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Abstract

This paper presents a generic mathematical model for depicting the diffusion of an innovative

product on a given market. Our approach relies on a probabilistic modeling of each customer behavior

with respect to the commercial process which is used to promote such a product. We introduce in

particular the concept of coherent market that corresponds to a market which can be analyzed in a

uniform way within our model. This last notion allows us to recover the classical empirical results

that were discovered and widely studied by E.M. Rogers and his school (Rogers 1995). We explain

finally how to use our approach as a support for analytic predictive marketing.

Keywords: Analytic marketing, coherent market, commercial process, customer behavior, diffusion of innova-

tions, Markovian model, probabilistic modeling, waiting time.

1 Introduction

In his famous seminal book (Rogers 1962), Rogers introduced and popularized a generic framework for

analyzing and describing how the mechanism of diffusion of innovations works inside a given population.

In this general approach, “innovation” can of course be understood in a large way: it may indeed refer

to various contexts such as the learning of a new practice, the use of a new tool, the launch of a new

product, etc. The strength of Rogers’ point of view comes from the fact that it can be applied to all these

different types of situations, which also reflects in the huge amount of relied academic and professional

literature (we refer to (Rogers 1995) for an up-to-date and comprehensive bibliography on this subject

– see also (Gatignon and Robertson 1985) and (Cestre 1996) for interesting complements).

In the marketing sphere, Rogers’ approach was especially applied in strategic marketing since it

provides a rather good qualitative understanding of both the structure and the rate of the diffusion of a
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new product on a market, helping therefore managers or analysts – who are facing problems of innovation

management – to take strategic business decisions (we refer to (Foster 1986) or (Moore 1999) for different

applications of Rogers’ theory to such contexts). However, it is still difficult to use Rogers’ paradigm

further in the marketing process (considered in its whole) – in particular if one wants to do analytic or

predictive marketing – due to the fact that his approach is fundamentally empirical and non quantitative.

The key problem is here that there still does not exist (up to our knowledge) any precise mathematical

description of the nature of the cornerstone of Rogers’ model, i.e. the characteristic “Gaussian type”

curve that describes the rate of diffusion of an innovation inside a given population, that is to say the

function N(t) that measures the number of new people of the considered population that is accepting

such an innovation at time t (see Figure 1) !

Figure 1: The characteristic Gaussian type diffusion rate in Rogers’ model.

In this paper, we try to cross the gap that exist between the remarkable qualitative results provided

by Rogers’ work and a more mathematical point of view. We indeed propose a simple probabilistic model

– which is intended to capture globally both the diffusion rate of the knowledge of a given innovation

among a given population, the structure of the process which is designed to bring this innovation to the

considered population and finally the individual behavior (within this last process) of the members of

such a population with respect to the acceptance of the innovation – from which we can derive Rogers’

qualitative results (i.e the Gaussian type curves that measure the rates of diffusion of an innovation in

a population, as predicted by Rogers’ works). In other words, we provide a mathematical framework

(with a large number of parameters and dimensions for the purpose of fine operational modeling) which

models the mechanism of diffusion of innovations in a given population in a way which is compatible

with Rogers’ predictions ! Observe in particular than the usual probabilistic interpretation of Rogers’

model – which claims that the duration times for the acceptation of a given innovation in an arbitrary

population are distributed according to a Gaussian normal law – can now be seen as a special (and quite

trivial) case of our own parametric model (see Section 3 for more details).

Even if our modeling approach can capture rather general types of diffusion of innovation phenomena,

we will however only concentrate in this paper – in order to be more specific – on the special case of

diffusion of innovations in marketing contexts, which corresponds to the particular situation where one

wants to understand the penetration rate of a new product on a market (see for instance (Goldsmith and

Hofacker 1991) and (Béji-Bécheur and Pras 2000) for different classical approaches to this last problem).

This special context (which is studied in Section 2) is indeed both especially interesting due to its business

interest and its potential applications, and enough generic for illustrating the different dimensions of our
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model (the reader will easily apply our modeling framework to other types of situations). As a matter

of fact, our model allowed us to recover (in this special context) the usual results predicted by Rogers’

theory, but also to find several new sorts of marketing patterns that were not captured in Rogers’ initial

model (see Section 3 for more details). Moreover it can also be used – in a numerically predictive way –

as a mathematical framework for an analytic marketing process (we give a few insights on this last and

difficult topic in Section 4).

