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1 Introduction

Long memory processes have received considerable attention by researchers
from very diverse fields. The seminal work of Beran (1995), Doukhan, Op-
penheim and Taqqu (2003) and Robinson (2003) overview the recent devel-
opments on this topic. The long memory processes are characterized by a
long-term dependence and the presence of cycles and level changes. They
were detected in economics in many fields, for example in the dynamics of
exchange rates or the volatility of financial time series. In addition, we assist
for the few latest years to a significant development of nonlinear modelling.
For instance, in economics and finance, multiple regimes modelling becomes
more and more important in order to take into account phenomena character-
ized, for instance, by recession or expansion periods, or high or low volatility
periods. Consequently, a number of different models have been proposed in
the literature to account for this behaviour, among which Markov switching
models or smooth transition autoregressive (STAR) models. The nonlinear-
ity property of economic time series can also be justified by the existence
of asymmetry in variable’s dynamics; for instance, favorable shocks have a
more important and persistent effect than the unfavorable shocks. In order
to consider these possible nonlinearities, it is necessary to have econometric
models able to generate different dynamics according to the cycle phase.
Therefore, this paper belongs to a literature exploring simultaneously

these two key properties of economic and financial time series, namely the
long-memory and nonlinear properties. Indeed, a line of papers has recently
proposed that we can call "nonlinear long-memory" models. For instance,
some authors provide a joint evidence of mean reversion over long horizons
and nonlinear dynamics on exchange rate markets, by generalizing to the
nonlinear framework the Beveridge-Nelson decomposition (see, Clarida and
Taylor (2003), Sarno and Taylor (2001)). Others propose new classes of
long-memory models. For instance, Franses and Paap (2002), Franses, Van
der Leij and Paap (2002) introduce CLEAR (Censored Latent Effects Au-
toregressive) and Switching CLEAR processes, which show autocorrelation
at high lags with an ACF that decays at a faster rate in the beginning in
comparison to the ACF of an ARFIMA model.
Along this line of research, the fractionally integrated smooth transition

autoregressive (FISTAR) models have also been proposed, that offer another
potential application to economic and financial data (see van Dijk et al.
(2002), Caporale and Gil-Alana (2007) and Smallwood (2005)). van Dijk et
al. (2002) present the modelling cycle for specification of these models, such
as testing for nonlinearity, parameter estimation and adequacy tests, in the
case where the transition function is the logistic function; they study the dy-
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namics of monthly US unemployment rates. Smallwood (2005) extends these
results to the FISTAR model with an exponential transition function, and
applies this model to the purchasing power parity puzzle by considering the
real exchange rate processes for twenty countries against the United States.
In this paper, we study this class of models because these FISTARmodels,

indeed, make it possible to generate nonlinearity, since they are defined by
several distinct modes in dynamics, and to take into account the persistence
phenomenon. We consider the case of an exponential transition function and
propose a two-step estimation method: in the first step, we estimate the long
memory parameter, then, in the second step, the STAR model parameters
via nonlinear least squares estimation.
The remainder of this paper is organized as follows. In Section 2, we

present the FISTAR model with an exponential transition function and the
two-step estimation procedure; we describe also the out-of-sample forecast-
ing. In Section 3, we analyze the monthly US real effective exchange rate
in order to illustrate the various elements of the modelling cycle. Finally,
Section 4 concludes.

2 The Econometric Specification

2.1 The model

Let us consider a process yt that satisfies the following long memory scheme:

(1− L)d yt = xt (1)

where L is the lag operator, d is the long memory parameter and xt is
a covariance-stationary I(0) process. The parameter d is possibly non-
integer, in which case the time series yt is called fractionally integrated
(FI) (see, among others, Granger and Joyeux (1980) and Hosking (1981)).
If −0.5 < d < 0.5, yt is covariance stationary and invertible process. For
0 < d < 0.5, yt is a stationary long memory process in the sense that auto-
correlations are not absolutely summable and decay hyperbolically to zero.
Finally, if 0.5 ≤ d < 1, yt is nonstationary and the shocks do not have per-
manent effects.
To capture the nonlinear feature of time series, a wide variety of models

can be used (see Franses and van Dijk (2000)). In this paper, we consider
the fractionally integrated STAR (FISTAR)1 model introduced by van Dijk

