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Résumé: Cette note établit que dans tous les jeux 3-3 symmetriques, la dynamique des réplicateurs 
élimine toutes les stratégies qui ne sont utilisées dans aucun équilibre corrélé. Ce résultat 
s'étend à la dynamique de meilleure réponse et à toutes les dynamiques convexes monotones. 
La preuve repose sur des arguments de réduction duale. 

 
Abstract: This note establishes that in every 3-3 symmetric game, the replicator dynamics eliminates all 

strategies that are never used in correlated equilibrium. This extends to the best-response 
dynamics and to any convex monotonic dynamics. The proof is based on dual reduction. 
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1 Notations, definitions and main result

1.1 Notations

This note focuses on finite, two-player symmetric games. Such a gameG is given by
a setS = {1, ..., N} of pure strategies (the same for each player) and a payoff matrix
U = (U(i, j))1≤i,j≤N . HereU(i, j) is the payoff of a player playing strategyi against
a player playing strategyj. Since the game is symmetric, whether the player playingi
is called player1 or player2 is unimportant.

Let ∆(S) denote the set of probabilities overS or mixed strategies:

∆(S) :=

{
x ∈ RS : xi ≥ 0 ∀i ∈ S,

∑

i∈S

xi = 1

}

The payoff of a player playing the mixed strategyx against a player playing the mixed
strategyy will be denoted

U(x, y) :=
∑

i∈S,j∈S

xiyjU(i, j)

1.2 Replicator Dynamics

Given some initial conditionx(0) in ∆(S), thesingle population replicator dynamics
is given by

ẋi = xi [U(i, x)− U(x, x)]

whereẋi, xi andx are taken at timet.
We now define thetwo-populationreplicator dynamics. Since there are two popu-

lations, the set of pure strategies of player1 is a priori different from the setS2 of pure
strategies of player2; but since we only consider symmetric games, we may assimilate
S1 andS2 and writeS for bothS1 andS2. The same remark holds for payoff matrices
and we writeU for bothU1 andU2.

Given an initial condition(x(0), y(0)) in ∆(S) ×∆(S), thetwo-population repli-
cator dynamicsis given by:

ẋi = xi [U(i, y)− U(x, y)] andẏi = yi [U(i, x)− U(y, x)] (1)

(herex (resp.y) represents the mean strategy in the population of players1 (resp.2))
Note that, for symmetric games and from a mathematical point of view, the single

population replicator dynamics corresponds to the two-population replicator dynamics
with symmetric initial conditions (that is, withx(0) = y(0)).

Definition A pure strategyi in S of player1 (resp. player2) is eliminatedby the two-
population replicator dynamics (for some initial condition(x(0), y(0)) if xi(t) (resp.
yi(t)) goes to zero ast goes to infinity.

Note that, if the initial condition is symmetric (or, equivalently, in the single popu-
lation framework), then the pure strategyi of player 1 is eliminated if and only if the
pure strategyi of player2 is eliminated.
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1.3 Correlated equilibrium

A correlated strategy is a probability distribution on the setS × S of pure strategy
profiles. Henceµ = (µ(s))s∈S is a correlated strategy if

µ(i, j) ≥ 0, ∀(i, j) ∈ S × S

and ∑

(i,j)∈S×S

µ(i, j) = 1)

A correlated strategy is acorrelated equilibrium distribution(Aumann, 1974) if it sat-
isfies the following incentive constraints:

∑

j∈S

µ(i, j)[U(i, j)− U(i′, j)] ≥ 0 ∀i ∈ S,∀i′ ∈ S

and symmetrically

∑

i∈S

µ(i, j)[U(j, i)− U(j′, i)] ≥ 0 ∀j ∈ S, ∀j′ ∈ S

The Nash equilibria exactly correspond to the correlated equilibrium distributions
µ that are independent; that is, such that there exists mixed strategiesx andy in ∆(S)
such that:µ(i, j) = xiyj ∀(i, j) ∈ S × S.

Definition The pure strategyi in S (resp. the pure strategy profile(i, j) in S × S)
is used in correlated equilibriumif there exists a correlated equilibrium distributionµ
such that

∑
j∈S µ(i, j) > 0 (resp.µ(i, j) > 0).

Remark 1 Due to the symmetry of the game, the existence of a correlated equilibrium
distributionµ such that

∑
j∈S µ(i, j) > 0 is equivalent to the existence of a correlated

equilibrium distributionµ′ such that
∑

j∈S µ(j, i) > 0.