Note finally that our work takes naturally place in one of the main research stream which is related

to diffusion of innovations 1 , that is to say to the study of adoption of innovations in a social system,

even if our approach relies on a very different trend than Rogers’s one (who followed a socio-cognitive

learning intuition 2 when we followed a commercial/selling intuition to model the laws of diffusion of

innovations). Our work can in particular be seen as a “discrete" revisitation of the early work of Bass

(Bass 1969) who was the first to propose a diffusion model where one clearly distinguishes different modes

of communication (interpersonal mode and mass media in his case) for bringing the knowledge of a given

innovation to the end user 3 . Our approach can eventually also be connected to the study of diffusion

networks where several interesting mathematical models have already been developed in the literature

(see for instance (Granovetter and Soong 1983) or (Valente 1991)).

Modeling being always a difficult exercise, we would like to end this introduction by stressing the fact

that our approach does not give any closed description of the mechanisms of diffusion of innovations,

but provides rather a tool box that could be used to model lots of different contexts. One should also

always keep in mind that we just intended to present in this paper a mathematical model that “save the

phenomena” of diffusion of innovations. Our model should in particular clearly never be considered as a

speculation about the layer of matter underlying these last phenomena . . .

2 Modeling commercial processes and customer behaviors

2.1 The key elements of our model

As explained in the introduction, we will focus through all this paper on the question of modeling - in

a mathematical way - the diffusion mechanism of a new product P on a given market M (which is here

defined as a given set M of potential clients for P ). More precisely, we want to be able to compute,

estimate and/or simulate – under certain hypotheses that are provided below – the function NM (t) that

gives the expected number of new clients (within M) of the product P at time t.

Let us therefore first make totally explicit the key elements of the mathematical model with which

we will work. As already mentioned, we will consider from now on that we are dealing with a given

market M , which is here just defined as a fixed set of individuals. We also suppose that there exists a

mechanism – which is called a commercial process (see sub-section 2.2 for more details) – that allows first

to bring the existence of a given product P to the knowledge of each people m belonging to M during

1 We recall that the research works on diffusion of innovations can be structured in eight main research streams according

to Rogers (see (Rogers 1995) chapter 2 pp. 88-95): earliness of knowing about innovation, rate of adoption of different

innovations in a social system, innovativeness, opinion leadership, diffusion networks, rate of adoption (of an innovation)

in different social systems, communication channel use, consequences of innovation.
2 Rogers defines the diffusion of innovation mechanism (see (Rogers 1995) chapter 5 pp. 162-191) as a learning process

that consists in five main steps: knowledge (initial exposition and understanding of the innovation), persuasion (forming

a favourable or unfavourable attitude towards the innovation), decision (deciding whether to accept or to reject the in-

novation), implementation (putting the innovation into use), confirmation (i.e. reinforcement of an innovation-acquisition

decision already made, but that may be reversed in case of exposition to conflicting messages about the innovation).
3 Our approach is however very different from Bass’ one since it is only based on discrete and probabilistic modeling

when Bass makes use of differential equations for describing the laws of diffusion of innovations.
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a certain period of time and that is also designed to always lead each member of M either to buy the

product P (after some delay) or definitively to never buy P . Our last hypothesis is that all the members

of the market M will have a given customer behavior with respect to the considered commercial process

(see sub-section 2.3 for more details). In other words, the individual buying behavior is modeled here as

a reaction to a given commercial process.

Note finally that our approach is based on giving – as this will be done in the two next sub-sections

– precise probabilistic interpretations to the two main notions that we just informally introduced, that

is to say commercial processes and customer behaviors. We indeed believe that diffusion of innovations

can only be mathematically understood from a probabilistic point of view. This means in particular that

we will not try to look for a deterministic formulation and/or expression for NM (t). This last function

will indeed be considered in a probabilistic way and will be defined, up to now, as the following sum of

individual probability densities over all members of the market M :

NM (t) =
∑

m∈M

dTP (m)(t) , (1)

where dTP (m) denotes the probability density of the real random variable TP (m) which represents the

moment when a given member m of M eventually decides to buy the product P (the value dTP (m)(t)

is indeed the classical continuous representation of the “probability” that TP (m) equals t). Note that

Equation (1) shows in particular that one should be able to compute for any given member m of M the

probability density associated with TP (m) in order to approximate or simulate the function NM (t).