1See also Smallwood (2005).
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et al. (2002) given by:½
(1− L)d yt = xt
xt = (ϕ10 +

Pp
i=1 ϕ1ixt−i) + (ϕ20 +

Pp
i=1 ϕ2ixt−i)F (st, γ, c) + εt

(2)

where εt is a martingale difference sequence with

E [εt|Ωt−1] = 0

and
E
£
ε2t
¯̄
Ωt−1

¤
= σ2

and Ωt is the information set available at time t. γ is the transition param-
eter (γ > 0) and c is the threshold parameter;st,the transition variable2, is
generally the lagged endogenous variable, i.e. st = yt−m for certain integer
m > 0 where m is the delay parameter. In most applications, the transition
function F (st, γ, c) is an exponential function or a logistic function. The
FISTAR model can be also be written as follows:½

(1− L)d yt = xt
xt = π01wt + π02wtF (st, γ, c) + εt

(3)

where wt = (1, xt−1, ..., xt−p)
0 , πi = (πi0, πi1, ..., πip)

0 and

πi (L) = ϕi (L) (1− L)d

for i = 1, 2. The fractional parameter d and the autoregressive parameters
make the FISTAR model potentially useful for capturing both nonlinear and
long memory features of the time series yt. Indeed, the long-run properties
of yt are restricted to be constant and these are determined by the fractional
differencing parameter, however, the short-run dynamics are determined by
autoregressive parameters.
Our empirical results show that the fractionally integrated exponential

STAR (FIESTAR) model is more appropriate for modelling real exchange
rate dynamics than the FISTARmodel with the logistic function (FILSTAR).
Then, the simple transition function suggested by Teräsvirta et al. (1992)
and Teräsvirta (1994), which is particularly attractive in the present context,
is the exponential function3 that takes the following form:

F (st, γ, c) = 1− exp
µ
− γ

σ2st
(st − c)2

¶
(4)

2The transition variable can also be assumed an exogenous variable, or a possibly
nonlinear function of lagged endogenous variables. See Teräsvirta (1994) for more details.

3Paya and Peel (2006), Michael, Nobay and Peel (1997), Taylor, Peel and Sarno (2001),
and Sarantis (1999) applied the ESTAR models to exchange rates for differents countries.
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where σst is the standard deviation of st.
We present the main steps of the specification procedure for FISTAR

models, such as it is proposed by van Dijk et al. (2002):

• Specify a linear ARFI(p) model by selecting the autoregressive order p
by means of information criteria4 (Akaike (1974) or Schwarz (1978)).

• Test the null hypothesis of linearity against the alternative of a FISTAR
model. If linearity is rejected, select the appropriate transition variable.

• Estimate the parameters in the FISTAR model.
• Evaluate the estimated model using misspecification tests (no remain-
ing nonlinearity, parameter constancy, no residual autocorrelation, among
others).

2.2 Linearity tests

Teräsvirta (1994) developed the procedure of testing linearity against STAR
models; he pointed out that this procedure is complicated by the presence of
unidentified nuisance parameters under the null hypothesis. To overcome this
problem, Luukkonen et al. (1988) propose to replace the transition function
F (st, γ, c) with a suitable Taylor series approximation about γ = 0. In the
reparametrized equation, the identification problem is no longer present, and
linearity can be tested by means of a Lagrange multiplier (LM) statistic.
For an extensive presentation of the test when the alternative is a FISTAR
model, the reader is referred to van Dijk et al. (2002) and Smallwood (2005).
The, we consider the model given by (3) and (4); the LM-type test statistic
can be computed in a few steps as follows:

• Estimate an ARFI(p), obtain the set of residuals bεt. The sum of
squared errors, denoted SSR0, is then constructed from the residualsbεt, SSR0 =PT

t=1bε2t .
• Regress bεt on wt, −

Pt−1
j=1

bεt−j
j
and wts

i
t, i = 1, 2, and compute the sum

of squared residuals SSR1 under the alternative hypothesis.

