
A Simple Multiple Variance-Ratio Test Based

on Ranks ⋆

G. Colletaz
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Abstract

Using Chow and Denning’s arguments applied to the individual hypothesis test
methodology of Wright (2000) I propose a multiple variance-ratio test based on
ranks to investigate the hypothesis of no serial coorelation. This rank joint test
can be exact if data are i.i.d.. Some Monte Carlo simulations show that its size
distortions are small for observations obeying the martingale hypothesis while not
being an i.i.d. process. Also, regarding size and power, it compares favorably with
other popular tests.

1 Introduction

The random walk hypothesis is important in economics and, particularly in
empirical finance and applied macroeconometrics, one is often interested in
testing the absence of temporal dependence. A popular approach among prac-
titioners is the variance-ratio analysis. This type of analysis exploits the fact
that aggregation of data sampled at various frequencies verifies an interesting
property under the i.i.d. hypothesis: (1/k)th the variance of a sum of k con-
secutive observations is equal to the variance of the original series. A test for
an individual variance-ratio, i.e. for a given value of k, was derived by Lo and
Mc Kinlay (1988) and the extension to a joint test was carried out by Chow
and Denning (1993). A drawback of this approach is that the distribution of
the test statistic is quite complicated and only an upper bound for the critical
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value is given. The use of an upper bound favors the null hypothesis so that the
test might be too conservative 1 . This may explain why for example, Gourier-
oux and Jasiak (2001, p.28) agree that variance-ratio analysis is less efficient
than tests based on empirical autocorrelations. Another drawback is that the
asymptotic law is derived under a Gaussian setting. It can be shown that in
the class of stable Paretian distributions this asymptotic distribution depends
on the characteristic exponent and some Monte Carlo experiments found that
the convergence can be extremely slow 2 . However, in a recent study, Wright
(2000) used a non parametric approach based on ranks or on signs to examine
if an individual variance-ratio is unity. He also performed some Monte Carlo
experiments which indicate that they may have greater power than their para-
metric counterparts. His procedure, though, is not designed to give a joint test
for a given number of variance-ratios considered simultaneously which under
the null must all be equal to one. In this case a proper test should use a
multiple comparison in order to give an overall correct size.

In this paper, I propose a multiple variance-ratio test based on ranks that over-
comes the preceding difficulties by merging Wright (2000) and Chow-Denning
(1993) approaches. The logic behind this test is easy to understand: if when
considering an individual hypothesis the nonparametric Wright’s test improves
over the parametric test of Lo and MacKinlay, and if according to Chow and
Denning we also have an improvement with the use of a parametric multiple
test over an individual test, then it can be useful to consider a nonparametric
multiple test. Being non-parametric 3 this joint test is exact under the i.i.d.

hypothesis and we can easily approximate its critical values as much as we
want. Moreover, Monte Carlo simulations indicate that size distortions are

1 This issue is also addressed by Whang and Kim (2003) who use a subsampling
procedure in order to approximate the asymptotic null distribution of modified
versions of Chow and Denning’statistics. However with this approach one has to set
the subsample size for a given sample size. As they notice, choosing the subsample
size is difficult in practice and important as this selection may affect the properties
of their test (for a method to choose this size in a different context see Delgado,
Rodriguez-Poo and Wolf (2001)). Moreover their critical values are the asymptotic
ones while here we can calculate exact critical values for any finite sample size under
the i.i.d. hypothesis.
2 On these points, see Tse and Zhang (2002). We can also note that Chow and Den-
ning (1993) in their empirical applications do not use critical values associated with
the asymptotic distribution but the ones obtained with Monte Carlo experiments.
3 Nonparametric methods and in particular rank tests have been used for many
years in time series analysis. See for example the extensive bibliography of Dufour,
Lepage and Zeidan (1982) and more recently Hallin and Puri (1992). In particular a
rank test was constructed to investigate the presence of serial dependence by Dufour
and Roy (1986) leading to a portmanteau statistic and by Breitung and Gourieroux
(1997) to test for the existence of a unit root based on rank counterpart of the
Dickey-Fuller statistic, i.e. with a different approach than the one presented here.
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small for independent but non identically distributed observations. It also has
some power in rejecting the null for non independent observations generated by
processes often used empirically for which it compares favorably with other
popular tests. In these experiments for comparison purposes I consider the
two statistics derived by Chow and Denning, the portmanteau or Q-statistic
of Ljung and Box (1978) commonly used to test nullity of autocorrelations,
and the Dm test recently proposed by Pena and Rodriguez (2002).
The paper is structured as follows. Section 2 briefly recalls the conventional
variance-ratio tests. Section 3 sets out Wright’s non parametric procedure and
the construction of the joint test. Section 4 examines its size and power under
various simulated alternatives. Section 5 concludes.