Thus, when we say that some pure strategyi is used (or not used) in correlated equilib-
rium, it is unnecessary to specify whether we see this strategy as a strategy of player1
or as a strategy of player2. Furthermore, due to the symmetry of the game and to the
convexity of the set of correlated equilibrium distributions, a pure strategy is used in
correlated equilibrium if and only if it is used in some symmetric equilibrium (i.e. in a
correlated equilibriumµ such thatµ(k, l) = µ(l, k) for every(k, l) in S × S). Thus,
we do not have to specify whether we are only interested in symmetric equilibria or
not.

1.4 Main result

Definition An initial condition(x(0), y(0)) of the two-population replicator dynamics
is interior if for every pure strategyi in S, bothxi(0) andyi(0) are positive.

2
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Proposition Consider a3×3 symmetric game. If the pure strategyi is not used in cor-
related equilibrium, thenxi(t) andyi(t) both converge to0 under the two-population
replicator dynamics (1), for any interior initial condition(x(0), y(0)).

As a particular case, this implies that:

Corollary In every3 × 3 symmetric game, every pure strategy that is not used in
correlated equilibrium is eliminated by thesinglepopulation replicator dynamics, for
any interior initial condition (that is, for any initial conditionx(0) in ∆(S) such that
xi(0) > 0 for everyi in S).

2 Proof

2.1 Elements of dual reduction

Let us first recall some properties of dual reduction (Myerson, 1997) on which the proof
is based. Dual reduction is defined for any finite game, but, so that no new notations
be needed, only two-player symmetric games are considered below. Fork = 1, 2, let
αk : S → ∆(S) denote a transition probability over the set of pure strategiesS. The
image of a pure strategyi by this mapping is a mixed strategy. Denote byαk ∗ i this
mixed strategy.

The vectorα = (α1, α2) is adual vector(Myerson, 1997) if for all(i, j) in S × S:

[U(α1 ∗ i, j)− U(i, j)] + [U(α2 ∗ j, i)− U(j, i)] ≥ 0 (2)

Such a dual vector isstrong(Viossat, 2004a) if the inequality (2) is strict for any strat-
egy profile(i, j) that is not used in correlated equilibrium. It follows from (Nau &
McCardle, 1990, discussion on page 432 and proposition 2) that there exists a strong
dual vector and from a variant of the proof of proposition 5.26 in (Viossat, 2004a)
that this strong dual vector may be assumed to be symmetric (i.e. we may assume
α1 = α2). In the remaining of the paper,α denotes such a strong and symmetric dual
vector.

Note that if the pure strategyi is not used in correlated equilibrium, then for allj
in S, the strategy profile(i, j) is not used in correlated equilibrium. Therefore (recall
thatα is strong):

[U(α ∗ i, j)− U(i, j)] + [U(α ∗ j, i)− U(j, i)] > 0 (3)

(Here and in the remaining of the paper,α ∗ i denotes eitherα1 ∗ i or α2 ∗ i. Sinceα
is symmetric, i.e.α1 = α2 this is unambiguous.)

2.2 Properties of the replicator dynamics

The only properties of the replicator dynamics that will be used in the proof are the
one given below. Leti, i′ andp denote respectively two pure strategies and a mixed
strategy of player1. Fix an interior initial condition(x(0), y(0)).

3
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Property 1 If there existε > 0 and a timeT in R such that, for allt ≥ T , U(i, y(t)) <
U(i′, y(t))− ε, thenxi(t) −→

t→+∞
0.

Property 2 If p weakly dominatesi and if there exists a pure strategyj in S+
2 = {j ∈

S,U(p, j) > U(i, j)} such thatyj(t) does not go to zero as time goes to infinity, then
xi(t) −→

t→+∞
0

Of course, the symmetric properties (i.e. on elimination of strategies of player2) hold
just as well. The fact that the replicator dynamics checks properties 1 and 2 is proved
in the appendix. Property 2 imply the following better known property:

Property 3 If a pure strategy is strictly dominated by a mixed strategy, then for every
interior initial condition this pure strategy is eliminated by the two-population replica-
tor dynamics.

Proof. This corresponds to the special case of property 2 whereS+
2 = S2. Since a

dynamics cannot eliminate all the pure strategies of a player, the result follows.

