
 

ECOLE POLYTECHNIQUE 
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 

 

 
Maxmin computation and optimal correlation in repeated 

games with signals 
 
 
 

Olivier Gossner 
Rida Laraki 

Tristan Tomala 
 
 

 
November 2004 

 
 

Cahier n° 2004-028 
 

 

 

LABORATOIRE D'ECONOMETRIE 
1rue Descartes F-75005 Paris 

(33) 1 55558215 
 http://ceco.polytechnique.fr/  

mailto:labecox@poly.polytechnique.fr
 

ha
l-0

02
42

94
0,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7311106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ceco.polytechnique.fr/
mailto:labecox@poly.polytechnique.fr
http://hal.archives-ouvertes.fr/hal-00242940/fr/
http://hal.archives-ouvertes.fr


 

 
Maxmin computation and optimal correlation in repeated games 

with signals 
 
 

 
Olivier Gossner1

Rida Laraki2

Tristan Tomala3

 
 

 
November 2004 

 
 

Cahier n° 2004-028 
 

Résumé: Le maxmin pour une certaine classe de jeux répétés à observation imparfaite est obtenu 
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Maxmin computation and optimal correlation in

repeated games with signals

Olivier Gossner∗, Rida Laraki† and Tristan Tomala‡

November 18, 2004

Abstract

For a class of repeated games with imperfect monitoring, the max min

payoff is obtained as the solution of an optimization problem defined

on a set of probability distributions under entropy constraints. The

present paper offers a method for solving such problems for the class

of 3-player 2 × 2-games.

1 Introduction

The cornerstone of the theory of repeated games is the Folk Theorem which

states, under a variety of assumptions, that when the horizon of the game

tends to infinity, the limit set of equilibrium payoffs is the set of feasible and

individually rational payoffs.

Under perfect monitoring of actions, the individually rational level of a

player is the minmax of his one-stage payoff function where his opponents

play uncorrelated mixed strategies. In games with imperfect monitoring,

information asymmetries about past play may create possibilities of corre-

lation for the opponents.

∗CNRS, CERAS. E-mail: Olivier.Gossner@enpc.fr
†CNRS, Laboratoire d’Econométrie de l’Ecole Polytechnique. E-mail:

laraki@poly.polytechnique.fr
‡CEREMADE, Université Paris Dauphine. E-mail: tomala@ceremade.dauphine.fr
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For instance, if players against i have perfect monitoring and if player i

observes no signals, the opponents can exchange messages that are secret for

player i and punish him to the minmax level in correlated mixed strategies.

In general games with imperfect monitoring, the minmax level for a player

lies between the correlated minmax and the uncorrelated minmax of the

one-shot game.

Gossner and Tomala [GT04a] study the difference of forecasting abilities

between a perfect observer of a stochastic process and an observer who gets

imperfect signals on the same process. Building on this result, Gossner and

Tomala [GT04b] consider repeated games where player i gets a signal on

his opponents’ action profile which does not depend on his own action. At

a given stage of the game, i holds a belief on the mixed action profile used

by players against him, represented by a probability distribution on the set

of uncorrelated mixed action profiles. Such a distribution, Z, is called a

correlation system.

To each correlation system corresponds an entropy variation, ∆H(Z),

defined as the difference between the expected entropy of the mixed action

profile of players against i and the entropy of the signal observed by i.

Gossner and Tomala [GT04b] prove that the max min of the repeated game

(where player i is minimizing) is the highest payoff obtained by using two

correlation systems Z1 and Z2 with respective time frequencies λ1, λ2 =

1−λ1 under the constraint that the average entropy variation is non-negative

(i.e. λ1∆H(Z1) + λ2∆H(Z2) ≥ 0). To achieve this payoff, the opponents

of i start by generating signals that give little information to player i (they

accumulate entropy). Then they play alternatively a correlation system that

yields a bad payoff but generates entropy (has a positive entropy variation)

and another that uses the entropy just generated to yield a good payoff. The

constraint on the frequencies of the correlation system is that on average,

the entropy variation must be greater than or equal to zero.

The aim of the present paper is to develop tools for computing optimal

solutions of this problem when the team against player i consists of two play-
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ers. In order to compute the combination of correlation system that yields

the highest payoff under the entropy constraint, we study the auxiliary prob-

lem that consists in computing optimal correlation systems associated with

a fixed correlated distribution of actions of the team: this is the correlation

system with maximal entropy variation inducing this distribution. We de-

rive general properties of the solutions and a full characterization of these

solutions when each of the team player’s action spaces has two elements.

Relying these solutions, we deduce a full analytic characterization of the

max min of an example of repeated game with imperfect monitoring. An-

other application of our characterization of optimal correlation systems has

been developed by Goldberg [Gol03] (see section 5 below). Beyond the game

studied in this paper, the tools we develop may serve as a basis for com-

putations of solutions of maximization problems under entropy constraints

raising from other optimization or game theoretic problems.

This paper is part of a growing body of literature on entropy methods

in repeated games. Lehrer [Leh88] and Lehrer and Smorodinsky [LS00] use

the relative entropy as a distance between probability measures. Neyman

Okada [NO99], [NO00] use entropy as a measure of the randomness of a

mixed strategy, and apply it to repeated games played by boundedly rational

players. Gossner and Vieille [GV02] compute the maxmin value of a zero-

sum repeated game where the maximizing player is not allowed to randomize

freely but privately observes an exogenous i.i.d. process, and show that this

value depends on the exogenous process through its entropy only. Gossner,

Hernandez and Neyman [GHN04] apply entropy methods to the study of

optimal use of communication resources.

We present the model, an example and the auxiliary optimization prob-

lem in section 2. Section 3 is devoted to optimal correlation systems. Section

4 solves the specific example. The proofs of the main results are postponed

to section 5. We discuss possible extensions and applications in section 6.
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2 The repeated game with signals

We consider a 3-player finite game Γ where players 1 and 2 have identical

payoffs opposed to the payoff of player 3. The set of players is I = {1, 2, 3},

Ai is player i’s finite set of actions, and A = A1 × A2 × A3. The payoff

function to players 1 and 2 is g : A → R, and −g is the payoff function of

player 3. The set of mixed strategies for player i is Xi = ∆(Ai), and the

set of correlated strategies for players 1 and 2 is X12 = ∆(A1 × A2). For

x ∈ X1 and y ∈ X2, x⊗ y represents the direct product of x and y, and the

subset of X12 consisting of product measures is X = X1 ⊗X2.