2 The Parametric Variance-Ratio Approach

The variance-ratio test, introduced by Lo and MacKinlay (1988) and Poterba
and Summers (1988) is often used to test the hypothesis that a given time
series or its first difference is a collection of independent and identically dis-
tributed observations (i.i.d.) or that it follows a martingale difference sequence
(m.d.s.). This test uses the fact that the variance for an i.i.d. series increases
linearly in each observation interval, that is, the variance of a k-sum is equal
to k times the variance of the series, or equivalently that the variance-ratio is
equal to one, i.e.,

V R(k) =
V ar(xt + xt−1 + · · · + xt+k+1)/k

V ar(xt)
= 1

In order to test the i.i.d. hypothesis, Lo and MacKinlay (1988) consider statis-
tics based on an estimator of V R(k). For a series with T observations and
k ≥ 1,

V̂ R(k) =
σ̂2(k)

σ̂2(1)
, where

σ̂2(k) =
1

k(T − k + 1)(1 − k/T )

T∑

k

(xt + xt−1 + · · · + xt+k+1 − kµ̂)2, and

µ̂ =
1

T

T∑

1

xt

They show that if xt is i.i.d. and under some more weak assumptions then for
k ≥ 2,

Z1(k) =
√

T (V̂ R(k) − 1)/
√

2(2k − 1)(k − 1)/3k −→d N(0, 1)

3



When xt exhibits heteroscedasticity, Lo and MacKinlay increase the robustness
of the test by using White (1980) and White and Domowitz’ (1984) arguments
and propose the modified statistics 4 Z2,

Z2(k) =
√

T
(
V̂ R (k) − 1

)



k−1∑

j=1

[
2 (k − j)

k

]2

δj




−1/2

,

where,

δj = T





T∑

t=j+1

(xt − µ̂)2(xt−j − µ̂)2



 /

{
T∑

t=1

(xt − µ̂)2

}2

.

If xt can be described by a martingale difference sequence, and again with
some more assumptions 5 , then Z2 is asymptotically standard normal.

As stressed by Chow and Denning (1993), these two statistics are appropriate
to test an individual variance ratio, i.e. for a given value k. However, under
the null hypothesis any variance ratio must be equal to one, so that a more
powerful approach is a comparison of all selected variance-ratios with unity.
Let ki be any integer greater than one with ki 6= kj for i 6= j, Chow and
Denning formulate the null hypothesis as H0 : V R(ki) = 1 for i = 1, 2, . . . , m,
and define their statistics as

Z∗
1(m) = max

1≤i≤m
|Z1(ki)|,

Z∗
2(m) = max

1≤i≤m
|Z2(ki)|

In order to control the size of the multiple variance ratio test and because the
limit distribution of these statistics is complex, they apply the Sidak (1967)
probability inequality, which improves over the Bonferroni inequality, and give
an upper bound to the critical values taken in the Studentized Maximum
Modulus distribution. The confidence interval of at least 100(1−α) percent for
these extreme statistics can be defined as ±SMM(α, m,∞) and asymptotic
critical values can be calculated from the standard normal distribution as
±SMM(α, m,∞) = Zα+/2 where α+/2 = 1− (1− α)1/m. However with finite
sample sizes it may be preferable to use critical values obtained by simulations
as done by Chow and Denning themselves.

4 It has been argued that misleading conclusions may be obtained with VR statistics
when time-varying volatility is present in the data. See for example Kim, Nelson
and Startz (1991, 1998a, 1998b) who also propose a solution based on a Bayesian
approach and the use of a Gibbs sampler.
5 See Lo and MacKinlay (1988) for details.
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3 A Multiple Variance-Ratio rank Test extension of the Wright

Procedure

Wright (2000) gives four alternatives based on ranks and signs to the paramet-
ric variance-ratio tests. Here, according to his own simulations 6 , we will only
build upon the test that globally dominates the three others in terms of size or
power. Let r(xt) be the rank of xt among x1, x2, . . . , xT and the corresponding
standardized (zero-mean, unit variance) series r1t given by:

r1t =
(
r(xt) −

T + 1

2

)
/

√
(T − 1)(T + 1)

12

He simply substitutes r1t to xt in the definition of the test statistic Z1 so that
the proposed test statistic is 7 :

R1(k) =

(∑T
k+1(r1t + r1t−1 + . . . + r1t−k+1)

2

k
∑T

1 r2
1t

− 1

)
×

(
2(2k − 1)(k − 1)

3kT

)−1/2

By construction under the i.i.d. hypothesis r(xt) is a particular permutation
of numbers 1, 2, . . . , T each having the same probability of realization, so that
R1(k) has the same distribution as R∗

1(k), where:

R∗
1(k) =

(∑T
k+1(r

∗
1t + r∗1t−1 + . . . + r∗1t−k+1)

2

k
∑T

1 r∗
2

1t

− 1

)
×

(
2(2k − 1)(k − 1)

3kT

)−1/2

,

and r∗1t is the standardized series obtained with any permutation of 1, 2, . . . , T .
Therefore the exact sampling distribution of R1(k) may be approximated with
a bootstrap method to any desired degree of accuracy by considering the em-
pirical distribution of R∗

1(k); because it is free of nuisance parameters, it can
be used to conduct an exact test.
Of course this property of equal probability is not true when there is some
conditional heteroscedasticity in xt even if the martingale independence hy-
pothesis is valid. However, Monte Carlo simulations show that in this case the
size distortions of the test are small.