2.2 Modeling of a commercial process

Let us now fix the mathematical definition of the notion of commercial process that we will use in the

sequel of this paper.

Definition 2.1 A commercial process C is defined as a 6-uple C = (D, G, I, B, N, χ) where :

• D = (Di)i=1...n is a finite family of independent waiting time processes, which are called the entry

channels of C, i.e. a family of n real random variables Di, each of them evolving in an interval

of the form [ti, +∞[⊂ R (where ti ≥ 0 denotes the beginning time of the i-th entry channel) and

following an exponential law of parameter αi > 0 defined by

∀ t ≥ ti, P(Di ≥ t) = exp(−αi (t − ti)) , (2)

• G = (Q,T ) is a directed acyclic graph, called the core of the commercial process, with Q as set of

vertices and T as set of oriented edges (the elements of Q and T are respectively called the states

and the transitions of the commercial process C),

• I, B and N are distinguished non-intersecting subsets of the set Q that are respectively called the

entry states, the buying states and the non-buying states of C,

• χ is a function, called the correspondence function, that associates with each number i ∈ [1, n]

(indexing an entry channel) a unique entry state χ(i) ∈ I in the core of C.

This last definition wants here to express that a commercial process is the superposition of a com-

munication process and of a core commercial process as explained below.

1. The communication process (that by convention begins globally at the time t = 0) is first used

to bring the knowledge of a given product P to all the people that are belonging to the market
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M . It is based on the use of n distinct communication channels (modeled by D) that are typically

dedicated to different segments of markets. In other words, if Mi denotes the subset of M that

consists of all the persons that are (first) reached by the i-th channel, (Mi)i=1...n forms a partition

of M . One can only begin to use the i-th communication channel at a specific beginning time ti.

Moreover the average time which is required to inform a given member m of Mi of the existence of

the product P through the i-th channel, does only depend on this channel – and not on m – and

is given by an exponential probabilistic law with parameter αi > 0 and beginning time t = ti (a

classical way of modeling waiting times).

2. In a second time, the core commercial process tries to transform any potential customer – which

is defined as a member of the market M who knows the existence of the product P – into a real

effective consumer of P ! It is organized in such a way that every potential customer will pass by

different states (the vertices Q of G) which correspond to different stages of this second process.

A potential customer m arrives initially in the entry state χ(i) ∈ I if he was “captured” in the core

commercial process by means of the i-th communication channel. Different commercial actions are

then made in order to change the state of m up to transforming him (if possible) into an effective

buyer of P , the allowed changes of states being modeled by the transitions T . The acyclicity hy-

pothesis on G means that a potential customer can never come back to a previous stage of the

core commercial process (which always “pushes” further or eliminates a potential client). The core

commercial process finally ends when m enters either in a buying state (an element of B) or in a

non buying state (an element of N): the first case corresponds to the situation where m became a

real buyer of P , when the second one models that one knows that m will definitively never buy P .

Figure 2: Modeling of a (real) commercial process.

To understand better our approach, let us now show how Definition 2.1 can be used for analyzing

a real commercial process (which is graphically described by means of an UML activity diagram - see

(Rumbach, Jacobson and Booch 1999) – in Figure 2) that deals with the selling of the MBA programme
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of a French engineering school (that allowed us gratefully to study its commercial mechanism). In this

effective example, that we shall now present in full details, a new “product” is proposed once a year to

the market. The associated communication process, that begins each February for ending in September,

relies then on the following four types of independent communication channels (that are denoted below

with the same names than in Figure 2 where these last channels are represented by black bullets):

• Internet: this channel refers to the Web site of the MBA programme (where information demands

can be made),

• Exhibitions: this channel groups two entry channels (in the sense of Definition 2.1) which corres-

ponds to the two presentations of the MBA programme that are organized each year in two major

commercial exhibitions (they are denoted by Exhibition 1 and 2 in Table 1),

• Direct contacts: this channel models direct permanent commercial actions that take place on several

university campuses in order to identify potential clients,

• Spontaneous contacts: this last channel corresponds to all spontaneous phoning, mailing or e-

mailing actions that are made by potential clients; it groups in fact three different entry channels (in

the meaning of Definition 2.1) depending whether a spontaneous contact will transform immediately

into a prospect, into a qualified prospect or even into a candidate (see below for more details).

