions on spillovers, that is we only need

to assume that decay is convex.

Second, a literature addresses the issue of good production on networks (the endogenous

efforts aspect). In Bramoullé and Kranton (2007) and Ballester et al. (2006), agents

produce a costly effort and benefit from the effort of their neighbors. From these works,

our model extends spillovers’ channels to a communication network setting. Our model

also encompasses the formulation of utility functions described in Ballester et al. (2006)

in the case all efforts are strategic complements. One major interest of their paper is

to show that, if the level of interdependencies is sufficiently low, there is a unique

equilibrium in which efforts are proportional to a Bonacich-centrality measure; this

measure, as well as uniqueness, is clearly tied to the choice of the utility function. In

contrast, we provide results for a wide range of utility functions, and we allow multiple

equilibria and related coordination failure issues. This generalization precipitates the

restriction of our results to architectures which are unambiguous in terms of centrality

measures.

3Interestingly, networks with high level of assortativity in degree are empirically documented in

many social network analyses, like the internet network, research collaboration networks, etc.

4See Bloch and Dutta (2007), Fery (2007), Hojman and Szeidl (2006), Matsubayashi and Yamakawa

(2006), Rogers (2005).
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Finally, we mention that some papers address the issue of both network formation

and endogenous effort, like Cho (2006), Goyal and Moraga (2001), Goyal and Vega-

Redondo (2005), Cabrales et al. (2007), and Galeotti and Goyal (2007). This last

article incorporates indirect spillovers with possible decay (in a context where efforts

are strategic substitutes).

The article is organized as follows. The next section presents the model, section 3 is

devoted to the characterization of equilibria on the line network, while section 4 extends

the results to more general networks. Section 5 concludes. All proofs are included in

the appendix.

2 The model

Let N = {1, ..., n} be a finite set of agents, with n ≥ 3. The effort of agent i is

denoted δi. The definition set ∆ is a compact in R and it is common to all agents.

We denote by δl (resp. δh) the lower (resp. upper) bound of ∆. The effort level may

represent the amount of time researchers spend inventing a new product. Throughout

the article, superscripts refer to effort levels, subscripts to agents. A strategy profile

~δ = (δ1, · · · , δn) may be denoted (δi, δ−i) for convenience. Selecting effort level δi ∈ ∆,

agent i incurs a fixed cost c(δi), with c(.) strictly increasing and c(δl) = 0.

Agents are placed on specific networks. Nodes represents agents, edges between nodes

represent communication links. For the sake of clarity, we will devote next section

to the finite line network (section 4 generalizes results to other architectures which

we formally define thereafter). Let index i quote for the position of agent i on the

line. Links are undirected. A link between agents i and j is written i : j. The set

of links of the line network is {1 : 2, 2 : 3, · · · , n − 1 : n}. The path pi,j from agent

i to agent j, with j > i (resp. j < i) without loss, is the sequence of distinct nodes

{i+ 1, i+ 2, · · · , j} (resp. {i− 1, i− 2, · · · , j}). We denote by ~δ(p) the vector of effort

levels of the agents placed on path p. A configuration of effort ~δ is symmetric if any

pair of agents with same structural position have same effort level; that is, ~δi = ~δn−(i−1).

Let ~δk denote a vector of effort levels with k elements. Denote by R the space of all

possible vectors ~δk, for k ∈ {1, 2, · · · , n}.
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We define the value of a path p as a function v related to effort levels ~δ(p) on the path:

R → R+

~δ 7→ v(~δ)

The value v(~δ(pi,j)) may be interpreted as the amount of externality that agent i

captures from joining agent j through path pi,j. We may abuse the language by evoking

the value of a path rather than the value of effort profile associated with a path.

Throughout the paper, we provide function v with three assumptions which grasp the

communication aspect of the model. Firstly, we assume that function v is increasing

in its arguments. Assumption 1 states this formally:

Assumption 1 For all ~δk, ~δ
′
k in R2 such that ~δk ≤ ~δ′k, we have v(~δk) ≤ v(~δ′k).

Put differently, the value of a path increases if agents on the path produce more effort.

Secondly, information travels with possible decay:

Assumption 2 For any sequence of effort levels (δa, δb, · · · , δr) ∈ R, for every δq ∈ ∆,

v(δq, δa, δb, · · · , δr) ≤ v(δa, δb, · · · , δr)

Assumption 2 states that the value of a path decreases if we add a new intermediary

at the beginning of the path. Note that the assumption expresses weak inequality.