• The χ2 version of the LM test statistic is calculated as:

LMχ2 =
T (SSR0 − SSR1)

SSR0
(5)

4Beran et al (1998) proposed versions of the AIC, BIC and the HQ (Hannan and Quinn,
1979) which are suitable for fractional autoregressions, but do not consider moving average
components.
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and is distributed as χ2 (2 (p+ 1)) under the null hypothesis of linearity
(T denotes the sample size).

2.3 Estimation of the FISTAR model

It is important to obtain a consistent estimate of the long memory parameter
d because the test statistics for the FISTAR model depend on this estimated
value. In this section, we present two approaches to estimate the parameters
in the FISTAR model: in the first one, we estimate all the parameters simul-
taneously (as proposed by van Dijk et al. (2002)), while the second method
consists in performing the estimation in two steps.

2.3.1 Simultaneous estimation

To estimate the parameters of the FISTAR model, van Dijk et al. (2002)
modify Beran’s (1995) approximate maximum likelihood (AML) estimator
for invertible and possibly nonstationary ARFIMAmodels to allow for regime
switching autoregressive dynamics. This estimator minimizes the sum of
squared residuals of the FISTAR model as follows:

S (λ) =
TX
t=1

ε2t (λ) , (6)

where λ = (π01, π
0
2, d, γ, c) denotes the parameters of the FISTAR model (3).

The residuals εt (λ) are calculated as follows:

εt (λ) = (1− L)d yt −
³
π10 +

Pt+p−1
j=1 π1,jyt−j

´
−
³
π20 +

Pt+p−1
j=1 π2,jyt−j

´
F (st, γ, c)

(7)

where F (st, γ, c) is given by (4). Thus, conditional upon d, γ and c, van
Dijk et al. (2002) remark that the FISTAR model is linear in the remaining
parameters; estimates of π1 and π2 can be thus obtained by ordinary least
squares as:

bµ (d, γ, c)0 = Ã TX
t=1

wt (d, γ, c)wt (d, γ, c)
0
!−1Ã TX

t=1

wt (d, γ, c) yt

!
, (8)

where wt (d, γ, c) = (w
0
t, w

0
tF (st, γ, c))

0 . Therefore, the sum of squares func-
tion can be obtained by :

S (d, γ, c) =
TX
t=1

¡
yt − bµ (d, γ, c)0wt (d, γ, c)

¢2
. (9)
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According to van Dijk et al. (2002), it can be difficult to estimate the model
parameters jointly. In particular, accurate estimation of the smoothness
parameter γ is quite difficult when this parameter is large. They proposed
an algorithm that is based on a grid search over d, γ and c in order to obtain
starting values for the nonlinear least squares procedure.

2.3.2 Two steps estimation

The properties of the process yt depend on the value of the parameter d.
Many researchers have proposed methods for estimating the long memory
parameter d. These methods can be summarized in three classes: the heuris-
tic methods (Hurst (1951), Higuchi (1988), Lo (1991)...), the semiparamet-
ric methods (Geweke and Porter-Hudak (1983), Robinson (1994, 1995a and
b), Lobato and Robinson (1996)...) and the maximum likelihood methods
(Dahlhaus (1989), Fox and Taqqu (1986), Sowell (1992) ...). In the first two
classes, we can estimate only the long memory parameter d, and in the last,
we estimate simultaneously all the parameters, see Boutahar et al. (2007)
for more details.
The estimation method of the FISTAR model we propose proceeds in two

steps:

• In the first step, we estimate the long memory parameter d in the simple
model (1) using the heuristic method via the R/S statistic proposed by
Hurst (1951) and modified by Lo (1991). The R/S statistic is the range
of partial sums of deviations of a time series from its mean, rescaled by
its standard deviation. Specifically, the R/S statistic is defined as:

QT =
1

ST

Ã
max
1≤k≤T

kX
j=1

(yj − y)− min
1≤k≤T

kX
j=1

(yj − y)