2.3 Proof of the proposition

We are now ready to prove the proposition. From now on, there are only three pure
strategies:S = {1, 2, 3}, and strategy3 is not used in correlated equilibrium. The aim
is to show that strategy3 is eliminated by the replicator dynamics. By symmetry, we
only need to show thatx3(t) converges to0. We first exploit the inequations (2) and
(3). These inequations are particularly interesting in two cases: first, ifj = i then (2)
yields

U(α ∗ i, i) ≥ U(i, i) (4)

If moreover strategyi is not used in correlated equilibrium then (3) yields:

U(α ∗ i, i) > U(i, i)

In particular,
U(α ∗ 3, 3) > U(3, 3) (5)

Second, ifj is α-invariant, i.e. ifα ∗ j = j, then (2) yields

U(α ∗ i, j) ≥ U(i, j) (6)

If moreover strategyi is not used in correlated equilibrium then (3) yields:

U(α ∗ i, j) > U(i, j) (7)

Now, distinguish the following cases:

Case 1 If one of the strategies1 and2 is α-invariant

4
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Assume, for instance, that strategy1 is α-invariant. Then, by (7),

U(α ∗ 3, 1) > U(3, 1) (8)

and by (6)
U(α ∗ 2, 1) ≥ U(2, 1) (9)

Furthermore, takingi = 3 andj = 2 in (3) yields:

[U(α ∗ 3, 2)− U(3, 2)] + [U(α ∗ 2, 3)− U(2, 3)] > 0

Thus, at least one of the two brackets must be positive. If the first bracket is positive
(subcase 1.1), i.e. ifU(α ∗ 3, 2) > U(3, 2), then (5) and (8) imply thatα ∗ 3 strictly
dominates3, hencex3(t) converges to0 by property 3 and we are done.

Otherwise (subcase 1.2), the second bracket is positive, i.e.U(α ∗ 2, 3) > U(2, 3).
Together with (4) and (9) this implies thatα∗2 weakly dominates strategy2, with strict
inequality against strategy3. Thus, by property 2, ifx3(t) does not converge to0, then
y2(t) does. Now consider the3× 2 game obtained by eliminating the second strategy
of player2: in this reduced game, by (5) and (8), the third strategy of player1 is strictly
dominated byα ∗ 3; furthermore, since strategy2 is weakly dominated, it follows that,
in the reduced game, strategy3 is strictly dominated by strategy1. This implies that
there exists a positiveε such that, oncey2(t) is low enough,U(3, y) ≤ U(1, y)− ε. By
property 1, this implies thatx3(t) converges to0.

Case 2 If neither strategy1 nor strategy2 is invariant

Consider the2 × 2 gameGr obtained by elimination of the third strategy of both
players. SinceGr is a2× 2 symmetric game, it may a priori be of three kinds:

Subcase 2.1a coordination game, i.e. a game with two strict Nash equilibria and a
completely mixed one

Subcase 2.2a game with a weakly or strictly dominated strategy

Subcase 2.3a trivial game, i.e. a game where the players have no influence on their
own payoff.

Sinceα is a strong dual vector and since strategy3 is not used in correlated equilibrium,
it follows from (Viossat, 2004a, proof of proposition 5.16, steps 2 and 3) that strategy
3 is transient under the Markov chain onS induced byα. This implies that the support
of α ∗ 1 (resp. α ∗ 2) contains strategy2 (resp. 1) but not strategy3. This, in turn,
implies two things:

First, the gameGr has no strict Nash equilibrium (indeed, if(i′, j′) is a strict Nash
equilibrium of Gr then the inequality (2) fori = i′ andj = j′ cannot be satisfied).
This rules out subcase 2.1.

Second, the Markov chain onS induced byα has a unique recurrent communicat-
ing set: {1, 2}. By the basic theory of dual reduction (Myerson, 1997), this implies
that the gameG may be reduced, in the sense of dual reduction, into a game with a
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unique strategy profile, which corresponds to a mixed strategy profile ofG with sup-
port {1, 2} × {1, 2}. By proposition 5.9 of (Viossat, 2004a), this implies thatG has a
Nash equilibrium with support{1, 2} × {1, 2} and so, thatGr has a completely mixed
Nash equilibrium. This rules out subcase 2.2. Thus, the gameGr is necessarily a trivial
game.