Notably, this formulation encompasses bounded communication.

Assumption 3 If v(δa1 , δb1 , · · · , δr1) ≤ v(δa2 , δb2 , · · · , δr2), then for all δq ∈ ∆,

v(δa1 , δb1 , · · · , δr1)− v(δq, δa1 , δb1 , · · · , δr1) ≤ v(δa2 , δb2 , · · · , δr2)− v(δq, δa2 , δb2 , · · · , δr2)

Assumption 3 states that the loss which results from extending the path with some

given effort at the beginning, is increasing in the value of the path. In a word, decay

increases with the value of the path. This condition is quite general; in particular, it

is satisfied in the case of geometric decay.

Let I(δ−i) denote the global externality received by agent i (indifferently labeled the

inflow of agent i). For simplicity, we assume an additive formulation of the global

externalities that agents capture from the network:

∆n−1 → R+
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(δ1, · · · , δi−1, δi+1, · · · , δn) 7→ I(δ−i) =
∑
j 6=i

v(~δ(pi,j))

Individual payoffs then are computed as follows:

∆n → R+

~δ 7→ Πi(δi, δ−i) = π(δi, I(δ−i))− c(δi)

To be consistent with our communication context, we assume that function π(., .) is

increasing in both arguments. Furthermore, the profit function satisfies a standard

definition of synergic efforts:

Definition Function π is increasing in differences if: for all i ∈ {1, 2, · · · , n} and

every pair (a, b) ∈ ∆2 with a < b, if I(δ−i) ≤ I(δ′−i), then

π(b, I(δ−i))− π(a, I(δ−i)) ≤ π(b, I(δ′−i))− π(a, I(δ′−i))

We shall say that efforts are strategic complements along communication paths if func-

tion π satisfies the increasing difference property.

This definition expresses that when an agent increases his effort level, the increase of

his benefit is strictly larger, the higher the value of the inflow that he receives5.

Example 1 Geometric decay with possible upper bound B ∈ N on the length of

communication paths:

v(δi1 , δi2 , · · · , δiq) = Π
min(B,q)
k=1 δik

The profit function is written:

π(δi, δ−i) = δi × I(δ−i)− c(δi)

with δm ≤ 1. This formulation exhibits strategic complementarity in individual efforts.

Note that the value function satisfies assumptions 1 and 2. As producing effort, agents

may for instance access some valuable knowledge, with all pieces of knowledge being

complementary: the return of the effort of one agent is increasing in others’ amount

of knowledge. For instance, researchers may be more productive when the knowledge

5The ’strict’ refinement means that no Nash equilibrium contains two agents with same inflow and

different effort levels.
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they receive from the community is increased. If efforts are exogenous (m = 1), we

obtain the payoffs of connections’ model (net of link formation costs) (Jackson and

Wolinsky [1996]).

Example 2 Spillovers from direct neighbors (Ballester et al. [2006]):

v(δi1 , δi2 , · · · , δiq) = δi1 if q = 1, 0 otherwise.

The profit function is written:

π(δi, δ−i) = δi −
σ

2
δ2
i + γδi × I(δ−i)

We analyze Nash equilibria in pure strategies: a strategy profile is Nash if for every

agent, her current strategy is a best-response to the current strategies of all other

agents. Formally, a profile of individual strategies ~δ∗ = (δ∗1, · · · , δ∗n) is a Nash equilib-

rium of the game on the network g if and only if, for every agent i ∈ N , if δi 6= δ∗i ,

πi(δ
∗
i , δ
∗
−i; g) ≥ πi(δi, δ

∗
−i; g). Note that individual participation constraints are always

satisfied in the game since the smallest effort level is costless. A dominant equilibrium,

say ~δd, is such that for all existing equilibrium ~δ∗, ~δ∗i ≤ ~δd
i for all i. Symmetrically, a

dominated equilibrium, say ~δdd, is such that for all existing equilibrium ~δ∗, ~δ∗i ≥ ~δdd
i for

all i.

Finally, we briefly introduce some notations related to the SBRA. Define an infinite

sequence of rounds r = 0, 1, 2, · · · Fix some initial configuration ~δ0. Then, at each

round r ≥ 1, let all agents revise simultaneously their strategy in response to the

configuration ~δr−1, and denote ~δr this new configuration. The SBRA may eventually

converge to some equilibrium configuration which we denote ~δ∞.