The game is infinitely repeated and at after each stage t = 1, 2, . . ., if

a = (a1, a2, a3) is the profile of actions played by the players at stage t, both

players 1 and 2 observe a while player 3 observes f(a1, a2) where f is a fixed

mapping from A1 × A2 to some finite set of signals. Players 1 and 2 thus

have perfect monitoring and player 3 has imperfect monitoring. The team

{1, 2} is maximizing the long-run average payoff while player 3 is minimizing

this payoff. The solution concept we consider is the max min of the infinitely

repeated game (for a precise definition see e.g. [GT04b]).

2.1 An example

For a given payoff specification, we show how the signalling structure affects

the max min payoff. One of the aims of this paper is to compute the max min

payoff for this payoff specification and one signalling structure of particular

interest.

The payoff specification is as follows. Players 1 and 2 play a coordination

game: each of them chooses between spending the evening at the bar ‘Golden

Gate’ (G) or at the bar ‘Happy Hours’ (H). Player 3 faces the same choice.

The payoff for the first two players is 1 if they meet at the same bar and

3 chooses the other bar, otherwise the payoff is 0. The payoff function is

displayed below where 1 chooses the row, 2 the column and 3 the matrix.

4
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G H

G 0 0

H 0 1

G

G H

G 1 0

H 0 0

H

The uncorrelated max min of the one-shot game is 1
4 and may be obtained

in the repeated game by the team {1, 2} by playing the same mixed action

(1
2 ,

1
2) at every stage.

The correlated maxmin of the one-shot game is 1
2 . This may be obtained

by players 1 and 2 in the repeated game if they can induce player 3 to

believe, at almost every stage, that (G,G) and (H,H) will both be played

with probability 1
2 and if their play is independent on player 3’s behavior.

For example, if player 3 has no information concerning the past moves of

the opponents, then team {1, 2} may achieve its goal by randomizing evenly

at the first stage, and coordinate all subsequent moves on the first action of

player 1.

The case of particular interest is when player 3 observes the actions of

player 2 but not of player 1, i.e. f(a1, a2) = a2. The study of this game with

this signalling structure, which we denote Γ0, was proposed by [RT98].

The following strategies for players 1 and 2 achieve partial correlation in

the repeated game:

• At odd stages, play (1
2 ,

1
2) ⊗ (1

2 ,
1
2),

• at even stages, repeat the previous move of player 1. Player 3’s belief

is then that (G,G) is played with probability 1
2 and (H,H) with the

same probability.

The limit time-average payoff yielded by this strategy is 3
8 . How much

correlation can be achieved by the team {1, 2} in this game? Can the team

improve on 3
8? Is it possible to achieve complete correlation? As an appli-

cation of our main results (theorem 7) we prove that full correlation is not

achievable, but the team can improve sharply on 3
8 . Some optimal level of

5

ha
l-0

02
42

94
0,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



correlation is achievable, and the corresponding payoff lies between 0.4020

and 0.4021 (corollary 10).

2.2 The optimization problem

The entropy of a finite support probability distribution P = (pl)
L
l=1 is given

by H(P ) = −
∑L

l=1 pl log(pl) where log = log2 and 0 log 0 = 0. For the case

of binary distributions (x, 1−x), we let h(x) = −x log(x)−(1−x) log(1−x).

Definition 1 A correlation system Z is a distribution with finite support

on X:

Z =
K

∑

k=1

pkδxk⊗yk

where for each k, pk ≥ 0,
∑

k pk = 1, xk ∈ X1, yk ∈ X2 and δxk⊗yk
stands

for the Dirac measure on xk ⊗ yk. Hence, for each k, the probability under

Z of xk ⊗ yk is pk.

• The distribution of actions for players 1 and 2 induced by Z is

D(Z) =
∑

k pkxk ⊗ yk, an element of X12.

• The payoff yielded by Z is π(D(Z)) = mina3 g(D(Z), a3).

• The distribution of signals for player 3 induced by Z is f(D(Z)),

i.e. for each signal u, f(D(Z))(u) =
∑

f(a1,a2)=uD(Z)(a1, a2).

• The entropy variation of Z is ∆H(Z) =
∑

k pk(H(xk) +H(yk)) −

H(f(D(Z))).

The interpretation is the following. The set {1, . . . ,K} represents the

set of events secretly observed by the team before a given stage, and pk

is the probability that player 3 assigns to the event k. Under Z, players

(1, 2) play (xk, yk) if they observe k. Hence, given player 3’s information

(who ignores the true value of k) the distribution of actions of the team is

D(Z). Player 3 plays a best response to D(Z) and the corresponding payoff

is π(D(Z)). The amount
∑

k pk(H(xk) +H(yk)) is the expected entropy of

6
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the mixed profile of the team, whereas H(f(D(Z))) represents the entropy

of the signal observed by player 3. The difference between the entropy added

to the information of the team and of the new information to player 3 is the

entropy variation ∆H(Z).

Examples. Consider the game Γ0. We identify a mixed strategy x for

player 1 [resp. y for player 2] to the probability it puts on G.

• Let Z = δx⊗y. The payoff π(D(Z)) is then min {xy; (1 − x)(1 − y)}.

Since the signal is the move of player 2, f(D(Z)) puts weight y on G.

Applying definition 1, we have ∆H(Z) = (H(x) + H(y)) − H(y) =

H(x). Among the set of correlation systems that are Dirac measures,

the payoff is maximal for x = y = 1
2 and takes the value 1

4 . The

entropy variation is also maximal for x = y = 1
2 and takes the value

1. Let Z 1

2

= δ 1

2
⊗ 1

2

.

• Let Z1 = 1
2δ1⊗1+

1
2δ0⊗0. The distribution induced isD(Z1) =





1
2 0

0 1
2





and the associated payoff is π(D(Z1)) = 1
2 . The distribution of signals

f(D(Z)) puts weight 1
2 on both G and H and for each k, h(xk) =

h(yk) = 0, so the entropy variation is −1.

• The cyclic strategy devised in case 3 of section 2.1 consists in playing

Z 1

2

at odd stages and Z1 at even stages, so that we cyclically gain and

lose 1 bit of entropy. The payoff obtained is the average between these

of Z 1

2

and Z1, hence 3
8 .

Consider the map U : R → R∪{−∞} defined by the following optimiza-

tion problem:

U(c) = sup
Z:∆H(Z)≥c

π(D(Z))

We recall the following result from Gossner and Tomala [GT04b]

Lemma 2 The max min of the infinitely repeated game is

cavU(0)

7
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where cavU is the smallest concave function pointwise greater than U .

The max min of the repeated game with imperfect monitoring thus writes

as the max min of a game in which the team {1, 2} may choose an arbi-

trary correlation system at each stage under the constraint that the aver-

age entropy variation is non-negative. This represents the optimal trade-

off for this team between generating correlation (by playing some Z1 with

∆H(Z1) > 0), and using correlation to get a good payoff (by playing some

Z2 with ∆H(Z2) < 0).