Now, only two possibilities remain: first (subcase 2.3.1), it may be thatU(1, 3) =
U(2, 3), so thatU(1, j) = U(2, j) for all j in S. In that case,U(α ∗ i, j) = U(i, j) for
everyi in {1, 2} and everyj in S (recall that fori in {1, 2}, α∗ i has support in{1, 2}).
Therefore, repeated applications of (3) show that strategy3 is strictly dominated by
α ∗ 3, so thatx3(t) converges to0.

Otherwise (subcase 2.3.2),U(1, 3) 6= U(2, 3), so that we may assume for instance
U(1, 3) > U(2, 3). This implies that strategy2 is weakly dominated by strategy1,
with strict inequality against strategy3. Thus, if x3(t) does not converge to0, then
y2(t) does. But in the3 × 2 game obtained by elimination of the second strategy of
player2, strategy1 strictly dominates3. Therefore, as in subcase1.2, x3(t) converges
to 0.

3 Extensions and comments

3.1 Other dynamics

The only properties of the replicator dynamics that are used in the proof of the proposi-
tion are properties 1 to 3 of section 2.2. Thus, the proposition extends to any dynamics
that satisfies these properties. This is the case in particular of thebest-response dynam-
ics of Matsui (1992) and of theconvex monotonic dynamicsof Hofbauer and Weibull
(1996). See the appendix.

3.2 Asymmetric games

When considering multi-population dynamics, there is no compelling reason to focus
on symmetric games. A more general result than our proposition would consist in
proving that the two-population replicator dynamics eliminates all strategies that are
not played in correlated equilibrium in every3 × 3 game (and not only in symmetric
ones).1. I do not know whether this is true or not. However, it may be shown that in
every2×2 game, the two-population replicator dynamics eliminates all strategyprofiles
that are not used in Nash equilibrium in the following sense: if the pure strategy profile
(i, j) has probability zero in all Nash equilibria, thenxi(t)yj(t) → 0 ast → +∞ for
any interior initial condition(x(0), y(0)). This implies that in every2 × 2 game, the
two-population replicator dynamics eliminates all strategies that are not used in Nash
equilibrium.

Here again, the proof relies solely on properties 1 to 3, so that this extends to
the two-population best-response dynamics as well as to any two-population convex
monotonic dynamics.

1For two-player nonsymmetric games, the replicator dynamics is defined by takingx in ∆(S1), y in
∆(S2) and by replacingU by U1 (resp.U2) in the first (resp. second) equation of (1)
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3.3 Nash Equilibrium

Zeeman (1980, p.488-489) studies the behaviour of the single population replicator
dynamics in3 × 3 symmetric games. In all the cases he considered, every strategy
that is not used insymmetric Nashequilibrium is eliminated by the single population
replicator dynamics, for any interior initial condition. This suggests that:

Conjecture In any3× 3 symmetric game, every strategy that is not used insymmetric
Nashequilibrium is eliminated by the single population replicator dynamics, for any
interior initial condition.

This result would be stronger than our corollary. Its proof however (if in the spirit
of Zeeman (1980)) would probably be much more involved, and maybe less amenable
to extensions to other dynamics and to the two-population replicator dynamics.

3.4 Higher dimensional games

It seems that the result of this paper is one of the many results of game theory which
holds true only in small dimensions. Indeed, in4× 4 symmetric games (and in higher
dimensions), the single population replicator dynamics need not eliminate the pure
strategies that are not played in correlated equilibrium. Actually, for the replicator and
the best-response dynamics, as well as for every smooth payoff monotonic dynamics
(for a definition of payoff monotonic dynamics, see Hofbauer and Sigmund, 1998, p.
88), there exists a4× 4 symmetric game in which, for an open set of initial conditions,
all strategies that are used in correlated equilibrium are eliminated (hence, in the long
run, only strategies that are NOT used in correlated equilibrium remain). See (Viossat,
2004b) for a proof and related results.

A Some properties of convex monotonic dynamics and
of the best-response dynamics

The aim of this section is to show that every convex monotonic dynamics (in particular,
the replicator dynamics), as well as the best-response dynamics, checks properties1 to
3 of section 2.2. We actually prove a slightly more general result.

Consider a two-player game with pure strategy setSk and payoff functionUk for
playerk. Consider a dynamics of the form

ẋi = xigi(x, y) ẏj = yjhj(y, x) (10)

where theC1 functionsgi (resp.hj) have the property that
∑

i∈S1
xigi(x, y) = 0 (resp.∑

j∈S2
yjhj(y, x) = 0) for all (x, y) in ∆(S1)×∆(S2), so that∆(S1)×∆(S2) and its

boundary faces are invariant. The replicator dynamics corresponds to the special case
gi(x, y) = U1(i, y)− U1(x, y) andhj(y, x) = U2(j, x)− U2(y, x).