3 Results on the line

Games with strategic complementarity contain often social dilemmas. Notably, a dom-

inant equilibrium, socially attractive, often exists.
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3.1 Preliminary

We begin the analysis with recalling a well-known result about existence of Nash equi-

libria and dominant equilibria in our game.

Preliminary result 1 There always exists a Nash equilibrium in pure strategies. Fur-

thermore, a dominant Nash equilibrium exists, as well as a dominated one. In both,

symmetric agents produce the same effort level. The dominant (resp. dominated) equi-

librium is easily accessed through a SBRA with initial efforts set at maximal (resp.

minimal) level.

(we omit the formal proof, see Topkis [1979]) To give a flavor, existence is related to the

strategic complementarity of the game. Starting from the configuration where all agents

exert a maximal effort level, we apply the SBRA. Firstly, this algorithm converges since

effort levels are bounded below and we have the increasing differences property: at the

end of each iteration, the effort level of every agent does not exceed the one he had at

the beginning of the iteration. Secondly, at each step of iteration, symmetric agents

produce the same effort level since they simultaneously revise their strategy. Thirdly,

the SBRA converges to the dominant equilibrium: at each stage of the algorithm,

no agent selects some effort level below the one he exerts at any equilibrium, due to

increasing return property; in a word, no agent can ‘bore’ a configuration which is

an equilibrium. This result is more general than our networked context, and only

assumption 1, in combination with the increasing difference property, are required.

3.2 A counter-intuitive example

Since agents are generally not symmetrically positioned on the line6, equilibrium con-

figurations of efforts may not be homogenous. One basic observation is that for any ho-

mogenous configuration of efforts, more central agents receive more externality. Then,

we may expect that equilibria satisfy the following property:

Property P More central agents produce higher effort levels.

We name P -equilibrium an equilibrium satisfying property P . Actually, equilibria,

and even the dominant and the dominated one, need not necessarily be P -equilibria.

6Every agent i ∈ N has a unique symmetric agent, who is agent n− i + 1.
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For instance, consider the case of the dominant equilibrium, which is accessible when

running the SBRA with all initial efforts set at the upper bound. At the end of

first round, more central agents clearly produce more effort. However, inflows are not

necessarily increasing toward the center of the line. The larger the agent’s effort, the

greater the inflow of her neighbors; therefore property P needs not being satisfied at each

stage of the algorithm. And actually, a simple example show that there exist equilibria

which do not satisfy property P . This example obtains under geometric decay (which

satisfies the three assumptions). Consider n = 8, ∆ = {δ1, δ2, δ3} (hence δ1 = δl and

δ3 = δh), with δ1 = 0.02, δ2 = 0.32, δ3 = 0.45. Consider the symmetric profile of efforts

(δ2, δ3, δ2, δ1, δ1, δ2, δ3, δ2). Direct computation indicates that the inflows of agents 1 to

4 are I1 ' 0.59, I2 ' 0.65, I3 ' 0.61, I4 ' 0.54 (the inflow of other agents is deduced

by symmetry). Thus, there is the same ordinal ranking between efforts and inflows.

We conclude that there exists a cost profile under which this configuration is stable;

for instance a Nash equilibrium obtains if c1 = 0, c2 = 0.179, c3 = 0.260.

3.3 Main results

Among all equilibria, the dominant equilibrium is socially desirable. Indeed, since indi-

vidual payoffs are increasing in the inflows, the dominant equilibrium Pareto-dominates

all other Nash equilibria. Next proposition makes a link between the position of agents

on the line and their level of effort at both dominant and dominated equilibria:

Proposition 1 Both dominant and dominated equilibria are symmetric P -equilibria.

To establish the proposition, we prove two successive lemmata and a second proposi-

tion.