3 An auxiliary optimization problem

We develop the analytic tools that facilitate the computation of the map U .

We do this through the resolution of an auxiliary optimization problem.

3.1 Optimal correlation systems

Since the payoff π(D(Z)) depends on Z through the induced distribution

D(Z) only, we study how to induce a given distribution D by a Z with

maximal entropy variation.

Definition 3 Given D ∈ X12, a correlation system Z is optimal for D if:

1. D(Z) = D;

2. For every Z ′ such that D(Z ′) = D, ∆H(Z ′) ≤ ∆H(Z).

A correlation system Z is optimal if it is optimal for D(Z).

The existence of optimal correlation systems does not follow directly

from the definition, but is a consequence of the following proposition.

Proposition 4 For every D ∈ X12, there exists Z optimal for D which has

finite support of cardinal no more than
∣

∣A1
∣

∣ +
∣

∣A2
∣

∣.

8
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Proof. Let D ∈ X12, identifying an action ai of player i with the mixed

strategy δai ∈ Xi, one has:

D =
∑

a1,a2

D(a1, a2)δa1⊗a2

Thus the set of Z such that D(Z) = D is non-empty. Now for each Z =
∑K

k=1 pkδxk⊗yk
such that D(Z) = D, the vector (D(Z),∆H(Z)) writes:

(D(Z),∆H(Z)) =
K

∑

k=1

pk (δxk⊗yk
, H(xk) +H(yk) −H(f(D)))

and, indentifying δxk⊗yk
with xk ⊗ yk, it belongs to the convex hull of the

set:

S =
{

(x⊗ y,H(x) +H(y) −H(f(D))) | x ∈ X1, y ∈ X2
}

which lies in a vector space of dimension (
∣

∣A1
∣

∣ − 1) + (
∣

∣A2
∣

∣ − 1) + 1. From

Carathéodory’s theorem, it can be obtained by a convex combination of at

most
∣

∣A1
∣

∣ +
∣

∣A2
∣

∣ points in S. Summing up, for each distribution D and

correlation system Z s.t.D(Z) = D, there exists Z ′ with |suppZ ′| ≤ K,

D(Z ′) = D and ∆H(Z ′) = ∆H(Z). It is plain that the set of correlation

systems Z ′ s.t. |suppZ ′| ≤ K and D(Z ′) = D is a nonempty finite di-

mensional compact set and that the mapping ∆H is continuous on it. The

maximum of ∆H is thus attained on this set.

The set of optimal correlation systems possesses a kind of consistency

property. Roughly, one cannot find in the support of an optimal system,

a sub-system which is not optimal. In geometric terms, if we denote by Z

the set of all correlation systems and F(Z) the minimal geometric face of

the convex Z containing Z, then the following lemma shows that if Z is

optimal then any correlation system that belongs to F(Z) is also optimal

(for a precise definition of the geometric face in infinite dimension, see e.g.

[Lar04]).

Lemma 5 Let Z be an optimal correlation system. If Z = λZ ′ + (1− λ)Z ′′

for some 0 < λ ≤ 1 and correlation systems Z ′, Z ′′, then Z ′ is optimal.

9
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In particular, if Z =
∑K

k=1 pkδxk⊗yk
is optimal, then for any k1 and k2

in {1, . . . ,K} such that pk1 + pk2 > 0,
pk1

pk1
+pk2

δxk1
⊗yk1

+
pk2

pk1
+pk2

δxk2
⊗yk2

is

optimal.

Proof. Assume that Z = λZ ′ +(1−λ)Z ′′ with 0 < λ ≤ 1 and that Z ′ is

not optimal. There exists Z∗ s.t. D(Z∗) = D(Z ′) and ∆H(Z∗) > ∆H(Z ′).

Define Z0 = λZ∗+(1−λ)Z ′′, then D(Z0) = D(Z) and ∆H(Z0)−∆H(Z) =

λ(∆H(Z∗) − ∆H(Z ′)) contradicting the optimality of Z.

If we select for each D an optimal correlation system ZD, the mapping

U can be written as:

U(c) = sup
D:∆H(ZD)≥c

π(D),

so that to compute U , it suffices to compute one optimal ZD for each dis-

tribution D. Note that ZD is optimal for D if and only if:

∆H(ZD) = max
Z:D(Z)=D

∆H(Z)

= max
Z:D(Z)=D

{

∑

k

pk(H(xk) +H(yk))

}

−H(f(D)),

so that ZD is optimal for D if and only if it is a solution of

max
Z:D(Z)=D

∑

k

pk(H(xk) +H(yk)) (PD)

Note that this problem and therefore the notion of optimal correlation

system, do not depend on payoffs and signals. A characterization of the

solutions of (PD) is thus a tool for computing U(c) for any payoff function g

and signaling function f . We establish the following properties on the value

of (PD), which are independent of the size of the game.

Proposition 6 1. The mapping ϕ : D 7→ value of PD is the smallest

concave function on X12 that pointwise dominates the entropy function

on X, i.e. ϕ(x⊗ y) ≥ H(x) +H(y) for each x⊗ y ∈ X.

10
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2. For each D, ϕ(D) ≤ H(D) and ϕ(D) = H(D) iff.D is a product

distribution.

3. ϕ is continuous on X12.

Proof. (1) Let f be the bounded mapping f : X12 → R, such that

f(D) =







H(D) if D ∈ X

0 if D /∈ X

Then ϕ = cav f the smallest concave function on X12 that is pointwise

greater than f .

(2) If D =
∑

k pkxk ⊗ yk, by concavity of the entropy function, H(D) ≥
∑

k pk(H(xk)+H(yk)), thus H(D) ≥ ϕ(D). Assume D ∈ X i.e. D = x⊗y,

by point (1) ϕ(x⊗ y) ≥ H(x⊗ y) so that ϕ(x⊗ y) = H(x⊗ y). If D /∈ X,

from proposition 4 there exists (pk, xk, yk)k s.t. D =
∑

k pkxk ⊗ yk and

ϕ(D) =
∑

k pk(H(xk ⊗ yk)) and by strict concavity of the entropy function,

ϕ(D) < H(D).

(3) Since f is uppersemicontinuous and X12 is a polytope, we deduce

from Laraki [Lar04] (theorem 1.16, proposition 2.1 and proposition 5.2) that

ϕ is uppersemicontinuous. Also, since X12 is a polytope and ϕ is bounded

and concave, we deduce from Rockafellar [Roc70] (theorem 10.2 and theorem

20.5) that ϕ is lowersemicontinuous.