Observe that this analysis shows that these four communication channels decompose into seven entry

channels in the sense of Definition 2.1 (see Table 1 for their exhaustive list). In order to be complete, we

finally also provide in the same Table 1 the values (experimentally estimated) of the two parameters 4

that define precisely these different entry channels according to Definition 2.1.

Entry channel Beginning time (ti) Value of αi

Internet 0 1/70

Exhibition 1 15 1/10

Exhibition 2 45 1/10

Direct contacts 0 1/60

Spontaneous prospects 0 1/70

Spontaneous qualified prospects 0 1/70

Spontaneous candidates 0 1/70

Table 1: Parameters of the entry channels of the commercial process described in Figure 2.

Let us now pass to the description of the core commercial process of our example. This other process

begins here when a potential future client – i.e. a student in our case – is identified by means of the

previous different communication channels. Such a person is then considered as a commercial prospect,

which is modeled by its entering into the prospect state (only a spontaneous contact can lead this person

to another state if he wants spontaneously either to join an information meeting of the MBA programme

or to become directly a candidate – see above): this means that one has enough information to begin on

him a series of constructed commercial actions. The initial step of the core commercial process of our

example consists then to enter into contact with all the commercial prospects in order to see whether

they would like to come to an information meeting organized each week in our engineering school: if a

prospect accepts this first proposal, he is then considered to arrive into the qualified prospect state (if not,

4 All times are measured in days in this table.

6



he is pushed in the non interested state). After the information meeting, one proposes to each qualified

prospect to apply to the MBA programme, which should lead to his venue to a series of application

interviews. The fact that a qualified prospect accepts to come to these last interviews is then modeled

by its entry in the candidate state (if he refuses, he is again put in the non interested state; if he wants

to delay his decision, he is then first considered as a potential candidate, from which situation he can

either become a real candidate, or definitively be non interested). A candidate can then either be refused

or accepted to the MBA programme (this is modeled by his entry in two different states). If a candidate

is accepted, he will however only became a client when he will have made a payment for reserving his

place (if he never pays, he will be considered as a non client in our modeling).

We now totally presented both the correspondence function and the core graph of the commercial

process of our example according to Definition 2.1. Note that all the states of the core graph that we

just described, are represented by usual UML states in Figure 2. Observe also that the “client” state is

the only buying state, when the “non interested”, “refused” and “non client” states are the unique non

buying states of this example in the meaning of Definition 2.1 (they are all connected to a single final

state (denoted “non client") – in the UML meaning – in Figure 2).

Note finally that communication channels are modeled in Definition 2.1 with the most basic existing

probabilistic model that takes into account a waiting time (which corresponds here to the time required

to bring the knowledge of a product P to an arbitrary member of the market M). One can in particular

obtain more accurate models of communication processes if waiting times are modeled differently (see

for instance (Feller 1957), (Feller 1966) or (Brémaud 1988) for more subtle mathematical models).

2.3 Modeling of the customer behavior

We are now in position to propose a model for the behavior of the potential customers of the product

P within the market M with respect to a given commercial process C (in the sense of Definition 2.1).

Our approach is based on the interpretation of the directed graph G = (Q,T ) that models the core of

C (see again Definition 2.1) as an homogeneous Markov chain (an idea that was already underlying in

Miniard and Cohen’s study of the early adoption mechanisms in innovation acquisitions – see (Miniard

and Cohen 1983) and also (Fischer and Price 1992)) equipped with adapted probabilistic distributions

for modeling the time required for passing a given transition of T .