6 See Wright (2000) and in particular tables 2 to 7 comparing the size and power
of his statistics R1, R2, S1, S2. Moreover the sign test depends upon a nuisance
parameter namely the presence or the absence of a drift in the random walk.
7 Note that, like many others, Wright does not take into account the degree of
freedom adjustment present in the consistent estimator of σ̂2(k) derived by Lo and
MacKinlay.
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Table 1
Some Bootstrap Percentiles of the Exact Distribution a

|ZR| <ZR> |ZR| <ZR> |ZR| <ZR>

percentiles 95 2.5 97.5 95 2.5 97.5 95 2.5 97.5

m T = 100 T = 500 T = 1000

2 1.98 -2.15 1.74 1.95 -2.04 1.85 1.97 -2.04 1.91

3 2.12 -2.27 1.87 2.10 -2.18 2.00 2.13 -2.18 2.06

4 2.18 -2.30 1.94 2.17 -2.24 2.08 2.20 -2.25 2.14

5 2.20 -2.32 1.98 2.22 -2.29 2.14 2.25 -2.29 2.19

10 2.25 -2.33 2.07 2.32 -2.37 2.25 2.35 -2.37 2.31

20 2.26 -2.33 2.09 2.38 -2.41 2.35 2.41 -2.42 2.39

40 2.26 -2.33 2.09 2.41 -2.41 2.40 2.46 -2.45 2.46

a- Critical values are simulated with 50, 000 replications in each case

This Wright procedure is in one way similar to that of Lo and MacKinlay as
both consider only one variance-ratio at a time and we know that the test
of a joint hypothesis is preferable if all selected variance-ratios are equal to
unity under the null. Following the suggestions made by Chow and Denning, I
propose an extension to the Wright rank variance-ratio methodology to create
a multiple rank variance-ratio test. Given the null H0 : V R(k) = 1, k =
1, 2, . . . ,m, I consider the test statistic |ZR(m)| given by 8 :

|ZR(m)| = max
1≤k≤m

|R1(k)|

Under the i.i.d. hypothesis we can not only simulate the distribution of any
R1(k) but also that of |ZR(m)| to any desired degree of accuracy. Again,
because there are no nuisance parameters this distribution can be used to
construct an exact test. Table 1 gives the 5-percentile of the null distribution
of |ZR(m)| for some particular values of T and m 9 . To take into account an
asymmetry in the distribution of this statistic I also give the 2.5-percentile
of min R1(k) and the 97.5-percentile of max R1(k) for k = 1, . . . , m. When
considering these values I label the test <ZR(m)> 10 . It can be seen in this
table that asymmetry gradually declines with m but is sensitive for small
sample sizes, here T = 100, up to m = 40.

8 In the formulation of the test I consider all variance-ratios corresponding to partial
sums with maximal length m rather than an arbitrary chosen subset of these sums.
9 All simulations are done with Ox 3.3 and programs are available upon request.
10 It may be interesting to consider <ZR(m)> if the alternative hypothesis is stated
in terms of ”mean reversion” or ”mean aversion” as defined by Kim, Nelson and
Startz (1991)
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4 Size and Power of the Test

To appreciate the size and power of the multiple variance-ratio rank test I
carried out several experiments. Size was investigated under the martingale
difference null hypothesis with two constructions that are of interest for real
data. Firstly a stochastic volatility model of conditional heteroscedasticity pre-
viously used by Lo and MacKinlay (1989) and Wright (2000). Secondly I used
series generated by a multi-fractal model, more precisely a random binomial
cascade. This construction is able to reproduce the main features of financial
prices: scale-consistency, varying volatility with long tails and long memory
in the absolute value of returns while at the same time future returns are
not predictable from past prices 11 , i.e. it preserves the m.d.s. hypothesis. In
the last sub-section, we analyze the power of the test under four hypotheses:
stationary AR(1), first differences of ARMA(1, 1, 1), ARFIMA(0, 1, 0), and
absolute values of the preceding fractal data. With these experiments we hope
to cover a wide range of real data characteristics, that is autocorrelated sta-
tionary variables, integrated series and long memory processes with volatility
clustering. In addition to the Chow-Denning statistics based on their asymp-
totical critical values, Z∗

1 and Z∗
2 henceforth, or on their bootstrapped critical

values 12 , Z∗
1,BS and Z∗

2,BS henceforth, I also calculated the commonly used
portmanteau test Q of Ljung and Box (1978) designed to investigate nullity
of the first m autocorrelations of a time series 13 and defined as:

Q(m) = T (T + 2)
m∑

i=1

r2
i

T − i
,

where ri =

∑T
t=i+1(xt − x)(xt−i − x)

∑T
t=1(xt − x)2

and x =

∑T
t=1 xt

T

No degree of freedom adjustment is needed when xt is observed and Q(m) is
distributed as a chi-square with df = m under the null.
I also considered the statistic D̂m proposed by Pena and Rodriguez (2002)
which, according to their simulations, can be up to 50% more powerful than

11 See for example Mandelbrot, Fisher, Calvet (1997).
12 Following Chow and Denning (1993), these bootstrap critical values are obtained
with simulations under the i.i.d. Gaussian null and the heteroscedastic null. I used
50, 000 replications for each sample sizes considered.
13 Variance ratios and autocorrelations are linked: Lo and MacKinlay (1988) show
that their variance ratio is approximately a linear combination of autocorrelation
coefficients similar to the Box-Pierce portmanteau statistic.
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the Ljung and Box test 14 . Under the null hypothesis D̂m is distributed as a
(weighted) sum of m random independent χ2

1 and they approximate its distri-

bution by a gamma with parameters 15 α = 3m(m+1)
4(m+1)(2m+1)

and β = 3m(m+1)
2(m+1)(2m+1)

.
Finally in order to appreciate the advantage of using the multiple rank tests
I also compared their results with those obtained from the original Wright’s
test R1.

4.1 The test size

Our model of stochastic volatility, hereafter Model 1, is given by: xt = exp (ht/2)ǫt,
where ht = .95ht−1+ξt and ξt is i.i.d. N(0, 1/10) independent from ǫt. Two def-
initions for ǫt were successively retained: i.i.d. normal, and i.i.d. standardized
student with 3 df. This last configuration was used to examine the properties
of the tests when applied to variables with fat tail distributions, a characteris-
tic often observed on financial data 16 . In each case 5000 time series of sample
sizes T=100, 500 and 1000 were generated. Table 2 reports the results of these
Monte Carlo simulations. The probability of type I error was estimated by the
percentage of rejections of the null hypothesis 17 using a nominal size of 5%.
It can be seen that main conclusions are unaffected by the type of residuals’
distributions. Empirical sizes obtained with statistics Q, Dm, Z∗

1,BS and to

14 They consider the correlation matrix given by

R̂m =




1 r1 · · · rm

r1 1 · · · rm−1

...
...

. . .
...

rm rm−1 · · · 1




Under H0 : ri = 0, i = 1, 2, . . . , m, this matrix is an identity matrix and their

proposed test statistic is D̂m = T
(
1 − |R̂m|1/m

)
. Following their recommendations

I used Ljung-Box corrected coefficients of autocorrelation r̃i =
√

(T + 2)/(T − i)ri

in the construction of the matrix R̂m.
15 Again, there is no need for degrees of freedom adjustment if data are observed.
Pena and Rodriguez give the correction that must be made if data are estimated
(e.g. empirical residuals of an ARMA filter). Note that this approximation by a
gamma distribution is valid for reasonably small values of m (in their paper they
used mmax = 36).
16 This structure corresponds to the Model 2 of Wright (2000).
17 In what follows, m is the number of variance ratios considered including V R(1)
which is unity by construction. Therefore tests |ZR|, <ZR>, Z∗

1 and Z∗
2 are infor-

mative only for (m − 1) variance-ratios. Accordingly, statistics Q and Dm test the
nullity of (m − 1) autocorrelation coefficients r1, r2, . . . , rm−1.
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Table 2
Rejection probabilities with the stochastic volatility modela.

T = 100 T = 500 T = 1000

Distribution: standard normal

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 7.3 6.9 6.9 6.9 7.6 7.6 7.6 7.7 7.7 7.7 7.6 7.4

<ZR> 7.4 7.1 7.1 7.1 7.4 7.5 7.7 7.7 7.9 7.7 7.6 7.4

Z∗

1
8.8 7.3 6.3 5.7 13.8 11.5 10.1 8.4 16.6 13.5 11.1 9.4

Z∗

2
3.0 3.0 3.2 3.6 2.5 2.0 1.6 1.7 2.6 2.0 1.5 1.2

Z∗

1,BS
12.4 12.0 10.3 8.9 19.6 19.4 19.0 18.0 22.9 23.2 22.8 21.7

Z∗

2,BS
5.2 4.9 4.8 4.8 4.8 4.6 4.8 5.1 4.6 5.1 5.3 5.1

Q 16.0 18.4 17.4 12.7 29.1 36.7 40.1 35.7 34.2 44.7 50.0 45.8

Dm 15.2 16.8 15.0 7.8 26.4 34.3 39.6 37.8 31.1 41.6 50.5 51.7

R1 6.7 6.1 5.8 5.5 6.8 6.5 6.3 6.2 7.2 7.4 6.6 6.4

Distribution: standardized Student, df=3

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 6.3 6.5 6.5 6.5 6.9 6.8 6.7 6.7 6.5 6.9 7.0 6.5