3.2 Characterization when team members have two actions

We characterize optimal correlation systems when each team player pos-

sesses two actions. Hence assume from now on that A1 = A2 = {G,H}. We

shall identify a mixed strategy x (resp. y) of player 1 (resp. 2) with the

probability of playing G, i.e. to a number in the interval [0, 1]. We denote

distributions D ∈ X12 by:

D =





d1 d2

d3 d4



 ,

11
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where d1 denotes the probability of the team’s action profile (H,H), d2 the

probability of (H,G) etc.

The following theorem shows that the optimal correlation system asso-

ciated to any D is unique, contains at most two elements in its support,

can be easily computed for a given distribution, and that the set of optimal

correlation systems admits a simple parametrization.

Theorem 7 For every D ∈ X12, there exists a unique ZD which is optimal

for D. Moreover,

• If det(D) = 0, ZD = δx⊗y where

x = d1 + d2 , y = d1 + d3

• If det(D) < 0, ZD = pδx⊗y + (1 − p)δy⊗x where

x and y are the two solutions of the second degree polynomial equation

X2 − (2d1 + d2 + d3)X + d1 = 0

and

p =
y − (d1 + d2)

y − x
.

• If det(D) > 0, ZD = pδ1−x⊗y + (1 − p)δ1−y⊗x where

x and y are the two solutions of the second degree polynomial equation

X2 − (2d3 + d4 + d1)X + d3 = 0

and

p =
y − (d3 + d4)

y − x

The proof in provided in section 5.1. Remark that each correlation sys-

tem involves two points only in its support and that the parametrization of

optimal correlation systems involves 3 parameters, matching the dimension

of X12. Note that proposition 4 only proves the existence of optimal corre-

lation systems with
∣

∣A1
∣

∣ +
∣

∣A2
∣

∣ = 4 points in their support, thus described

by 11 parameters.

12
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4 Application to Γ0

The optimal correlation systems are independent of the payoff function and

signalling structures of the underlying game. We compute U(c) for Γ0 in-

troduced in section 2.1. We introduce a family of correlation systems of

particular interest.

Notation 8 For x ∈ [0, 1] let Zx = 1
2δx⊗x + 1

2δ(1−x)⊗(1−x).

It follows from theorem 7 that each Zx is optimal. Actually, (Zx)x is the

family of correlation systems associated to probability measures that put

equal weights on (G,G) and on (H,H), and equal weights on (G,H) and on

(H,G). Against each Zx, player 3 is thus indifferent between his two actions

and therefore,

π(D(Zx)) =
1

2
(x2 + (1 − x)2).

For each k = 1, 2, H(xk) = H(yk) = h(x) and the law of signals under Z(x)

is (1
2 ,

1
2) thus,

∆H(Zx) = 2h(x) − 1.

The following result, proved in section 5.3, shows that the map U can be

obtained from the family (Zx)x.

Proposition 9 Consider the game Γ0. For any c ∈ [−1, 1],

U(c) = π(D(Zxc
)) =

1

2
(x2
c + (1 − xc)

2)

with xc the unique point in
[

0, 1
2

]

such that 2h(xc) − 1 = c. Moreover, U is

concave.

It follows that the max min for the game Γ0 is U(0).

Corollary 10 The max min of the infinitely repeated game Γ0 is:

v =
1

2
(x2

0 + (1 − x0)
2)

where x0 is the unique solution in [0, 1
2 ] of

−x log(x) − (1 − x) log(1 − x) =
1

2

Numerically, 0.4020 < v < 0.4021.
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Figure 1: The graph of U

Remark 11 In contrast with a finite zero-sum stochastic game, the max min

here is transcendental. A similar property holds for the asymptotic value

of a repeated game with incomplete information on both sides (see Mertens

and Zamir [MZ81]) and of a “Big Match” with incomplete information on

one side (see Sorin [Sor84]).

5 Proofs of the main results

5.1 Proof of theorem 7

For each integer m, let Cm(D) be the set of set vectors (pk, xk, yk)
m
k=1 where:







∀k, pk ≥ 0,
∑m

k=1 pk = 1, xk ∈ X1, yk ∈ X2

∑m
k=1 pkxk ⊗ yk = D

This set is clearly compact and the mapping

(pk, xk, yk)
m
k=1 7→

m
∑

k=1

pk(H(xk) +H(yk))

is continuous on it. The problem (PD) can thus be written as:

sup
m

max
Cm(D)

m
∑

k=1

pk(H(xk) +H(yk)) (PD)
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Denote by (Pm,D), m ≥ 2, the second maximization problem where m is

fixed:

max
Cm(D)

m
∑

k=1

pk(h(xk) + h(yk)) (Pm,D)

5.1.1 Solving (P2,D).

Given D ∈ X12, a point in C2(D) is a vector (p, (x1, y1), (x2, y2)) ∈ [0, 1]5

such that:

D = p





x1y1 x1(1 − y1)

(1 − x1)y1 (1 − x1)(1 − y1)



+(1−p)





x2y2 x2(1 − y2)

(1 − x2)y2 (1 − x2)(1 − y2)





The problem (P2,D) writes:

max
C2(D)

p(h(x1) + h(y1)) + (1 − p)(h(x2) + h(y2)) (P2,D)

We are concerned with the computation of the set of solutions:

Λ(D) := argmaxC2(D)p(h(x1) + h(y1)) + (1 − p)(h(x2) + h(y2))

The problem (P2,D) is the maximization of a continuous function on a com-

pact set, thus Λ(D) 6= ∅ if C2(D) 6= ∅. We will use the following parame-

trization: for D =





d1 d2

d3 d4



, set r = d1 + d2, s = d1 + d3 and t = d1. The

vector (p, (x1, y1), (x2, y2)) ∈ [0, 1]5 is in C2(D) if and only if:















px1 + (1 − p)x2 = r

py1 + (1 − p)y2 = s

px1y1 + (1 − p)x2y2 = t

Note that det(D) := d1d4 − d2d3 = t− rs.

The remainder of this section is devoted to the proof of the following

characterization of Λ(D):

15
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Proposition 12 (A) If det(D) = 0, then

Λ(D) = {(p, (r, s), (r, s)) : p ∈ [0, 1]}

∪
{

(1, (r, s), (y1, y2)) : (y1, y2) ∈ [0, 1]2
}

∪
{

(0, (x1, x2), (r, s)) : (x1, x2) ∈ [0, 1]2
}

(B) If det(D) < 0,

Λ(D) = {(
β − r

β − α
, (α, β), (β, α)); (

α− r

α− β
, (β, α), (α, β))}

where α and β are the two solutions of:

X2 − (2d1 + d2 + d3)X + d1 = 0.