!
(10)

where y = 1
T

PT
i=1 yi is the empirical mean and S

2
T =

1
T

PT
i=1 (yi − y)2 is

the empirical variance. Lo (1991) modified the R/S statistic as follows:

eQT =
1

Sq(T )

Ã
max
1≤k≤T

kX
j=1

(yj − y)− min
1≤k≤T

kX
j=1

(yj − y)

!
(11)

where

Sq(T ) =

"
S2T +

2

T

qX
j=1

wj(q)

Ã
TX

i=j+1

(yi − y) (yi−j − y)

!#1/2
;
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wj(q) = 1− j
q+1

are the weights proposed by Newey and West (1987),
with j = 1, ...., q. There is no optimal choice of the parameter q. Lo and
MacKinlay (1988) and Andrews (1991) showed by a Monte Carlo study
that, when q is relatively large compared to the sample size, then the
estimator is skewed and thus q must be relatively small. By default,
for obtaining the long run variance, q is chosen to be

h
4 (T/100)1/4

i
,

where T is the sample size, and [x] denotes integer part of x. However,
when the stationary process yt has long memory, Mandelbrot (1972)
showed that the R/S statistic converges to a random variable at rate
TH , where H is the Hurst coefficient. The link between the parameter
H and the ARFI parameter d is thatH = d+ 1

2
(Boutahar et al.(2007)).

• Once we obtain bdR/S, in the second step, we filter out the long memory
component and we estimate the STAR model parameters via nonlinear
least squares estimation.

2.4 Out-of-sample forecasting performance

Unlike the linear model, forecasting with nonlinear models is more com-
plicated, especially for several steps ahead (see, for instance, Granger and
Teräsvirta (1993)). Let us consider the FIESTAR model given by (3) and
(4) which can be written as:

(1− L)d yt = xt
xt = G (wt, ω) + εt

F (st, γ, c) = 1− exp
³
− γ

σ2st
(st − c)2

´ (12)

where G (wt, ω) = π01wt+π02wtF (st, γ, c) and ω = (π01, π
0
2, γ, c)

0. The optimal
one-step ahead forecast of xt is given by:

xt+1|t = E (xt+1|Ωt) = G (wt+1, ω) ; (13)

this forecast can be achieved with no difficulty and can be estimated by

bxt+1|t = G (wt+1, bω) (14)

where bω is the parameter estimate. However, when the forecast horizon
is larger than one period, things become more complicated because the di-
mension of the integral grows with the forecast horizon. For example, the
two-step ahead forecast of xt is given by:

bxt+2|t = E
¡
G
¡ bwt+2|t, ω

¢ |Ωt

¢
=

Z ∞

−∞
G
¡ bwt+2|t, bω¢ f(ε)dε (15)
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with bwt+2/t =
¡
1, bxt+1|t + εt+1, xt, ..., xt+2−p

¢0
. The analytic expression for

the integral (15) is not available. We thus need to approximate it using
integration techniques. Several methods obtaining forecasts to avoid numer-
ical integration have been developed (see Granger and Teräsvirta (1993)). In
this paper, we use a bootstrap method suggested by Lundberg and Teräsvirta
(2001). This approach is based on the approximation of E

¡
G
¡ bwt+2|t, ω

¢ |Ωt

¢
,

the optimal point forecast is given by :

bxt+2|t = 1

k

kX
i=1

G
³bw(i)t+2|t, bω´ , (16)

where k is some large number and the values of εt+1 in bw(i)t+2|t are drawn with
replacement from the residuals from the estimated model bεt.
In general, forecasts are evaluated using the mean squared prediction

error (MSPE) and the root mean squared prediction (RMSE), wherem is the
number of steps-ahead forecasts. Models with smaller MSPE have a better
forecast performance. Further, in order to assess the accuracy of forecasts
derived from two different models, the Diebold and Mariano (1995) test is
likely to be widely used in empirical evaluation studies, and is considerably
more versatile than any alternative test of equality of forecast performance.
Let y1t+h/t and y2t+h/t denote two competing forecasts of yt+h from FIES-

TAR and ARFI models, respectively, based on Ωt, where Ωt = {yt, yt−1, ..}
is the information set available at time t. The forecast errors from the two
models are given by eit+h/t = yt+h − yit+h/t, i = 1, 2. The accuracy of each
forecast is measured by a particular loss function:

g
¡
yt+h, y

i
t+h/t

¢
= g

¡
eit+h/t

¢
, i = 1, 2.