Before presenting the lemmata, we define the notions of cover and covered configura-

tions associated with any symmetric configuration. Consider a symmetric configuration

~δ. The cover configuration ~δH is the unique smallest element of the set of configurations

which both dominate ~δ and satisfy property P ; the covered configuration ~δL that we set

up is the largest element of the set of configurations that both satisfy property P and

are dominated by ~δ. Figure 1 illustrates how we build the required configurations. We

will see later on that the cover configuration of an equilibrium is crucial to our analysis.
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Technically, we apply the following algorithm: denote by i0 the index of the central

agent: i0 = n+1
2

if n is odd, i0 = n
2

+ 1 otherwise. First, we set δH
1 = δ1. Then, stage 1

proceeds as follows: consider the efforts of agents 1 and 2. If δ2 ≤ δ1, we set δH
2 = δ1,

otherwise we set δH
2 = δ2. Stage 2 replicates stage 1 with agents 2 and 3; that is, If

δ3 ≤ δ2, we set δH
3 = δ2, otherwise we set δH

3 = δ3. Then we iterate the process until

agent i0. Since the configuration δ is symmetric, we do the same at the right side of

agent i0, that is we set δH
n+1−i = δH

i for all i < i0 (if n is even, we also set δH
i0+1 = δH

i0
).

We proceed similarly with the covered configuration, except that we start from the

center to the extremities of the line (decreasing the effort of agents such that their

more central neighbor is lower). Note that both the cover and covered configurations

are symmetric. Further, this algorithm enables to obtain those configurations after a

unique revision of individual strategies.

We are now able to state our first lemma (which contains the main technical difficulties):

Lemma 1 Consider a symmetric equilibrium ~δ. Then, if a SBRA starts from its cover

(resp. covered) configuration, all agents produce a higher (resp. lower) effort level after

round 1. Formally, if ~δ0 = ~δH (resp. ~δ0 = ~δL), then ~δ1 ≥ ~δ0 (resp. ~δ1 ≤ ~δ0).

(Proof in the appendix) Remark that, by increasing difference property, it is actually

true that ~δr ≥ ~δr−1 (resp. ~δr ≤ ~δr−1) for all r = 1, 2, · · · ,∞. The lemma may not hold

if the initial configuration is not an equilibrium, even if it satisfies property P . Again,

we would like to insist that, although intuitive at first glance, the result is not trivial.

More precisely, the shape of the cover configuration (like an ‘Inca’ pyramid) enables

the comparison of inflows received by agents with same level of effort, which is critical

to obtain our result. In opposite, if we start from a configuration that dominates

the equilibrium, we are not sure that it converges to an equilibrium which strictly

dominates the initial equilibrium.

Lemma 1 provides sufficient conditions for escaping from some equilibrium; indeed, if

the equilibrium that we start from does not satisfy property P , its cover configuration

is distinct from it, and for sure we escape from the initial equilibrium. We now turn to

the characterization of equilibria toward which a SBRA converges. Next lemma gives

some condition under which the SBRA starting from a symmetric configuration (not

necessarily an equilibrium) converges to a P -equilibrium.
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Lemma 2 Initiating the SBRA from a symmetric configuration, if the converging con-

figuration dominates its cover configuration, then the converging configuration is a P -

equilibrium.

(Proof in the appendix) This lemma is rather general, but conjectural. The next

proposition provides sufficient conditions for the ‘if’ part of lemma 2 to be valid:

Proposition 2 Consider a symmetric equilibrium ~δ that does not satisfy property P .

Starting from its cover (resp. covered) configuration, the SBRA converges to a sym-

metric P -equilibrium.

(proof omitted) Proposition 2 is a direct application of lemma 1 and lemma 2. Propo-

sition 1 stems immediately from lemma 1 and proposition 2 (proof omitted).

The message behind proposition 1 is that if we detect an equilibrium which does not

satisfy property P , then for sure the equilibrium is not dominant. Then, Proposition 2

provides our second main message. In a word, if we detect a symmetric equilibrium ~δ

which does not satisfy property P , providing an appropriate collection of impulses in

efforts, and thus letting agents myopically revise their strategies without any central

coordination, the procedure reaches an equilibrium which is beneficial to all. This

result is interesting from the point of view of the social dilemma. Furthermore, the

converging configuration is a P -equilibrium, which means that we cannot do better

(since the new equilibrium confounds with its cover configuration). Finally, starting

from an equilibrium, accessing its cover configuration is not very demanding. Indeed,

following the algorithm of the construction of the cover configuration, it is sufficient to

ask agents a unique adjustment of their effort level to their more peripheral neighbor.

4 Hierarchical communities

In this section, we develop our results established on the line to some other networks.

We only present the extension of lemma 1. The other lemma and the two propositions

established in the preceding section follow directly.