(C) If det(D) > 0,

Λ(D) = {(
β − (1 − r)

β − α
, (1−α, β), (1−β, α)); (

α− (1 − r)

α− β
, (1−β, α), (1−α, β))}

where α and β are the two solutions of:

X2 − (2d3 + d4 + d1)X + d3 = 0.

Proof of proposition 12. Remark that in (A), all solutions correspond

to the same correlation system. The same applies to (B) and (C), in which

both elements of Λ(D) induce the same correlation system. Solutions of

(P2,D) always lead to a unique correlation system.

Point (A). The formula given in proposition 12 for Λ(D) clearly defines a

subset of C2(D). Note that det(D) = 0 if and only if D = r⊗ s. (A) follows

then directly from point (3) of lemma 6.

Points (B) and (C). We first show that these cases are deduced from

one another by symmetry. Take a distribution D =





d1 d2

d3 d4



 and a point

(p, (x1, y1) , (x2, y2)) in Λ(D). Let then D′ =





d3 d4

d1 d2



 and remark that:

16
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• det(D′) = −det(D)

• (p, (1 − x1, y1) , (1 − x2, y2)) ∈ Λ(D′).

Remark also that the two solutions given in proposition 12 for case (C) are

the symmetric of the solutions for case (B). We thus need to prove (B) only.

Since α and β are solutions of:

X2 − (2d1 + d2 + d3)X + d1 = 0.

we have α + β = r + s and αβ = t. Thus α, β, β−r
β−α and r−β

α−β are in [0, 1].

One then easily verifies that:














β−r
β−αα+ r−β

α−ββ = r

β−r
β−αβ + r−β

α−βα = s

β−r
β−ααβ + r−β

α−ββα = r

The solutions given in proposition 12 for case (B) are thus in C2(D) which

is therefore non empty. In particular, any 2 × 2 joint distribution can be

decomposed as a convex combination of two independent distributions.

We solve now the case where D is in the boundary of X12.

Case 1. D is in the boundary.

Assuming det(D) < 0, we get either:

D = D1 =









0 r

s 1 − r − s









or

D = D2 =









1 − r − s s

r 0









with rs > 0. We solve for D1, the other case being similar. The vector

(p, (x1, y1) , (x2, y2)) is in Λ(D1) if and only if

px1 + (1 − p)x2 = r

py1 + (1 − p)y2 = s

px1y1 + (1 − p)x2y2 = 0

17
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Since D is not the product of its marginals, necessarily p ∈]0, 1[, and x1y1 =

x2y2 = 0. We assume wlog. x1 = 0. We get then x2 = r
1−p 6= 0, y2 = 0, and

y1 = s
p
. The problem (P2,D1

) is then reduced to maximizing over p ∈ (0, 1)

the expression:

ph(
s

p
) + (1 − p)h(

r

1 − p
)

A solution in (0, 1) exists, from the non emptiness of Λ(D1). The first order

condition writes:

h(
s

p
) −

s

p
h′(

s

p
) = h(

r

1 − p
) −

r

1 − p
h′(

r

1 − p
)

The map f : (0, 1) → R given by f(x) = h(x)−xh′(x) has derivative f ′(x) =

−xh′′(x) > 0, hence is strictly increasing. Thus, the first order condition is

equivalent to r
1−p = s

p
, or p = s

r+s . We have thus shown:

Λ(D1) =

{(

s

r + s
, 0, r + s, r + s, 0

)

;

(

r

r + s
, r + s, 0, 0, r + s

)}

Case 2. D is interior.

We assume now that mini∈{1,...,4}(di) > 0. The proof is organized in a serie

of lemmata. Lemma 13 proves that all solutions are interior. Therefore they

must verify a first order condition. First order equations are established

in lemma 14. Lemma 15 studies the solutions of the first order equations

and lemma 16 shows unicity of those solutions. We conclude the proof with

lemma 17.

We prove now that any solution of (P2,D) is interior. This is due to the fact

that the entropy function has infinite derivative at the boundary.

Lemma 13 If mini∈{1,...,4}(di) > 0 and det(D) 6= 0 then Λ(D) ⊂ (0, 1)5.

Proof. We prove that elements of Λ(D) are interior. Take a point

Z = (p, (x1, y1), (x2, y2)) in C2(D). Since det(D) 6= 0, 0 < p < 1. We

show that if x1 = 0, Z is not optimal for (P2,D). The proof is completed

by symmetry. We assume thus x1 = 0 and construct a correlation system

18
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Zε = (pε, (xε1, y
ε
1), (x

ε
2, y

ε
2)) in C2(D) as follows. Since Z ∈ C2(D):















(1 − p)x2 = r

py1 + (1 − p)y2 = s

(1 − p)x2y2 = t

Take ε > 0 and let:






































pε = p+ ε

xε1 =
(

1 − p
pε

)

x2

xε2 = x2

yε1 = y1

yε2 = 1−p
1−pε y2 −

pε−p
1−pε y1

Since t = (1 − p)x2y2 6= 0, there exists ε0 > 0 such that Zε ∈ [0, 1]5 for

0 < ε ≤ ε0. A simple computation shows that Zε is in C2(D). We now

compare the objective function of (P2,D) at Zε and at Z.

(pε (h(xε1) + h(yε1)) + (1 − pε) (h(xε2) + h(yε2)))

− (p [h(x1) + h(y1)] + (1 − p) [h(x2) + h(y2)])

= qh(xε1) + (1 − pε)h(yε2) − (1 − p)h(y2)

= (p+ ε)h(

(

1 −
p

p+ ε

)

x2) + (1 − p− ε)h(
1 − p

1 − p− ε
y2 −

ε

1 − p− ε
y1) − (1 − p)h(y2)

= ph(εx2) + (1 − p)h(y2 −
ε

1 − p
y1) − (1 − p)h(y2) + o(ε)

= ph(εx2) − εy1h
′(y2) + o(ε)

= p [−εx2 ln(εx2) − (1 − εx2) ln(1 − εx2)] − εy1h
′(y2) + o(ε)

= ε
[

−px2 ln(εx2) − y1h
′(y2) + x2 + o(1)

]

> 0

for ε small enough.

Solutions of (P2,D) being interior, they must verify first order conditions.

Given x and y in (0, 1), recall that the Kullback distance dK(x ‖y) of x with

respect to y is defined by:

dK(x ‖y) = −x log
x

y
− (1 − x) log

1 − x

1 − y
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A direct computation shows:

dK(x ‖y) = h(y) − h(x) − h′(y)(y − x),

where h′ denotes the derivative of h.