To determine if a model predicts better than the other one, we may test the
null hypothesis of equality of expected forecast performance: H0 : E

³
g
³
e1t+h/t

´´
= E

³
g
³
e2t+h/t

´´
H1 : E

³
g
³
e1t+h/t

´´
6= E

³
g
³
e2t+h/t

´´ .

The Diebold-Mariano test is based on the loss differential:

dt = g
¡
e1t+h/t

¢− g
¡
e2t+h/t

¢
. (17)

The null of equal predictive accuracy is then: H0 : E (dt) = 0. The Diebold-
Mariano test statistic is:

S1 =
dq
2π bfd(0)

T

, (18)
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where T is the sample size, d = 1
T

PT
t=1 dt is the sample mean of dt andbfd (0) = 1

2π

P∞
τ=−∞ bγd (τ) is a consistent estimate of the spectral density of

the loss differential function at frequency zero,

γd (τ) = E [(dt − µ) (dt−τ − µ)]

is the autocovariance of the loss differential at rate τ , and µ is the popula-
tion mean loss differential. Under the null hypothesis of equal forecasts, the
statistic S1 has an asymptotic standard normal distribution.
Harvey et al. (1997) noted that the Diebold-Mariano test statistic could

be seriously over-sized as the prediction horizon increases, and therefore pro-
vide a modified Diebold-Mariano test statistic. Harvey et al (1997) and Clark
and McCracken (2001) show that this modified test statistic performs bet-
ter than the Diebold-Mariano test statistic, and also that the power of the
test is improved when the p− values are computed with a Student distribu-
tion with (T − 1) degrees of freedom, rather than from the standard normal
distribution. Thus, the modified Diebold-Mariano statistic is given by:

S∗1 =
µ
T + 1− 2h+ T−1h (h− 1)

T

¶1/2
S1 (19)

where S1 is the original Diebold and Mariano statistic (18).

3 Empirical results

The fractionally integrated models5 have been already applied in economics
and finance, for instance to exchange rates (Diebold et al. (1991), Cheung
and Lai (2001), Baillie and Bollerslev (1994)), inflation (Hassler and Wolters
(1995), Baillie et al. (1996)) and unemployment modelling (Diebold and
Rudebusch (1989), Tschernig and Zimmermann (1992), Koustas and Veloce
(1996), Crato and Rothman (1996)). Therefore, the long memory models,
such as the FISTAR, are not only able to study the persistence but also to
capture nonlinearity features such as thresholds or asymmetries. They can
be applied in various economic and financial fields, in particular the stock
indexes, the exchange rates and the interest rates. van Dijk et al. (2002)
apply the FISTAR models to US unemployment and Smallwood (2005) to
the case of purchasing power parity. In this paper, we study the behaviour
of exchange rates and compare the forecast performances of the FIESTAR
modelling to some other models.

5For a survey on long memory models and their application in economics and finance,
see Baillie (1996), Robinson (2003) among others.
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3.1 The data

We use monthly data of the seasonally adjusted US real effective exchange
rate covering the period June 1978 until April 2002, these data were obtained
from the IMF International Financial Statistics. The series is expressed in
logarithm. The use of monthly data provides us with a reasonably large
sample and hence meets the requirement of the linearity tests for many de-
grees of freedom. The series is shown in Figure 1, which demonstrates a
real appreciation of the dollar during the beginning of the 1980’s followed by
depreciation in 1985. As noted by Smallwood (2005), consistently with the
theoretical foundation of Sercu et al. (1995), we observe four periods after
1987 in which the dollar steadily appreciates and then rapidly depreciates
after reaching approximately the same value. This provides some support
for the use of nonlinear models.