<ZR> 6.6 6.7 6.8 6.8 6.8 6.9 6.7 6.7 6.5 6.8 7.0 6.6

Z∗

1
7.2 5.9 5.4 5.1 12.5 10.4 8.5 7.0 12.6 10.3 8.5 7.3

Z∗

2
3.5 3.2 3.6 4.2 2.4 1.9 1.5 1.7 2.2 1.3 1.1 1.0

Z∗

1,BS
10.4 10.0 8.8 8.0 17.7 17.7 17.5 16.4 17.6 18.0 18.4 18.1

Z∗

2,BS
5.4 5.4 5.4 5.7 4.7 5.4 5.3 5.3 4.5 4.1 4.1 4.3

Q 12.5 14.7 13.5 9.5 23.9 30.4 32.2 29.0 26.4 34.5 38.9 36.3

Dm 12.0 13.7 11.5 5.8 22.9 28.5 33.1 30.6 24.2 32.6 38.9 40.3

R1 5.9 5.8 5.6 4.7 6.6 6.2 6.0 5.2 6.3 6.6 6.5 6.3

a- This table gives the simulated percentage size of the tests based on 5, 000 replications of Model 1.

Nominal size is 5%.

a lesser extent with Z∗
1 largely overestimate the nominal one and these dis-

crepancies tend to increase with the sample size. Of course these results imply
that the power of these various statistics has an ambiguous interpretation.
With R1, |ZR| and <ZR> differences between nominal and empirical sizes
are always positive but comparatively smaller, never over 7.9%. In contrast
empirical sizes associated with Z∗

2 have a strong tendency toward underesti-
mation but the use of bootstrap critical values provides a clear improvement
and Z∗

2,BS does remarkably well in recovering the nominal size.

Model 2 is a binomial cascade model. The cascade begins by assigning uniform
probability to the interval [0, 1]. In the first step, this interval is split into two
subintervals of equal length, assigning a mass m0 on [0, 1/2] with probability
p1 and (1 − m0) on [1/2, 1] with probability (1 − p1). This process is then re-
peated on each newly created interval, probability p1 being chosen randomly
at each step. The cdf of the resulting multifractal measure, θ(t), is used to
define a random trading time thus allowing variations in volatility. The result-
ing price process is defined by Pt = exp (BH [θ(t)]) where BH [t] is a fractional

9



Table 3
Rejection probabilities with differences of multifractal seriesa.

T = 100 T = 500 T = 1000

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 7.6 7.3 7.3 7.3 8.8 8.9 8.8 8.7 7.9 8.4 8.5 8.4

<ZR> 8.0 8.1 7.9 8.0 8.9 8.8 8.9 8.8 7.8 8.4 8.6 8.4

Z∗

1
12.4 9.2 7.7 6.2 22.7 19.4 16.2 13.6 26.4 23.5 20.6 18.0

Z∗

2
2.5 1.7 1.8 1.9 2.5 1.3 1.0 0.8 1.8 1.0 0.8 0.7

Z∗

1,BS
17.0 15.1 12.2 10.1 28.8 29.5 28.6 26.2 33.2 34.2 33.9 32.6

Z∗

2,BS
3.8 3.5 2.8 2.7 4.4 4.1 3.7 3.2 3.7 3.4 3.1 2.7

Q 22.5 24.6 23.3 13.0 41.6 53.5 61.1 64.3 47.7 60.3 70.6 76.4

Dm 23.0 24.9 22.5 12.1 39.7 50.5 58.9 64.1 45.2 57.4 68.5 75.4

R1 6.5 5.9 5.9 5.2 8.0 7.3 6.9 6.3 7.6 7.4 7.3 7.1

a- This table gives the simulated percentage size of the tests based on 5, 000 replications of Model 2.

Nominal size is 5%.

Brownian Motion with self-affinity index H. In the simulations I used a stan-
dard Brownian Motion and retained the first differences of Pt as the working
series 18 . By construction, these returns are nonautocorrelated but have long
memory in their absolute values and conditional heteroscedasticity, i.e. they
are not i.i.d. but the martingale difference sequence hypothesis is true.
Results obtained with these complex series are given in Table 3. They are glob-
ally similar to those derived under model 1. While Z∗

2 exhibits some under-
estimation, empirical sizes tend to be much higher than the nominal size of
5% with Q, Dm, Z∗

1 and Z∗
1,BS. We also observe with Z∗

2,BS some under-
evaluation which increases with the number of variance ratios, m. For R1,
|ZR| and <ZR> differences between empirical and nominal sizes are con-
stantly positive leading to an over-rejection rate of the true null hypothesis
but the estimated rejection probability of R1 is never greater than 8%, and
the rejection probabilities of |ZR| and <ZR> are never greater than 8.9%.
Finally, as in the preceding experiment, we do not notice any major difference
between the estimated sizes of |ZR| and <ZR>.