Lemma 14 Suppose that mini(di) > 0 and det(D) 6= 0. If (p, x1, y1, x2, y2) ∈

Λ(D) then :






dK(x2 ‖x1 ) = dK(y1 ‖y2 )

dK(x1 ‖x2 ) = dK(y2 ‖y1 )
(E)

Proof. The Lagrangian of (P2,D) writes:

L(p, x1, y1, x2, y2, α, β, γ) = p(h(x1) + h(y1)) + (1 − p)(h(x2) + h(y2))

+α(px1 + (1 − p)x2 − r) + β(py1 + (1 − p)y2 − s)

+γ(px1y1 + (1 − p)x2y2 − t)

The partial derivatives are







































∂L
∂p

= (h(x1) + h(y1)) − (h(x2) + h(y2)) + α(x1 − x2) + β(y1 − y2) + γ(x1y1 − x2y2)

∂L
∂x1

= p (h′(x1) + α+ γy1)

∂L
∂x2

= (1 − p) (h′(x2) + α+ γy2)

∂L
∂y1

= p (h′(y1) + β + γx1)

∂L
∂y2

= (1 − p) (h′(y2) + β + γx2)

If (p, x1, y1, x2, y2) ∈ Λ(D), there exists (α, β, γ) such that:







































(h(x1) + h(y1)) − (h(x2) + h(y2)) + α(x1 − x2) + β(y1 − y2) + γ(x1y1 − x2y2) = 0

h′(x1) + α+ γy1 = 0

h′(x2) + α+ γy2 = 0

h′(y1) + β + γx1 = 0

h′(y2) + β + γx2 = 0

(E1)

(E2)

(E3)

(E4)

(E5)

The combination of equations (E1) − x1 × (E2) + x2 × (E3) gives:

(h(x1) + h(y1)) − (h(x2) + h(y2)) = x1h
′(x1) − x2h

′(x2) − β(y1 − y2) (1)
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The combination y1((E4) − (E5)) + (x1 − x2)(E2) writes:

y1

(

h′(y1) − h′(y2)
)

= h′(x1)(x1 − x2) + α(x1 − x2) (2)

Equations (1) and (2) give:

h(x1) − h(x2) − h′(x1)(x1 − x2) = h(y2) − h(y1) − h′(y2)(y2 − y1)

which rewrites:

dK(x2 ‖x1) = dK(y1 ‖y2)

Similarly we obtain:

dK(x1 ‖x2) = dK(y2 ‖y1)

We give now the solutions of the equations (E).

Lemma 15 Assume dK(x ‖a) = dK(b ‖y) and dK(a ‖x) = dK(y ‖b). Then

one of the following holds:

(F1) x = b, y = a;

(F2) x = 1 − b, y = 1 − a;

(F3) x = a, y = b.

Proof. Fix a and b in (0, 1). We need to solve the system:







dK(x ‖a) − dK(b ‖y ) = 0

dK(a ‖x) − dK(y ‖b) = 0
(S)

It is immediate to check that (F1), (F2), and (F3) are solutions of (S).

Letting S(x, y) = (dK(x ‖a)− dK(b ‖y ), dK(a ‖x)− dK(y ‖b)), the Jacobian

J(x, y) of S writes:

J(x, y) = det





ln( x
1−x) − ln( a

1−a)
1−a
1−x − a

x

1−b
1−y −

b
y

ln( y
1−y ) − ln

(

b
1−b

)





= ln
x(1 − a)

a(1 − x)
× ln

y(1 − b)

b(1 − y)
−

(x− a) × (y − b)

x(1 − x)y(1 − y)

21

ha
l-0

02
42

94
0,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



since for all z > 1, 0 < ln(z) < z − 1, if x > a and y > b then

0 < ln
x(1 − a)

a(1 − x)
<
x(1 − a)

a(1 − x)
− 1 =

x− a

1 − x
<

x− a

x(1 − x)

and

0 < ln
y(1 − b)

b(1 − y)
<
y(1 − b)

b(1 − y)
=
y − b

1 − y
<

y − b

y(1 − y)

Hence, on the domain {x > a, y > b} one has:

ln
x(1 − a)

a(1 − x)
× ln

b(1 − y)

y(1 − b)
<
x− a

1 − x
×
y − b

1 − y
<

(x− a) × (b− y)

x(1 − x)y(1 − y)
.

thus J(x, y) < 0 on the domain {x > a, y > b}. The mappings x 7→

dK(x ‖a) := fa(x) and y 7→ dK(b ‖y ) := gb(y) are differentiable and strictly

increasing on the intervals (a, 1) and (b, 1) respectively and setting F (x) :=

g−1
b ◦ fa(x) − f−1

b ◦ ga(x), S(x, y) = 0 if and only if F (x) = 0 and y =

g−1
b ◦ fa(x). Then if x0 ∈ (a, 1) is such that F (x0) = 0, we let y0 :=

g−1
b ◦ fa(x0) = f−1

b ◦ fa(x0) ∈ (b, 1) and F ′(x0) = J(x0,y0)

f
′

b
(y0)×g′

b
(y0)

< 0, i.e. at a

zero of F , F ′(x0) < 0. F admits thus at most one zero.

If a+ b < 1, (1 − b, 1 − a) is indeed a solution of (S) and we deduce:

D1. If a + b < 1, then (1 − b, 1 − a) is the unique solution of (S) on

{x > a, y > b}.

Using z − 1 < ln(z) < 0 for all z < 1, we deduce that J(x, y) < 0 on the

domain {x < a, y < b}. We then obtain:

D2. If a + b > 1, then (1 − b, 1 − a) is the unique solution of (S) on

{x < a, y < b}.

Similar arguments show that:

D3. If a < b, then (b, a) is the unique solution to (S) on {x > a, y < b}.

D4. If a > b, then (b, a) is the unique solution to (S) on {x < a, y > b}.

We are now in position to complete the proof of the lemma. First, if (x −

a)(y − b) = 0 then (S) implies x = a and y = b.

If (x− a)(y − b) > 0, we obtain (x, y) = (1 − b, 1 − a) as follows:

• If a+ b ≤ 1:

– If x < a and y < b then x + y < a + b ≤ 1. Apply D1 reversing

the roles of (x, y) and (a, b).
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– If x > a, y > b and a+ b 6= 1. Apply D1.

– If x > a, y > b and a+ b = 1 then x+y > 1. Apply D2, reversing

the roles.

• If a+ b > 1:

– If x > a and y > b, then x+ y > a+ b > 1. Apply D2, reversing

the roles.

– If x < a and y < b, apply D2.

If (x− a)(y − b) < 0 we obtain (x, y) = (b, a) as follows:

• If a ≤ b:

– If x < a and y > b then x < y. Reverse the roles and apply D3.

– If x > a, y < b and a < b, apply D3.

– If x > a, y < b and a = b then x > y. Reverse the roles and

apply D4.

• If a > b:

– If x > a and y < b then x > y. Reversing the roles and apply D4.