Example. We build the following class of trees. There is a sequence of q integers

p1, p2, · · · , pq with p1 ≥ p2 ≥ · · · ≥ pq. This class of tree is built recursively as follows.
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Start with one agent say i0, denote by class-1 the set {i0}, and build p1 links involving

agent i0; label agent i0’s neighbors class-2 agents. Then, considering every class-2 agent,

build p2 links involving her. The new agents are by construction order-2 neighbors from

agent i0; denote them as class-3 agents. Continue until reaching class-q. This class of

trees has two main features: first, any pair of agents in a given class-k, k = 2, 3, · · · , q
are symmetric; second, if agent i belongs to class-k and agent j to class-k′ with k < k′,

then agent i’s degree (i.e. the number of nodes agent i is involved in) is not smaller

than that of agent j. For instance, the line network is such that p1 = p2 = · · · = pq = 1

and n = 2q − 1. We name this class a hierarchy (see figure 2 - Left).

A definition of centrality for this class. Agents with lower index k have higher

centrality.

(for an explanation, see the last remark of the section)

Result 1 For any hierarchy such that p1 > p2, lemma 1 holds.

We omit the detail of the proof. We explain briefly why the lemma still holds (we

only mention the part related to the cover configuration). First, we build the cover

configuration similarly to the case of the line: recalling that symmetric agents produce

the same effort level at any equilibrium, we start with class-1 agent; consider in the

rest of the society the set of agents with maximum effort, and among them select

one with lowest index. Then put the effort of agents with lower index at this effort

level. Replicate the process accordingly until the end of the network. Having built

the cover configuration, the proof extends straightforwardly. Consider some agent i

belonging to some class-k. Let us suppose that agent i’s effort is smaller than one

agent say j of class-(k + r) at the equilibrium. Then they produce same effort on the

cover configuration. Now it is easy to see that the inflow of agent i is greater than

that of agent j on the cover configuration. The networks depicted in figure 3 illustrate

the point in the case r = 1 and k > 1. The agents providing externalities to agent

i and j can be divided in two separate regions. One region consists in two subtrees

of similar pattern: the first contains agent j as top agent and contains the (direct

and indirect) descendants of agent j; the second is a replication of this subtree with

agent i as top agent. If pk > pk+1 (figure 3-Left), it is sufficient to consider a subtree

containing exclusively descendants of agent i; if pk = pk+1 (figure 3-Right), this subtree
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contains one branch with the class-(k − 1) neighbor of agent i. Note that if k = 1, the

latter case does not arise since we impose p1 > p2. Then by construction, with any

path toward a class-(k + z) descendant of agent j we can associate a path toward a

class-(k + z − 1) neighbor of agent i, with all efforts of intermediaries greater on the

latter path. Using assumptions 1 and 3 is then sufficient to find that agent i receives

more inflow than agent j in this region. The complementary region poses no difficulty:

decay (assumption 2) basically induces that agent i receives more inflow from this part

of the network than agent j. Summing all externalities, we find that agent i receives

more inflow than agent j on the cover configuration. Then, starting from the cover

configuration, the SBRA would converge to a configuration that dominates the cover

configuration.

We remark that the condition p1 > p2 is necessary. Indeed, if p1 = p2, the top agent

has p1 direct neighbors while each of her neighbors has p1 + 1 neighbors (see figure 4).

If decay is strong (a limiting case is when only direct neighbors provide externalities),

the top agent may receive less inflow than her neighbors.

Definition. We build the following class of networks. We consider a collection of

x identical hierarchies of length say q. Then, we add (i) any symmetric and connected

structure between all class-1 agents (a circle, a complete network, · · · ), with average

degree d1 ≥ 1 in this subnetwork; (ii) any symmetric and connected structure between

all class-k agents of a same hierarchy, with same average degree dk for all hierarchies.

We impose that dk ≥ dk+1 for k = 1, 2, · · · , q − 1. We name this class a hierarchical

community (see figure 5). Of course, this class contains hierarchies as defined in the

preceding example. The definition of centrality for this class is identical: Agents with

lower index k are more central.

On general networks, there may exist more than one path between any pair of agents.

Thus, we need to define how we derive some inflow from the collection of paths between

two agents. Of course, which function is selected (like max or sum) matters. We restrict

attention to functions max (i.e. the externality that agent i receives from agent j is

the greatest value over all paths linking them) and sum (i.e. the externality that agent

i receives from agent j is the sum of path values over all paths linking them):

Result 2 Suppose that agents receive inflow through either function max or function
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sum. Any hierarchical community with d1 ≥ p2 is such that lemma 1 holds.