Definition 2.2 Let C be a commercial process (that works over a given market M), let G = (Q, T )

be the graph that models the core of C and let m be an arbitrary member of M . A customer behavior

B(m,C) associated with m with respect to C is then defined as a couple B(m,C) = (pm,Nm) where:

• pm = (pm,t)t∈T is a set of probabilities associated with all the transitions t of T in such a way that

the following identity always holds

∀ q ∈ Q,
∑

t=(q,q′)

pm,t = 1 , (3)

• Nm = (Nm,t)t∈T is a set of independent normal distributions indexed by all the transitions t of T ,

each of them respectively being of mean µm,t > 0 and of variance σm,t, i.e. defined by

∀ a, b ∈ R, P(a ≤ Nm,t ≤ b) =
1

σm,t

√
2 π

∫ b

a

exp(− (u − µm,t)
2

2 σ2
m,t

du . (4)

This definition intends just to express that a given potential customer m of our market has a prob-

abilistic behavior within a given commercial process which is modeled by the fact that m will take the

transition t = (q, q′) with probability pm,t when he lies in the state q of the core of such a commercial

process and that m will need the time Nm,t for passing through this transition.
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3 Diffusion of a new product on a market

3.1 Coherent markets

Definition 2.2 proposes a model for representing the behavior of a single member of a given market M

with respect to a given commercial process C (in the sense of Definition 2.1). Hence we must consider

all the different customer behaviors B(m,C)m∈M for all members of M if we want to describe the global

behavior of the market M in its whole. We are therefore naturally lead to introduce the notion of

coherent market that corresponds to the situation where all probabilistic parameters of all considered

customer behaviors B(m,C) only depend on the market M in its whole (and not on a single m).

Definition 3.1 Let C be a commercial process that deals with a market M and let B = B(m,C)m∈M be

the associated customer behaviors. The market M is then said to be a coherent market with respect to

C if and only if the following conditions are satisfied:

• (C1) one has pm = pm′ for every m and m′ in M ,

• (C2) one has Nm = Nm′ for every m and m′ in M ,

where we took here again the notations of Definition 2.2.

In other words, a given market M is coherent with respect to a given commercial process C when all

its potential customers cross any transition t = (q, q′) belonging to the core of C with a probability pt

and in a time delay Nt that only depend on t.

Coherent markets are interesting since different parameters of commercial interest can be explicitly

computed with them. One can for instance obtain a closed formula for estimating the number BM of

people that will eventually buy the product P for which was designed a commercial process C, if the

underlying market is coherent with respect to C. To this purpose, let us consider the graph G that

models the core of such a commercial process C on a coherent market M . We can construct a Markov

chain – that only depends on M by definition of a coherent market – by equipping G with the transition

probabilities given by Definition 2.2 (and that are involved in relations (3)), completed with probability

1 loops on each buying and non buying states of G. We shall then denote by M the associated stochastic

matrix. Since G is here a directed acyclic graph, this last Markov chain is stationary, hence convergent.

We can therefore consider the matrix M∞ which is the limit of the sequence of all iterated powers of

M (that can be obtained by simply solving a linear matrix system 5 ). It is then straightforward to see

that the following result holds (using here the notations we just introduced).

Proposition 3.2 Let C be a commercial process for the product P on a coherent market M . For every

i ∈ I, let mi denote the number of persons that belong to the sub-market Mi of M captured by the i-th

entry channel of C. The mathematical expectation BM of the total number of buyers of the product P

(considered as a real random variable) is then given by the following closed formula:

BM =
∑

i∈I, f∈B

mi (M∞)i,f . (5)

Proof – Let q and q′ be two arbitrary states of the core graph G of the commercial process C. Since

the stochastic matrix M is associated with a stationary Markov chain 6 , the classical theory of Markov

chains (see (Feller 1957)) shows then that the (q, q′)-th entry (M∞)q,q′ of M∞ is exactly equal to the

5 M∞ is the unique stochastic matrix X that satisfies to the linear matrix equation MX = X.
6 Which means here that M∞ = MN where N stands for the dimension of M (i.e. the number of states of G).
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probability for an arbitrary member m ∈ M (due to the fact that the market M is coherent with respect

to C) to go from q to q′ during the commercial process (i.e. from its beginning up to the moment when

m has been definitively transformed either into a buyer or into a non buyer).