– If x < a and y > b, apply D4.

Lemma 16 1. If det(D) < 0, solutions of (P2,D) are of type (F1).

2. If det(D) > 0, solutions of (P2,D) are of type (F2).

3. If det(D) = 0, solutions of (P2,D) are of type (F3).

Proof. Let (p, a, b) ∈ [0, 1]3, it is straightforward to check that:

1. det [p(a⊗ b) + (1 − p)(b⊗ a)] ≤ 0

2. det [p(a⊗ b) + (1 − p) [1 − b] ⊗ [1 − a]] ≥ 0
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The result follows then directly from lemma 15.

We now conlude the proof of proposition 12

Lemma 17 Let D such that det(D) < 0. Then

Λ(D) = {(
β − r

β − α
, α, β, β, α); (

r − α

β − α
, β, α, α, β)}

where α and β are the two solutions of the equation X2 − (r+ s)X + t = 0.

Proof. Assuming det(D) < 0, it follows from lemma 16 that any element

of Λ(D) is a tuple (p, (x, y), (y, x)), with:















px+ (1 − p)y = r

py + (1 − p)x = s

pxy + (1 − p)yx = t

We deduce then:






x+ y = r + s

xy = t

so that x and y must be solutions of the equation: X2 − (r + s)X + t = 0

and p is given by p = y−r
y−x . Note that:

∆ = (r + s)2 − 4t ≥ 4(rs− t) = −4 det(D) > 0

Hence, this equation admits two distinct solutions α and β.

The proof of proposition 12 is thus complete.

5.2 Solving (Pm,D)

To conlude the proof of theorem 7, we prove that for every D ∈ X12, the

value of Pm,D and of P2,D are the same. Recall from lemma 5 that if

(pk, xk, yk)k∈K is optimal for Pm,D, then for any pair (k1, k2) s.t. pk1 +pk2 >

0, the correlation system ((
pk1

pk1
+pk2

, xk1 , yk1); (
pk2

pk1
+pk2

, xk2 , yk2)) is optimal

for the distribution it induces. We deduce the solutions of (Pm,D) and of

(PD) from the form of solutions of (P2,D)

Lemma 18 Let (pk, xk, yk)
m
k=1 ∈ Cm(D) such that for all k, pk > 0.

If (pk, xk, yk)
m
k=1 is optimal for (PD) then one of the following holds:
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• ∀k, if (xk, yk) 6= (x1, y1) then (xk, yk) = (y1, x1)

• ∀k, if (xk, yk) 6= (x1, y1) then (xk, yk) = (1 − y1, 1 − x1)

Proof. Suppose that (x2, y2) 6= (x1, y1). Since (pk, xk, yk)k=1,...,m is

optimal for (PD),
((

p1
p1+p2

, x1, y1

)

,
(

p2
p1+p2

, x2, y2

))

is an optimal correlation

system. Then one has either (x2, y2) = (y1, x1) or (x2, y2) = (1− y1, 1−x1).

Suppose wlog. that (x2, y2) = (y1, x1). Let us prove that if (xk, yk) 6= (x1, y1)

then we have also (xk, yk) = (y1, x1). If it was not the case, we must have

(xk, yk) = (1 − y1, 1 − x1). Thus we deduce that (xk, yk) = (1 − x2, 1 − y2).

This is compatible with the form of optimal correlation system (withm = 2),

only if we have either (1− x2, 1− y2) = (1− y2, 1− x2) or (1− x2, 1− y2) =

(y2, x2). This means that we must assume either x2 = y2 or x2 = 1 − y2. If

x2 = y2 then, since (x2, y2) = (y1, x1), we should have x1 = y1. This implies

that (x2, y2) = (x1, y1), a contradiction with our assumption that (x2, y2) 6=

(x1, y1). Now, if x2 = 1 − y2 we deduce that (xk, yk) = (y2, x2) from which

we get (xk, yk) = (x1, y1), also in contradiction with our assumption. Hence,

if (x2, y2) = (y1, x1) then ∀k, if (xk, yk) 6= (x1, y1) one has (xk, yk) = (y1, x1).

This ends the proof of theorem 7.

5.3 Proof of proposition 9

We use theorem 7 to solve the problem:

U(c) = max
D:∆H(ZD)≥c

π(D)

for the game Γ0.

Definition 19 A correlation system Z is dominated for Γ0 if there exists

Z ′ such that π(D(Z ′)) ≥ π(D(Z)) and ∆H(Z ′) ≥ ∆H(Z) with at least one

strict inequality. Z is undominated otherwise.

From theorem 7, undominated correlation systems must be of the form

pδx⊗y +(1−p)δy⊗x or pδx⊗y +(1−p)δ1−y⊗1−x. The next lemma shows that

the first family of solutions is dominated.
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Lemma 20 Given Z = pδx⊗y + (1 − p)δy⊗x, let Z ′ = δx⊗y and Z ′′ = δy⊗x.

Then:

1. π(D(Z)) = π(D(Z ′)) = π(D(Z ′′))

2. ∆H(Z) ≤ max(∆H(Z ′),∆H(Z ′′)) with strict inequality if x 6= y and

0 < p < 1.

Proof. For point (1), the common value is min(xy, (1 − x)(1 − y)).

Point (2) follows from the formulas ∆H(Z) = h(x)+h(y)−h(px+(1−p)y),

∆H(Z ′) = h(x) + h(y)− h(x), ∆H(Z ′′) = h(y) + h(x)− h(y) and the strict

concavity of h.

We search now solutions among the family of optimal correlation systems

pδx⊗y + (1 − p)δ1−y⊗1−x.

Lemma 21 Let Z = pδx⊗y + (1 − p)δ1−y⊗1−x, 0 < p < 1 and x 6= 1 − y. If

Z is undominated for Γ0, then p = 1
2 .

Proof. Denote the distribution induced by Z,D(Z) =





d1(Z) d2(Z)

d3(Z) d4(Z)





Assuming x 6= 1 − y, p = 1
2 is equivalent to d1(Z) = d4(Z). Assume by

contradiction that d1(Z) 6= d4(Z) and by symmetry d1(Z) < d4(Z). The

Lagrangian of the maximization problem,

max π(D(Z))
{

Z = ((p, x, y); (1 − p, 1 − y, 1 − x))

∆H(Z) ≥ c

writes :

L = pxy + (1 − p)(1 − x)(1 − y) − α(h(x) + h(y) − h(px+ (1 − p)(1 − y)))

Let ỹ = 1 − y and z = px+ (1 − p)ỹ:















∂L
∂p

= (x− ỹ)(1 − αh′(z))

∂L
∂x

= −ỹ + p+ α(h′(x) − ph′(z))

∂L
∂y

= x− 1 + p+ α(−h′(ỹ) + (1 − p)ph′(z))
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so that optimality of Z implies:














h′(z) = 1
α

ỹ = h′(x)
h′(z)

x = h′(ỹ)
h′(z)

From the first two conditions we deduce that h′(x)h′(ỹ) ≥ 0, hence x and

ỹ lie on the same side of 1
2 . But then |h′(z)| ≥ |h′(x)| and |h′(z)| ≥ |h′(ỹ)|

is inconsistent with z lying in the strict interval of extremities x and ỹ:

0 < p < 1, x 6= ỹ.