3.2 Linearity tests results

Application of the linearity tests models requires stationary time series. The
unit root tests6 of Phillips and Perron (1988), Kwiatkowski et al. (1992)7

and Dickey-Fuller Augmented (1979) for the levels and first differences of the
real effective exchange rates, measured in logarithms, are shown in Table 1.
These results indicate that the time series are integrated of order 1, at both
5% and 1% significance levels.
The selection of the maximum lag p, of the linear ARFI model was made

using the AIC and BIC criteria under the non autocorrelation hypothesis.
We allow for a maximum autoregressive order of p = 6. Both AIC and BIC
indicate that an ARFI model with p = 4 is adequate.
The linearity tests are displayed in Table 2. In carrying out linearity

tests, we have considered values for the delay parameter m over the range
[1, 6], and calculated the p − values for the linearity test in each case, the
estimate of m is chosen by the lowest p − value. Using 5% as a threshold
p−value, the test classifies the US real effective exchange rates as nonlinear.
Although the p − value is slightly higher than 5%, we show thereafter that
a nonlinear model describes the features of a time series better than a linear
model8. Then the lowest p− value corresponds to m = 4 (m ≤ p).

6For other unit root tests see Elliot et al. (1996), among others.
7Contrary to ADF test, the KPSS test considers the stationnarity under the null hy-

pothesis, and the alternative hypothesis is the presence of unit root.
8This result is also found in Sarantis (1999).

11

ha
ls

hs
-0

03
40

83
1,

 v
er

si
on

 1
 - 

22
 N

ov
 2

00
8



3.3 Estimation results

Estimation results for the ARFI and FIESTAR models are shown in Table
3. The second column gives the ARFI model estimation, the estimate of d is
−0.484, showing that the process yt is stationary and invertible. The results
of the second model are based on the specification (3) where yt is the first dif-
ference of the US real effective exchange rates. The third column of Table 3
contains simultaneous estimation results of the parameters. In particular, the
estimate of d is equal to −0.169 and belongs thus to the interval ]−0.5, 0.5[,
suggesting that the process is stationary and invertible. The autocorrelation
function decreases more quickly than in the case where 0 < d < 0.5: yt is an
anti-persistent process. It is also interesting to note, in the last column corre-
sponding to the two-step estimation, that the degree of persistence measured
by the differentiation parameter increases. The Lo’s (1991) estimator using
the modified R/S statistic is bdR/S = 0.221, then, the process is stationary
and invertible, the autocorrelation function decays hyperbolically to zero and
yt is a long memory process. The modified R/S statistic 1.896 is significant
at 5%. The ratio of the standard errors for the nonlinear and linear models
for the simultaneous estimation of the FIESTAR model is equal to 0.840,
it’s higher than for the two-step estimation 0.670. We can thus confirm that
the nonlinear model improves the modelling of the exchange rate process, as
shown by both estimation methods. It is worthwhile noting here the relative
small value of the estimation of γ for the second estimation (2.547 compared
to 12.655 for simultaneous estimation), suggesting that the transition from
one regime to the other is rather slow, contrary to first estimation which as-
sumes a slightly sharp switch. The parameter c indicates the halfway point
between the different phases of the exchange rate. The value of c is negative
for the first case, and not significantly different from zero in the other. These
values belong to the neighborhood of the sample mean for the first difference
exchange rates. Figures 2 and 3 show the curves of the exponential transi-
tion function corresponding to the estimation of the FIESTAR model, the
first one using the simultaneous estimation method and the second one the
two-step method.
Table 4 gives summary statistics and misspecification tests for ARFI and

FIESTAR models. In particular, the hypothesis of no residual autocorre-
lation, no conditional heteroscedasticity, and normality are not rejected in
the residuals for both models at 5% level of significance. From the skewness
and kurtosis of the series, it is evident that the US real effective exchange
rate is symmetric and the frequency curve is normal, this is confirmed by
the Jarque-Bera test for normality. Moreover, the null hypothesis of param-
eter constancy against the alternative of smoothly changing parameters for
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st = t, and the null of no remaining non linearity are not rejected, following
the LM test statistics LMNL and LMC for the FIESTAR model.