Such a dynamics (10) isconvex monotonicif

U1(p, y) > U1(i, y) ⇒
∑

k∈S1

pkgk(x, y) > gi(x, y)

7
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for all i in S1, all p in ∆(S1), and all(x, y) in ∆(S1)×∆(S2), and similarly

U2(q, x) > U2(j, x) ⇒
∑

k∈S2

qkhk(y, x) > hj(y, x)

for all j in S2, all q in ∆(S2), and all(y, x) in ∆(S2) × ∆(S1). In particular, the
replicator dynamics is convex monotonic.

Let i ∈ S1 andp ∈ ∆(S1) denote respectively a pure and a mixed strategy of player
1. Fix a convex monotonic dynamics and an interior initial condition(x(0), y(0)).

Proposition Assume that at least one of the following conditions holds:

1. There existε > 0 and a timeT in R such that, for allt ≥ T , U1(i, y(t)) ≤
U1(p, y(t))− ε

2. The mixed strategyp weakly dominatesi and there exists a pure strategyj in
S+

2 = {j ∈ S2, U1(p, j) > U1(i, j)} such thatyj(t) does not go to zero as time
goes to infinity.

Thenxi(t) converges to0 as time goes to infinity.

Proof. The below argument is essentially the one used by Hofbauer and Weibull (1996)
to show that convex monotonic dynamics eliminate the pure strategies that are itera-
tively strictly dominated. LetV (x) := xi

∏
k∈S1

x−pk

k andW (t) = V (x(t)). We
have:

Ẇ (t) =
∑ ∂V (x)

∂xj
ẋj = W (t)

(
gi(x, y)−

∑
pkgk(x, y)

)

If condition1 holds, then for all timet ≥ T , y(t) belongs to the compact set

Kε = {y ∈ ∆(S2), U1(p, y) ≥ U1(i, y) + ε}
Since fory in Kε, the quantity wheregi(x, y)−∑

pkgk(x, y) is always positive, hence,
by continuity, always greater that some positive constantα, it follows that, fort ≥ T ,
Ẇ ≤ αW . Therefore,

t ≥ T ⇒ W (t) ≤ W (T ) exp(α(t− T ))

This implies thatxi(t), which is smaller thanW (t), converges to0.
If condition 2 holds, then for all timet ≥ 0, gi(x, y) − ∑

pjgj(x, y) is negative,
henceW is always decreasing. Furthermore, there existsε ≥ 0 andj ∈ S+

2 such that
lim sup yj(t) ≥ ε. Since the velocityẏj is bounded, it follows thaty(t) spends an
infinite amount of time within the compact set

K ′
ε = {y ∈ ∆(S2), yj ≥ ε/2}

Let τ(t) be the time spent byy in K ′
ε up to timet:

τ(t) =
∫ t

0

1yj≥ε/2(y(t)) dt

8
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(where1yj≥ε/2(y) is equal to1 if yj ≥ ε/2 and to0 otherwise).
Since fory in K ′

ε, the quantitygi(x, y) − ∑
pjgj(x, y) is always positive, hence,

by continuity, always greater that some positive constantα′, it follows that:

xi(t) ≤ W (t) ≤ W (0) exp(−α′τ)

Sinceτ(t) goes to infinity, this implies thatxi(t) converges to0.

Now consider the best-response dynamics (Matsui, 1992) given by:

ẋ ∈ BR(y) andẏ ∈ BR(x)

whereBR(y) ⊆ ∆(S1) (resp.BR(x) ⊆ ∆(S2)) is the of set of mixed best-responses
to y (respx):

BR(y) = {p ∈ ∆(S1),∀i ∈ S1, U1(p, y) ≥ U1(i, y)}
Fix an arbitrary initial condition(x(0), y(0)). Assuming that one of the two conditions
of the above proposition holds, then, at least after some timeT , the pure strategyi
is not a best-response toy(t) (for the second condition, use the fact that under the
best-response dynamics: ifyj(t) > 0, thenyj(t′) > 0 for all t ≥ t′). Therefore,
xi(t) decreases exponentially to zero. Thus, the above proposition extends to the best-
response dynamics.

This implies that the best-response dynamics, as well as any convex monotonic
dynamics, checks properties1 to 3 of section 2.2.
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