Lemma 22 Let Z = 1
2δx⊗y + 1

2δ1−y⊗1−x, with x 6= 1 − y. If Z is not

dominated for Γ0, then x = y.

Proof. Let z = x+y
2 , and Z ′ = ((1

2 , z, z), (
1
2 , 1 − z, 1 − z)). We prove

that Z ′ dominates Z in G if x 6= y. For payoffs, direct computation leads

π(D(Z ′)) − π(D(Z)) = (x+y2 )2. For entropy variations, let ψ be defined by

ψ(x, y) = h(x) + h(y) − h(x+1−y
2 ). Then ∆H(Z) = ψ(x, y) = ψ(y, x) and

∆H(Z ′) = ψ(x+y2 , x+y2 ). Inequality ψ(x+y2 , x+y2 ) > ψ(x,y)+ψ(y,x)
2 will follow

from the strict concavity of ψ. The Jacobian matrix of ψ is:

J =





h′′(x) − 1
4h

′′(x+1−y
2 ) −1

4h
′′(x+1−y

2 )

−1
4h

′′(x+1−y
2 ) h′′(y) − 1

4h
′′(x+1−y

2 )





Then, traceJ = h′′(x)+h′′(y)− 1
4h

′′(x+1−y
2 ) = h′′(x)+h′′(1−y)− 1

4h
′′(x+1−y

2 )

is negative since h′′ : t 7→ − 1
ln 2(1

t
+ 1

1−t) is both concave and negative on

(0, 1). Brute force computation of detJ shows:

detJ =
1

(ln 2)2
(1 − x)(1 − y) + xy

xy(1 − x)(1 − y)(1 − x+ y)(1 − y + x)

> 0

Hence the strict concavity of ψ, and the claim follows.

We prove now proposition 9. From the two previous lemmas, it follows

that an undominated correlation system is of the form Z(x) = 1
2δx⊗x +

1
2δ1−x⊗1−x with x ∈ [0, 1]. The graph of c 7→ U(c) is thus the set:

C = {(∆H(Z), π(D(Z))), Z =
1

2
δx⊗x +

1

2
δ1−x⊗1−x and x ∈ [0, 1]}
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By symmetry one needs only to consider to x ∈ [0, 1
2 ], and letting (s(x), t(x)) =

(2h(x) − 1, 1
2x

2 + 1
2(1 − x)2), C is the parametric curve {(s(x), t(x)), x ∈

[0, 1
2 ]}. Since the slope α(x) of C at (s(x), t(x)) is

α(x) =
dt(x)/dx

ds(x)/dx
=

1 − 2x

log(1 − x) − log(x)

and

α′(x) =
2x− 1 + 2x(1 − x) ln(1 − 1

x
)

ln(2)x(1 − x)(log(1 − x) − log(x))2

The numerator of this expression has derivative (1 − 2x) ln( 1
x
− 1) > 0,

and takes the value 0 at x = 1
2 , hence it is nonnegative and so is α′(x). We

conclude that C is concave and that U(c) = π(D(Z(xc))) with ∆H(Z(xc)) =

2h(xc) − 1 = c and cavU(0) = U(0). This value is 1
2x

2 + 1
2(1 − x)2, where

0 < x < 1 solves h(x) = 1
2 . Numerical resolution yields 0.1100 < x < 0.1101

and 0.4020 < 1
2x

2 + 1
2(1 − x)2 < 0.4021.

6 Concluding remarks

6.1 On other games

The function U(c) is determined by the one-shot game and the signalling

function. Since we deal with the computation of cavU(0) two cases may

arise: either cavU(0) = U(0) (for example, if U is concave) or cavU(0) >

U(0) (if there exists two correlation systems Z1, Z2 and λ ∈ (0, 1) s.t.

λπ(D(Z1))+ (1−λ)π(D(Z2)) > U(0) and λ∆H(Z1)+ (1−λ)∆H(Z2) ≥ 0).

In the previous section we have shown that the map U corresponding

to Γ0 is concave. Goldberg [Gol03] provides an example of the second case.

Consider the game where payoffs for players 1 and 2 are given by:

G H

G 1 0

H 3 1

G

G H

G 1 3

H 0 1

H

and the signalling function f is:
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G H

G s s′′

H s′ s

G

The max min of the one-shot game is 5
4 and is obtained by the distribution

1
2 ⊗ 1

2 . Allowing for correlation, the max min is 3
2 and is obtained by the

distribution 1
20 ⊗ 1 + 1

21 ⊗ 0.

Relying on theorem 7, Goldberg shows that U is convex so that its

concavification is linear, thus cavU(0) = 4
3 = 2

3π(D(Z ′))+ 1
3π(D(Z ′′)) where

Z ′ = δ 1

2
⊗ 1

2

and Z ′′ = 1
2δ0⊗1 + 1

2δ1⊗0.

6.2 Extensions and open problems

The obvious way of extending our results is to consider larger sets of actions

for the team players as well as larger teams. Assume that the team of players

{1, . . . , n} opposes player n + 1 in a repeated game where each player 1 ≤

i ≤ n has perfect monitoring and player n+1 observes a signal f(a1, . . . , an).

The characterization of the max min in [GT04b] is valid in this case. The

definition of correlation systems and of optimal correlation systems extend

naturally. A correlation system is a finite support distribution on the set of

mixed strategies: Z =
∑

k pkδ⊗ix
i

k

with xik ∈ ∆(Ai). The correlation system

is optimal if D(Z) = D and Z solves:

max
Z:D(Z)=D

∑

k

pk(
∑

i

H(xik))

Then proposition 4, lemma 5 and proposition 6 perfectly extend.

Further, in the case of two team-players and general number of actions,

one can show that lemma 14 extends as follows: if the correlation system

αδx1⊗y1 + (1 − α)δx2⊗y2 with α ∈ (0, 1) is optimal then






dK(x2 ‖x1 ) = dK(y1 ‖y2 )

dK(x1 ‖x2 ) = dK(y2 ‖y1 )
,

where dK(x ‖y ) is the Kulback distance between x and y.

The generalization of theorem 7 to the general setup is an open problem.
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