3.4 Forecasting performance of estimated models

The final two years of data from January 2002 to April 2004 for US real
effective exchange rate are used to evaluate the forecast performance of the
estimated linear ARFI and FIESTAR models. For each point, we compute
1-12- step-ahead forecasts of real exchange rates. To obtain the forecasts
from nonlinear model, we use the bootstrap method exposed in section 2.4.
The results of forecasting performance are reported in Table 5. Forecast

accuracy is evaluated using mean squared prediction error (MPSE) crite-
rion. The forecasts produced by the FIESTAR are compared to the forecasts
generated by a random walk and linear ARFI models. Further, in order to
assess the accuracy of forecasts derived from two different models, we employ
the modified Diebold and Mariano test statistic proposed by Harvey et al.
(1997) discussed in Section 2.4 for which the null hypothesis is the hypothesis
of equal accuracy of different predictive methods.
The results successfully provide evidence in favour of the predictive su-

periority of the FIESTAR model against the random walk and ARFI models
using MPSE: the MPSE of the linear model and a random walk is actually
greater than the MPSE of the FIESTAR model. Comparing our results to
those obtained in the previous literature we can see that the FIESTARmodel
gives very much more accurate forecasts and outperform random walk and
linear ARFI models in out-of-sample forecasting performances for all forecast
horizons. The statistical significance of this result is confirmed executing the
modified Diebold and Mariano test: there is a statistically significant differ-
ence in predictive accuracy for the FIESTAR model over the random walk
and ARFI specifications. We can thus conclude that the forecasts of the
FIESTAR modelling are significantly better than those of the other models.
The same conclusion is given by Chung (2006) who finds clear evidence in
favour of the nonlinear long-memory model over some other estimated mod-
els for the real exchange rates of Germany, France, Italy, UK, Japan, and
Switzerland.
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4 Conclusion

The aim of this paper was to study the dynamic modelling of the US real
effective exchange rates covering the period June 1978 until April 2002. We
considered the FISTAR model, as proposed by van Dijk et al. (2002), that
can describe long memory and nonlinearity simultaneously and be used to
produce out-of-sample forecasts. We used their model to the case of an expo-
nential transition function. To this end, we employ two modelling approaches
corresponding to two different estimations (simultaneous estimation or two-
step estimation) of a FIESTAR model. The estimated FIESTARmodel seem
to provide a satisfactory description of the nonlinearity and persistency found
in the US real effective exchange rates. With regards to the out-of-sample
forecasting performance for US exchange rate, the tests for comparing the
predictive accuracy show that the FIESTAR model seems better that the
random walk and linear models.
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Figure 1: Monthly US real effective exchange rate (Log)
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Figure 2: Exponential transition function (simultaneous estimation)

Figure 3: Exponential transition function (two-step estimation)

21

ha
ls

hs
-0

03
40

83
1,

 v
er

si
on

 1
 - 

22
 N

ov
 2

00
8



Table 1. Unit root tests

Level First difference
ADF -1.118 -7.287
PP -1.106 -12.281
KPSS 3.090 0.251

Note: The unit root tests are Phillips and Perron (PP), Kwiatkowski, Phillips, Schmidt

and Shin (KPSS) and Dickey-Fuller Augmented (ADF) tests. For ADF test, the 1%, and

5% critical values are -3.455 and -2.871, respectively. For KPSS test, the 1%, and 5%

critical values are 0.739 and 0.463, respectively.