Results of these first experiments confirm the conclusion given by Wright
(2000): the rank-based variance-ratio tests do not seem to suffer serious size
distortion in the presence of conditional heteroscedasticity.

18 In the experiments, the mass m0 was selected randomly with uniform probability
on [0.60, 0.75] for each of the 5000 simulated series.
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4.2 The test power

In this section the results of several simulations using autocorrelated data with
or without conditional heteroscedasticity are presented in order to illustrate
the power of the new statistics. For this exercise only the two other non-size
deficient statistics R1 and Z∗

2,BS are retained for comparison purposes 19 . Four
models were successively considered. We expect that they are different enough
to cover a wide range of characteristics present in real data:

• Model 3: data are generated by the following stationary first-order autore-
gressive process 20 xt = 0.10xt−1 + ut, with two variants:
· homoscedastic residuals: ut is i.i.d., standard normal,
· heteroscedastic residuals: ut = exp (ht/2)ǫt where ht defined as in Model

1.
• Model 4: xt = (1 − L)yt, where yt is driven by an ARIMA(1, 1, 1) mean-

reverting process considered by Summers (1986) and is the sum of a sta-
tionary AR(1), wt = φwt−1 + ǫt, and a random walk, zt = zt−1 + τt, where
ǫt and τt are i.i.d. normal with variances of 1.0 and 0.5 respectively. It was
used by Chow and Denning (1993) who noticed that when φ is close to one
then autocorrelations are negative and small in the short horizon so that
the mean-reversion only occurs over very long periods. Given this charac-
teristic, I expect that the power of the tests increases with the number of
variance-ratios considered, k. Parameter φ takes two values: 0.85 and 0.96.

• Model 5: xt is generated by an ARFIMA(0, 1, 0), xt = (1−L)dut, where ut

is i.i.d., standard normal. The aim is to access the capability of the tests to
detect the long memory present in the data 21 . Moreover, parameter d was
given two values d = 0.1 or d = −0.1 in order to examine the sensitivity of
the results to the sign of these long term correlations.

• Model 6: xt is given by the absolute values 22 of fractal series considered in
Model 2 above. We know that these series verify the m.d.s. hypothesis but
have long memory in their higher moments so that the tests should reject
the null hypothesis when they are considered in absolute terms.

19 Note also that the other statistics which according to the preceding experiments
were size-deficient do not have higher rates of rejection when the null is false. Com-
plete results are available upon request.
20 This structure corresponds to Model 3 in Wright (2000).
21 This is (without heteroscedasticity) Wright’s Model 4. Data generation was car-
ried out with the Ox instruction diffpow. For this model I discarded the first 5000
generated observations as the ”burnin” while for other models I discard the first 50
simulated values.
22 Absolute values are often used to disentangle linear dependence and nonlinear de-
pendence in financial time series and have also been taken as a measure of volatility,
see for example Granger and Ding (1995).
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Table 4
Rejection Probabilities with AR(1) hypothesis, φ = 0.1a

T = 100 T = 500 T = 1000

Distribution: homoscedastic normal

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 10.6 10.6 10.7 10.7 47.6 45.1 43.5 42.8 78.1 76.2 74.6 73.2

<ZR> 14.7 14.0 13.7 13.7 51.1 47.9 44.8 43.1 79.9 77.3 75.3 73.1

Z∗

2,BS
17.0 16.4 14.8 12.7 55.8 52.4 49.8 46.4 83.9 82.0 80.4 78.2

R1 8.7 6.2 5.4 3.0 33.1 19.6 11.5 7.6 58.4 35.7 20.0 12.0

Distribution: heteroscedastic normal

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 11.9 12.2 12.3 12.3 47.1 44.9 43.7 42.9 75.2 73.1 71.6 70.0

<ZR> 16.2 15.2 15.2 15.1 50.0 47.4 45.0 43.2 76.5 74.2 72.3 69.9

Z∗

2,BS
12.9 12.7 12.2 11.1 33.2 30.9 28.4 26.3 51.7 49.2 46.7 43.9

R1 10.1 7.9 5.9 3.5 32.8 20.3 12.2 8.6 55.5 34.6 20.9 13.1

Distribution: heteroscedastic student, df=3

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 15.1 15.2 15.3 15.3 62.1 59.6 57.8 57.1 89.4 87.8 86.6 85.7

<ZR> 19.9 19.0 18.6 18.6 65.0 62.1 59.2 57.3 90.5 88.6 87.2 85.6

Z∗

2,BS
15.7 15.3 13.7 12.2 36.6 34.1 32.2 29.8 57.2 54.6 52.8 49.8

R1 11.7 8.9 5.6 3.0 43.6 26.3 15.9 10.3 71.1 46.5 27.5 15.6

a- This table gives the simulated percentage power of the tests based on 5, 000 replications of Model 3.