Let now BM denote the real random variable that gives the total number of buyers of the product P

when the commercial process C is fully accomplished. It is then easy to see that one has

BM =
∑

m∈M

Bm (6)

where Bm stands for every member m ∈ M for the real random variable which is equal to 1 or to 0

depending whether m becomes a buyer (or remains a non buyer) at the end of the commercial process

C. Using the initially established result, we immediately deduce the desired Equation (5) as a direct

consequence of this last relation and of the fact that BM = E(BM ).

Note also that the usual interpretation of Roger’s model can also be rather easily captured by our

approach. One can indeed easily check that the function NM (t) that gives the expected number of new

clients – within a coherent market M – of a new product P at time t, is given by a normal law if and only

if the associated commercial process is described by the diagram of Figure 3. In other words, Roger’s

initial model is interpreted in this case in our own model as the diffusion of a new product on a coherent

market through a commercial process which just has a unique entry channel without waiting time (i.e.

the exponential law parameter takes the limit value 0) and whose core commercial process is trivial (it

just separates in one single transition each potential client into a client or a non client).

Figure 3: Usual Rogers’ model interpretation.

3.2 Diffusion of a new product on a coherent market

One should first point out that our model is constructed in such a way that one can now very easily

simulate the diffusion mechanism of a given new product on a coherent market. We can then recover

in this general framework the behaviors that were predicted by Rogers in (Rogers 1995) (as described

in Section 1), but also capture much more complex situations as we will see below when we will study

the general behavior of our model. Before studying our model in full generality, let us however first

consider – for the sake of simplicity – the example of the commercial process depicted by Figure 4 (which

is moreover also one of the first examples with a bigger complexity than the interpretation – cf. the last

subsection – of Roger’s usual model ! ).

This commercial process has a unique entry channel – that is represented in Figure 4 by the black

bullet (T ) – modeled by an exponential law of parameter α > 0. The corresponding core commercial

process has four states – i.e. (P), (I), (N) and (C) – whose semantics can be directly read on this last

figure. The other components of a commercial process can then be read on Figure 4. The market M on

which this commercial process works is finally supposed to be coherent with respect to it. Let us finally
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also denote by a, b and c the means (which here only depend on the market) of the normal distributions

that model – according to Definition 2.2 – the time delays that a potential customer requires respectively

to go from (P) to (I), from (I) to (C) and from (P) to (C).

Figure 4: Example of a theoretical commercial process.

Under the previous hypotheses, it is possible to compute explicitly the probability density associated

with the {0, 1} random variable that measures whether a single member m ∈ M will eventually become a

buyer – i.e. enter in state (C) – (we will not give here the corresponding formula which is straightforward,

but without any special interest in its own, and moreover contained in the general study we will do later).

Using this last result, we were then easily able to study the exact buying behavior of M .

r
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Figure 5: Potential clients stay a long time in the interested state.

Two key facts can now be pointed out. First of all, one can prove that Rogers’ predicted result –

i.e. the Gaussian shape of the function NM (t) that gives the expected number of new clients in our

commercial process at the time t – occurs when one has either a << c or c << a (where << means
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here “much smaller”). In other words, one observes Gaussian shape curves for NM (t) as soon as one of

the paths (in our commercial process) that may transform a given commercial prospect into an effective

buyer has a mean time much bigger than all the other paths of the same nature.

On the other hand, new types of situations appear when a is comparable to c (which means that a

prospect needs the same time on the average to be simply just interested or to become directly a buyer).

In this case, one can prove that the function NM (t) has either a shape that consists of a small peak

followed by a much bigger one as in Figure 5 (whose x and y axes represents respectively time and the

number of buyers of P ), that is obtained when c > a and c ≈ a+ b, or conversely the “symmetric” shape,

characterized by a high peak followed by a much smaller one, obtained when c ≈ a or c > a + b.

This last example illustrates in fact the general behavior of our model that we shall now present

more precisely. To this purpose, let us first introduce a new definition. Let therefore C be an arbitrary

commercial process (in the meaning of Definition 2.1) with G as core graph. A buying path of C is then

by definition any path of G that goes from some input state of C to some buying state of C. Note that

there exists always only a finite number of paths of G going from a state of C to another state of C due

to the fact that G is supposed by definition to be a directed acyclic graph. This implies in particular

that the number of buying paths is necessarily finite. We are now in position to state the following key

result that gives the generic shape of the function NM (t) within our model (see Figure 7).