Figure 6 illustrates the point with function max. To see why the result holds, build the

cover configuration of a symmetric equilibrium as usual. Suppose that agent i is a class-

1 agent (which is the case in figure 6). Then d1 ≥ p2 guarantees that the equivalent

tree to that of descendants of agent j (the red one in figure) can be obtained from

agent i (red-doted nodes) with all agents producing more (on the cover configuration)

node by node. Considering all paths between pairs of agents, function max ensures

that agent i obtains more inflow than agent j on the cover configuration. Now suppose

that agent i is not central. Then if pi > pj, only descendants of agent i can be used

to find the good tree, and we are done. If pi = pj, then one uses one direct ‘parent’ of

agent i as a source of one branch. Finally, the subnetwork delineated by the doted line

and excluding agent i provides either equal inflow to agents i and j, or is favorable to

agent i by decay. We do not present the case of function sum; basically it may only

increase the difference of inflows in favor of agent i.

5 Conclusion

This article has studied individual incentives to produce synergic efforts, the returns of

which depend on spillovers spreading on a network. In that situation, a social dilemma

exists, i.e. some equilibria are Pareto-ranked. First, we provide a characterization of

the equilibrium which Pareto-dominates all others, under the form of a simple property

(property P ). This characterization holds under general conditions on the propagation

of spillovers. Second, this characterization is useful for addressing the issue of social

coordination. Considering any equilibrium which is not the most desirable and which

does not possess property P , we provide a simple procedure, which exploits property

P , to reduce the social dilemma.

Due to the level of generality of our assumptions regarding the transmission of infor-

mation, our analysis is restricted to specific network architectures, for which centrality

ranking is unambiguous. Future research may explore further the relationship between

centrality indexes and efforts on more general network architectures, perhaps under

more specific decay assumptions. Moreover, the strategic formation of both efforts and

links is a challenging issue.

16

ha
ls

hs
-0

03
39

15
9,

 v
er

si
on

 1
 - 

17
 N

ov
 2

00
8



APPENDIX: PROOFS

Proof of lemma 1. Suppose that a symmetric equilibrium ~δ does not satisfy property

P . if a SBRA starts from its cover (resp. covered) configuration ~δH , all agents produce

a higher (resp. lower) effort level after round 1.

Denote i0 the index of the central agent: i0 = n+1
2

if n is odd, i0 = n
2

+ 1 otherwise.

Considering one symmetric equilibrium δ and its cover configuration δH , we define the

set Z(δ) = {1, n} ∪ {i ∈ {2, 3, · · · , i0}/δH
i = δi and δi > δi−1} ∪ {i ∈ {i0 + 1, i0 +

2, · · · , n − 1}/δH
i = δi and δi > δi+1}. In words, the set Z contains agents such that

their effort level on the cover configuration is the same as their effort in the equilibrium

configuration δ, and such that their less central neighbor produces a strictly lower effort

on the cover configuration.

Part (A) shows that, in the cover configuration ~δH , if we have two agents, say i

and j, with same effort level and such that agent i ∈ Z while j /∈ Z (then agent j is

more central than agent i by construction of Z), then agent i receives a lower inflow.

Part (B) shows that the SBRA converges to a configuration which dominates ~δ.

(A): Recall that ~δH is symmetric. Fix, in ~δH , any agent i0 + r, r ≥ 0. Consider the

unique agent i0 +z(r) ∈ Z, such that δH
i0+r = δH

i0+z(r) (superscript H quotes here for the

effort in profile ~δH). Note that r ≤ z(r). Having fixed r, Let k(r) = 2i0 + r − (n− z);

agent k(r), placed at the left side of agent i0 + r, is such that (i0 + r) − k(r) =

n− (i0 + z(r)). Note that k(r) > 1 if r > 0. Writing the difference IH
i0+r − IH

i0+z(r) and

rearranging, we find:

IH
i0+r − IH

i0+z(r) =

k=k(r)−1∑
k=1

[v(pi0+r,k)− v(pi0+z(r),k)]︸ ︷︷ ︸
(E1)

+

k=i0+r−1∑
k=k(r)