Nominal size is 5%.

Results for Model 3 are given in Table 4. For a sample size of 100 the asym-
metric statistic <ZR> is always more powerful than |ZR| but this difference
becomes practically negligible when the sample size is increased to T = 500
or T = 1000. Rates of rejection associated with the parametric test Z∗

2,BS are
one to five points higher than those obtained with the two multiple rank rank
statistics when residuals are homoscedastic but are remarkably lower when
heteroscedasticity is present and specially when sample sizes are large (for
example the discrepancies are between 20 and 30 points when T = 1000).
Clearly with this experiment and among the statistics which do not show
strong deviations in size, |ZR| and <ZR> must be preferred to Z∗

2,BS when
heteroscedasticity is suspected. It can be seen that Wright’s test R1 has by
far the lowest rate of rejection among the four statistics. With this experi-
ment there is a clear advantage to consider the multiple version of the ranks
based test. Another point deserves some care: for a given sample size and for
all statistics the rejection rate decreases with the number of variance-ratios
considered. Of course such an evolution was expected as the simulated AR(1)
process is specially useful to modelize short term dependencies. However this
reduction of power with m is also generally the lowest with our two multiple
variance-ratios tests based on ranks.
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Table 5
Rejection Probabilities with ARIMA(1, 1, 1) hypothesis a

T = 100 T = 500 T = 1000

φ = 0.85

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 9.4 9.1 8.9 8.9 36.9 49.3 55.1 54.2 65.5 84.8 92.0 92.2

<ZR> 7.1 7.4 7.4 7.4 34.0 46.9 53.3 53.9 63.7 84.0 91.6 92.4

Z∗

2,BS
5.4 3.6 1.7 0.6 33.8 42.9 43.3 36.3 66.9 86.0 92.3 91.4

R1 10.4 12.6 13.8 13.7 44.6 63.5 73.3 64.4 75.2 93.7 97.3 94.9

φ = 0.96

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 5.4 5.6 5.5 5.5 6.5 7.1 7.2 6.9 8.8 10.8 14.3 16.1

<ZR> 5.1 5.1 5.1 5.1 5.9 6.5 6.8 6.9 7.9 10.2 13.9 16.3

Z∗

2,BS
4.4 3.7 2.8 2.5 5.5 5.1 4.3 3.2 7.7 9.4 11.0 10.1

R1 5.0 5.3 5.9 6.3 7.1 9.1 11.7 15.7 10.7 16.9 24.9 34.5

a- This table gives the simulated percentage power of the tests based on 5, 000 replications of Model 4.

Nominal size is 5%.

From this point of view, Model 4 is totally different as it implies small au-
tocorrelations in the short term and a mean-reversion occurring only over a
long period especially when the parameter φ of the AR component is close to
one. Of course this feature is unfavorable to the multiple variance-ratios tests
because rejection of the null hypothesis is hard to detect for small values of k,
k = 1, 2, . . . m. As can be seen in Table 5, this is precisely what happens: R1

is the best test of the four considered even if the estimated power is generally
growing with the number of variance-ratios for all tests. However, among the
multiple tests, the rank based ones dominate the Chow and Denning statistic
Z∗

2,BS specially for small and medium sample sizes. Note that the estimated
power declines substantially when φ is very close to unity but with Chow and
Denning, we can doubt that any test having a good size will have a lot of
power in such a case.

Results obtained with the fractionally integrated model 5 are reproduced in
Table 6. We note that all tests are sensitive to the sign of fractional parameter
d but that this sensitivity is the lowest for our two rank based statistics. In
particular even if they are dominated by the Lo and Denning’ statistic when
the fractional parameter is positive the reverse is true and more pronounced
when d is negative, the power of Z∗

2,BS being very low when T = 100. As
with preceding experiments, the two versions of our multiple rank test seem
practically equivalent except when T = 100 but unfortunately their ranking
depends on the sign of the fractional parameter 23 . We also note that the mul-

23 note however that all the rejections are observed for <ZR> being greater than
its upper bound when d is positive, and lower than its lower bound in the opposite
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Table 6
Rejection Probabilities with ARFIMA(0, d, 0) hypothesisa

T = 100 T = 500 T = 1000

d = −0.10, distribution: standard normal

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 14.8 16.3 16.7 16.7 69.1 70.2 70.6 70.7 93.9 95.7 94.6 94.6

<ZR> 20.0 20.6 20.6 20.6 71.2 72.4 71.5 70.8 94.3 95.0 94.8 94.5

Z∗

2,BS
24.8 27.0 26.5 24.8 76.0 77.4 77.5 77.1 96.1 96.7 96.7 96.5

R1 16.0 13.8 10.4 4.1 69.4 63.9 53.9 41.0 93.9 92.1 85.1 72.5

d = −0.10, distribution: student, df=3

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 21.5 22.9 23.2 23.3 84.1 84.9 84.8 85.1 98.7 98.7 98.8 98.7