Proposition 3.3 Let M be a coherent market with respect to a given commercial process C which has p

buying paths. Then the function NM (t) – that gives the expected number of new clients in the commercial

process C at each time t – is alternatively increasing and decreasing (the t-axis being two times its a-

symptote at t = ±∞) with a maximal number of p peaks 7 .

0

20

40

60

80

5 10 15 20 25
t

Figure 6: Generic shape of the function NM (t) in our model.

Proof – Let M be a coherent market (whose size will be denoted by n) with respect to a commercial

process C. For every member m of M , let us then denote by Tm the real random variable which represents

the moment when m will eventually become a buyer within the commercial process C. Note first that

7 The term “peak” refers here to an arbitrary maximum of NM (t), i.e. any point that separates an increasing part from

a decreasing part of this function.
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the study of NM (t) on the coherent market M reduces to the study of the density of the random variable

Tm for any single member m of M due to the obvious following relation

NM (t) = n dTm
(t) . (7)

Let us therefore now fix a given member m ∈ M . Before going further, we shall however introduce first

a number of new notations. We will denote by BP the (finite) set that consists of all the buying paths of

the commercial process C (as defined above). For every entry state i of C, we will also denote by Ei the

exponential distribution that models the communication time of the i-th entry channel in Definition 2.1.

For every transition t = (i, j) of the core graph G of C (where i and j stand for the states of C that

form respectively the initial and final vertices of t), we will finally denote by Ni,j the normal distribution

which models the crossing time of transition (i, j) for m according to Definition 2.2.

Observe at this point that m can only become a buyer in our model if his buying behavior corresponds

to the following of one of the buying paths of C. This property implies then immediately that one has

dTm
=

∑

π=(i1,...,ir)∈BP

pπ dEi1
+Ni1,i2

+...+Nir−1,ir
(8)

where the sum is taken over all buying paths π = (i1, . . . , ir) ∈ BP (where the last list represents the

sequence of states of C that forms the path π inside the core graph G of C) and where pπ denotes the

discrete probability of taking this path within the Markov chain 8 naturally associated with G by means

of Definition 2.2 (see Section 3.1).

Let us now recall (see for instance (Brémaud 1988)) that the sum of two independent normal distribu-

tions N1 and N2 (of respective means µ1 and µ2 and variances σ1 and σ2) is again a normal distribution

(of mean µ1 + µ2 and of variance
√

σ2
1 + σ2

2). Due to this last result and to the fact that all the normal

distributions given by Definition 2.2 are supposed to be independent, we can rewrite relation (8) as

dTm
=

∑

π=(i1,...,ir)∈BP

pπ dEi1
+Nπ

(9)

where Nπ stands for the normal distribution that results from the addition of all the normal distributions

Ni1,i2 , . . . ,Nir−1,ir
. We are therefore naturally lead to compute the density of the sum of an exponential

distribution and of a normal distribution, which will be the purpose of the next lemma.

Lemma 3.4 Let E = Eα,t0 be an exponential distribution of parameter α and beginning time t0
9 and

let N = N (µ, σ) be a normal distribution of mean µ and variance σ. The sum S of these two probability

distributions, i.e. S = E + N , has then a density which is given by the following formula:

∀ t ∈ R, dS(t) =
α exp( α2σ2

2
+µα)

σ
√

2 π
exp(−α (t−t0))

∫ t−t0

−∞

exp(− (u−µ−α σ2)2

2 σ2
) du . (10)

Proof of the lemma – The sum of two real random variables that have a density has always a density

which is the convolution product of the two involved densities (see for instance (Brémaud 1988)). This

classical result implies in our case that S has a density which is given by the following formula:

dS(t) =

∫ +∞

−∞

dE(t−u) dN (u) du =

∫ t−t0

−∞

α exp(−α(t−u−t0))
1

σ
√

2 π
exp(− (u − µ)2

2 σ2
) du

8 If M stands for the stochastic matrix associated with this Markov chain and if M∞ is the limit of its iterated powers

(see Section 3.1), then one has pπ = (M∞)i1,ir
for every buying path π = (i1, . . . , ir) of BP .