[v(pi0+r,k)− v(pi0+z(r),k)]−
k=n∑

k=i0+z(r)+1

[v(pi0+z(r),k)− v(pi0+r,k)]︸ ︷︷ ︸
(E2)

+

k=i0+z(r)∑
k=i0+r+1

v(pi0+r,k)−
k=i0+z(r)−1∑

k=i0+r

v(pi0+z(r),k)︸ ︷︷ ︸
(E3)
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� Expression (E1): for all k = 1, 2, · · · , k(r) − 1, v(pi0+r,k) ≥ v(pi0+z(r),k) by the

assumption 2 on decay. Indeed, for all such k, agent i0 + r is intermediary between

agent k and agent i0 + z(r) on the line. Then we find (E1) ≥ 0.

� Expression (E2): for each q = 1 to n−i0−z(r), v(pi0+z(r),i0+z(r)+q) ≤ v(pi0+r,i0+r−q)

by assumption 1. Assumption 3 therefore predicts that for all such indexes q,

v(pi0+z(r),i0+z(r)+q)− v(pi0+r,i0+z(r)+q) ≤ v(pi0+r,i0+r−q)− v(pi0+z(r),i0+r−q)

Summing all inequalities we obtain (E2) ≥ 0.

� Expression (E3): By construction of ~δH , δi0+r = δi0+r+1 = · · · = δi0+z(r), so clearly

(E3) = 0.

Thus, IH
i0+r ≥ IH

i0+z(r).

(B): Let us apply the SBRA with profile ~δH as initial condition (~δH = ~δ0), and let

~δt denote the value of efforts at the end of round t = 1, 2, · · · . Recall that:

� every agent in Z produces the same effort level in both configurations δ and δH ,

� ~δ is an equilibrium profile,

� ~δH dominates ~δ,

� payoff functions satisfy increasing differences.

Then, at the end of the first round of the SBRA, we derive that IH
i0+z ≥ Ii0+z for all

i0 + z ∈ Z. Then, by increasing differences property, we have δ1
i0+z ≥ δH

i0+z (where

superscript ‘1’ quotes here for first round). Now, consider some agent i0 + r. By

(A), IH
i0+r ≥ IH

i0+z(r), where i0 + z(r) ∈ Z is such that δH
i0+r = δH

i0+z(r). Then, the

increasing differences property induces that δ1
i0+r ≥ δ1

i0+z(r). Since δH
i0+r = δH

i0+z(r), we

have δ1
i0+r ≥ δH

i0+r. Hence, all agents increase their efforts at the end of round 1. �

Proof of lemma 2. Consider a symmetric configuration ~δ0. Suppose that the configu-

ration ~δ∞ it converges to through SBRA does not satisfy property P . Since ~δ0H ≤ ~δ∞,

we also have ~δ0H ≤ ~δ∞L, and thus ~δ0 ≤ ~δ∞L. Now, applying the SBRA with ~δ0

and ~δ∞L as initial configurations, it is true that for all rounds r ≥ 1, ~δr ≤ ~δ∞Lr (by

increasing difference property). Therefore, ~δ∞ ≤ (~δ∞L)∞ (where (~δ∞L)∞ is the config-

uration the SBRA converges to if we put ~δ∞L as initial condition). Remarking that

~δ∞ is a symmetric equilibrium, we can apply lemma 1 which says that from the cov-

ered configuration of a symmetric equilibrium, SBRA converges toward a configuration
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dominated by the covered configuration. We find that (~δ∞L)∞ ≤ ~δ∞L, inducing finally

~δ∞ ≤ (~δ∞L)∞ ≤ ~δ∞L < ~δ∞, a contradiction. �
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FIGURES

Figure 1: Black: a configuration ~δ; Red-diamond: ~δH ; Blue-square: ~δL
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Figure 2: A hierarchy (q = 5)

Figure 3: k > 1; Left: pk > pk+1 - Right: pk = pk+1
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Figure 4: A hierarchy such that p1 = p2

Figure 5: A hierarchic community (x = 4, q = 3, p1 = 3, p2 = p3 = 2, d1 = 3, d2 = 2,

d3 = d4 = 0) - black nodes are class-1 agents in hierarchies
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Figure 6: A hierarchic community (x = 3, q = 4, p1 = p2 = p3 = 2, d1 = 2, d2 = d3 = 1,

d4 = 0)
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