22

ha
ls

hs
-0

03
40

83
1,

 v
er

si
on

 1
 - 

22
 N

ov
 2

00
8



Table 2. Linearity tests (p− values)

m 1 2 3 4 5 6
LM-test 0.868 0.346 0.087 0.073 0.251 0.171
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Table 3. Estimation of the different models

ARFI
FIESTAR

(simultaneous
estimation)

FIESTAR
(two-step
estimation)

π10 0.850 (0.284) -0.063 (0.026) -0.003 (0.014)
π11 -0.183 (0.125) 0.665 (0.295) -0.175 (0.142)
π12 0.179 (0.079) -0.167 (0.335) 0.156 (0.144)
π13 -0.059 (0.083) 0.194 (0.394) 0.345 (0.163)
π14 0.103 (0.065) -0.683 (0.290) 0.217 (0.126)
π20 -0.001 (0.001) -0.004 (0.015)
π21 1.256 (0.078) 0.470 (0.115)
π22 -0.458 (0.122) -0.238 (0.120)
π23 0.172 (0.119) 0.121 (0.103)
π24 0.035 (0.075) -0.195 (0.121)
d -0.484 (0.282) -0.169 (0.007) 0.221∗ (1.896)
γ 12.655 (8.648) 2.574 (1.190)
c -0.101 (0.003) 0.022 (0.020)
SE 0.840 0.670

Note: The standard errors are displayed in parentheses. * : Lo’s (1991) estimator

based on first difference; the value of modified R/S statistic for long memory test is in

parentheses. SE is the ratio of residual variance for the nonlinear and linear models.
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Table 4. Diagnostic tests

ARFI FISTAR
AIC -8.195 -8.181
BIC -7.846 -0.132
SK -0.166 -0.133
Kr 3.297 3.006
JB 1.313 (0.518) 0.463 (0.793)
ARCH(1) 0.981 (0.321) 0.714 (0.398)
ARCH(2) 1.778 (0.411) 1.292 (0.524)
ARCH(3) 5.634 (0.130) 2.933 (0.402)
ARCH(4) 7.605 (0.107) 4.276 (0.370)
LMSI(2) 0.765 (0.467) 1.764 (0.175)
LMSI(4) 1.174 (0.325) 2.179 (0.075)
LMSI(6) 1.280 (0.271) 2.111 (0.057)
LMSI(8) 1.118 (0.355) 1.690 (0.106)
LMSI(31) 0.746 (0.817) 0.965 (0.529)
LMNL - 0.937 (0.521)
LMC - 0.701 (0.778)

Note: The table presents selected diagnostic and misspecification tests statistics for the

estimated FIESTAR on two step and ARFI models for the US real effective exchange rate;

the numbers in parentheses are p-values. SK is skewness, Kr is kurtosis, JB is the Jarque—

Bera test of normality of the residuals, ARCH(r) is the LM test of no autoregressive

conditional heteroscedasticity up to order r, LMSI(q) denotes the LM test of no serial

correlation in the residuals up to order q, LMNL is the LM test of no remaining non

linearity, and LMC is the LM test of parameter constancy.
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Table 5. Out-of-sample MPSE and modified Diebold-Mariano
statistics from random walk (Rw), ARFI and FIESTAR models

h Rw ARFI FIESTAR ARFI&FIESTAR Rw&FIESTAR
1 0.0079 0.0053 0.0019 8.71 (0.000) 8.98 (0.000)
2 0.0176 0.0098 0.0085 7.52 (0.000) 8.11 (0.000)
3 0.0292 0.0218 0.0192 6.39 (0.000) 7.13 (0.000)
4 0.0495 0.0438 0.0346 6.22 (0.000) 6.87 (0.000)
5 0.0799 0.0748 0.0543 5.49 (0.000) 6.22 (0.000)
6 0.1314 0.1044 0.0775 5.36 (0.000) 5.74 (0.000)
7 0.1670 0.1565 0.1059 5.22 (0.000) 5.49 (0.000)
8 0.2045 0.1926 0.1363 4.54 (0.000) 4.72 (0.000)
9 0.2449 0.2398 0.1728 4.44 (0.000) 4.59 (0.000)
10 0.3298 0.2896 0.2129 3.71 (0.001) 4.10 (0.000)
11 0.3770 0.3595 0.2583 3.68 (0.002) 3.88 (0.001)
12 0.7021 0.6812 0.3087 3.07 (0.007) 3.58 (0.002)

Note: Columns 2—4 report the MPSE for the random walk and ARFI models, and

columns 5-6 report the modified DM test statistics with p-values in parentheses.
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