9 I.e. defined by the fact that its density dE has support in [t0, +∞[ and is defined by setting dE (t) = α exp(−α (t− t0))

or equivalently P(E ≥ t) = exp(−α (t − t0)) for every t ≥ t0.
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from which a straightforward computation leads immediately to the desired relation (10).

Our proposition follows now immediately both from relations (7) and (9) and from the fact that each

density dS(t) (as defined by relation (10)) is always an alternatively increasing and decreasing function

(the t-axis being its asymptote at t = ±∞) with a single peak (even it has nothing to do with a Gaussian

distribution 10 ). We give in Figure 7 a generic example of the shape of such a density function.
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Figure 7: Density of the sum of an exponential distribution and a normal distribution.

3.3 Diffusion of a new product on a non coherent market

In practice, a market has of course no reason to be coherent in the meaning of Definition 3.1. This is

however not really a limitation of our approach as soon as one is able to decompose a given market into

several coherent independent markets with respect to a given commercial process (such a decomposition

can clearly be seen as a natural marketing segmentation in our framework). We indeed easily get then a

global model for such an incoherent market by superposing the different coherent models resulting of this

process. Note that the curves for NM (t) that are generically obtained in this way will typically contain

several consecutive peaks in the line of the final analysis of the last subsection (cf. Figure 7).

Observe finally that such curves can also be analyzed as the superposition of the buying behaviors of

different types of people. To illustrate this mode of analysis, let us take again the example of Figure 5

that can indeed be interpreted as the superposition of the buying behaviors of two categories of people,

that is to say early adopters who quickly became buyers (curve a) and more mature clients who became

buyers only after a delay of thinking (curve b). The resulting gap in Figure 5 can then be interpreted as

the fact that mature clients are much less reactive than early adopters (note that this type of gap was

especially studied by Moore in (Moore 1999)).

4 Elements of conclusion

We propose in this paper an operational model for analyzing the mechanism of diffusion of a new product

on a market. Our model was especially designed in order to take practically into account real marketing

processes as shown in the example of Section 2. It can therefore also be naturally used as a support for

analytical marketing. Adapted questionnaires may indeed be created in order to analyze a market as an

union of coherent segments in our meaning. If these questionnaires can lead to the identification or the

10 Its shape comes from the fact that this function results from the multiplication of a decreasing exponential with a

sigmoid (a S shaped curve) as it immediately follows from relation (10).
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approximation of all the parameters of our model, it is then easy to predict the level (see Equation (5))

and the rate of sales (see above) of a given new product on the studied market ! Hence we would get in

this way a new method for doing analytic marketing.

Observe also that several new research trends can easily be imagined on the basis of our results. The

most obvious new research direction is of course the improvement of our modeling framework, the main

objective being here the obtention of more realistic models that would take diffusion of innovation more

precisely into account. To achieve such an objective, one must probably try to apply our ideas in new

effective application contexts (with respect to the ones where the model was already applied and from

which it emerged): the generic patterns that will naturally arise from the study of new applications could

clearly help a lot to improve our modeling approach.

In a totally different direction, an interesting, challenging and open research subject would also consist

in introducing pricing within our model. Our approach does indeed not directly integrate neither the

customer behavior with respect to the price of a given new product which is proposed to him (this last

point can only be modeled indirectly by playing with the transition probabilities of our model), nor the

way of establishing such a price in order to obtain the best possible customer reactions (within a given

commercial process). It would therefore clearly be of main importance to be able to incorporate these

different price-oriented aspects within our framework.

Note finally that our model does absolutely not pretend to be better than other models. In some

sense, we even not really presented a model in the usual way, but rather a generic framework – based

here on Markovian modeling – for dealing with diffusion of innovation, that should of course always be

adapted in each practical situation. As stated in the introduction, one should always keep in mind that

we just wanted to present a simple mathematical approach that “save the phenomena" (that is to say

that took into account the realness of diffusion of innovation). We hope that we succeeded both in this

direction and in showing that the mechanism of diffusion of innovation can be much more complicated

than Rogers’ initial approach could let it think (which was also one of our motivations).
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