<ZR> 26.5 27.0 26.9 26.9 85.6 86.0 85.4 85.2 98.8 98.8 98.8 98.7

Z∗

2,BS
25.8 28.8 28.1 26.7 75.9 78.3 78.4 78.0 95.3 96.5 96.5 96.2

R1 21.9 19.3 13.1 4.9 83.7 79.5 69.3 54.4 98.8 97.9 94.4 85.8

d = 0.10, distribution: standard normal

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 16.6 15.7 15.5 15.5 62.9 64.1 63.1 61.8 90.2 91.7 91.7 91.0

<ZR> 12.9 13.1 13.1 13.1 59.9 62.0 61.7 61.5 89.3 90.9 91.5 91.2

Z∗

2,BS
9.8 6.9 3.7 1.9 61.0 59.7 55.6 49.8 91.8 92.5 92.0 90.5

R1 16.7 15.6 13.6 12.7 65.6 61.3 51.9 39.4 92.1 91.2 84.6 73.2

d = 0.10, distribution: student, df=3

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 19.7 18.9 18.7 18.6 72.2 73.8 72.1 71.5 95.1 96.3 96.4 96.1

<ZR> 16.0 16.1 16.0 16.0 69.5 71.2 71.3 71.2 94.6 95.9 96.3 96.2

Z∗

2,BS
9.7 6.3 3.5 1.9 58.4 57.8 53.0 46.5 88.1 89.6 89.3 87.3

R1 18.8 17.4 14.6 14.2 75.0 70.3 59.00 45.1 96.1 95.9 91.0 78.8

a- This table gives the simulated percentage power of the tests based on 5, 000 replications of Model 5.

Nominal size is 5%.

tiple rank tests generally dominate the Wright’s test when sample sizes are
small or medium, especially when d is negative and m ≥ 10.

Finally, results associated with absolute values of fractal series already used in
Model 2 are given in Table 7. Here all tests reject the i.i.d. or m.d.s. hypothesis
with very low type II error for large sample sizes. However for small sample
size and relatively large values of m multiple variance-ratio statistics are pre-
ferred over the individual variance-ratio test of Wright. Moreover we have seen
that other statistics were notably size-deficient when the same data were not
transformed 24 so that if one is interested in discriminating between linear and
nonlinear dependence, an alternative that may be important in some cases,

case. It thus has some value to detect the sign of the dependance.
24 See Table 3 above.
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Table 7
Rejection Probabilities with absolute values of multifractal seriesa

T = 100 T = 500 T = 1000

m 5 10 20 40 5 10 20 40 5 10 20 40

|ZR| 56.6 61.0 62.0 62.0 99.1 99.6 99.7 99.7 100 100 100 100

<ZR> 61.5 64.5 65.0 64.9 99.3 99.6 99.7 99.7 100 100 100 100

Z∗

2,BS
60.1 68.0 70.5 71.4 99.5 99.8 99.8 99.9 100 100 100 100

R1 59.1 61.7 55.2 35.5 99.4 99.7 99.7 99.1 100 100 100 100

a- This table gives the simulated percentage power of the tests based on 5, 000 replications of Model 2.

Nominal size is 5%.

e.g. in risk management or portfolio selection, it may be worthwhile to consider
these multiple variance-ratio tests.

5 Conclusion

In this research I examine the properties of a joint variance-ratio test based on
ranks. This non parametric statistic lead to an exact test under the i.i.d. hy-
pothesis but Monte Carlo simulations seem to indicate that its empirical size
stays near the theoretical one when only a martingale sequence hypothesis is
verified, and in particular when data are fat-tailed and have dependencies in
their higher moments. For the simulated models considered, other tests com-
monly used suffer much more noticeable size distortions with the exception of
the robust variance-ratio test proposed by Chow and Denning when used with
bootstrap critical values. In particular our results do not support the generality
of the view expressed by Gourieroux and Jasiak (2001) about the superiority
of tests based on empirical correlations. For the experiments illustrating a false
null hypothesis, rates of rejection of the based rank tests are similar to and
often higher than those of the deficient size statistics. Moreover in most of the
cases considered here it clearly dominate the preceding robustified statistics
which appeared to be much more dependent on some characteristics of the
series, namely heteroscedasticity, deviations from normality and the sign of
dependencies. Finally it is important to remember that our test supposes that
the working series is an observed one. Some other non reported simulations
using Monti’s approach (1994) show that when this series is estimated then
size and power are dramatically affected 25 . Accordingly, it cannot be used to
test the adequation of an empirical model by considering the properties of its

25 Typically, Monti’s approach consists in simulating various ARMA(p, q) processes
with (p, q) 6= (1, 0) in order to detect linear dependencies in residuals of a mispecified
AR(1) filter.
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estimated residuals 26 .
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