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Cette note établit que dans tous les jeux 3-3 symmetriques, la dynamique des réplicateurs
élimine toutes les stratégies qui ne sont utilisées dans aucun équilibre corrélé. Ce résultat
s'étend a la dynamique de meilleure réponse et a toutes les dynamiques convexes monotones.
La preuve repose sur des arguments de réduction duale.

This note establishes that in every 3-3 symmetric game, the replicator dynamics eliminates all
strategies that are never used in correlated equilibrium. This extends to the best-response
dynamics and to any convex monotonic dynamics. The proof is based on dual reduction.

Equilibre corrélé, dynamiques de jeux, réduction duale

Correlated equilibrium, game-dynamics, dual reduction

Classification JEL: C73,C72

! Laboratoire d’Econométrie, CNRS et Ecole Polytechnique



hal-00242953, version 1 - 6 Feb 2008

1 Notations, definitions and main result

1.1 Notations

This note focuses on finite, two-player symmetric games. Such a gaisngiven by
asetS = {1, ..., N} of pure strategies (the same for each player) and a payoff matrix
U= (U(,j))i<ij<n- HerelU(i, j) is the payoff of a player playing strategpgainst
a player playing strategy. Since the game is symmetric, whether the player playing
is called playetfl or player2 is unimportant.

Let A(S) denote the set of probabilities ov€ror mixed strategies:

A(S) = {XGRS cx; > 0Vie S,ZCL’Z = 1}
ieS
The payoff of a player playing the mixed strategggainst a player playing the mixed
strategyy will be denoted

U(X7y) = Z xiij(i7j)

i€S,jES

1.2 Replicator Dynamics

Given some initial conditiox(0) in A(.S), thesingle population replicator dynamics
is given by

;= 2 [U(4,X) — U(X,X)]
wherez;, z; andx are taken at time.

We now define théwo-populationreplicator dynamics. Since there are two popu-
lations, the set of pure strategies of playés a priori different from the set; of pure
strategies of playel; but since we only consider symmetric games, we may assimilate
S1 andS; and writeS for both S; and.S,;. The same remark holds for payoff matrices
and we writelU for bothU; andUs.

Given an initial condition(x(0),y(0)) in A(S) x A(.S), thetwo-population repli-
cator dynamicss given by:

& =2 [U(i,y) = U(Xy)] andg; = y; [U(i,X) = U(y, X)] 1)

(herex (resp.y) represents the mean strategy in the population of plalyéesp.2))

Note that, for symmetric games and from a mathematical point of view, the single
population replicator dynamics corresponds to the two-population replicator dynamics
with symmetric initial conditions (that is, witk(0) = y(0)).

Definition A pure strategy in S of player1 (resp. player) is eliminatedby the two-
population replicator dynamics (for some initial conditiéx(0), y(0)) if x;(¢t) (resp.
y;(t)) goes to zero asgoes to infinity.

Note that, if the initial condition is symmetric (or, equivalently, in the single popu-
lation framework), then the pure strateggf player 1 is eliminated if and only if the
pure strategy of player2 is eliminated.
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1.3 Correlated equilibrium

A correlated strategy is a probability distribution on the Sex S of pure strategy
profiles. Hence: = (u(s))ses is a correlated strategy if

pli j) >0, V(ij) €S xS

and

> ouig)=1)

(4,j)€SXS

A correlated strategy is @orrelated equilibrium distributiofAumann, 1974) if it sat-
isfies the following incentive constraints:

> i, HUGF) - UG, j)] >0 VieSVi'es
jeSs

and symmetrically

> uli, NV G, = UG, 1)) >0 Vjesvji'es

i€S

The Nash equilibria exactly correspond to the correlated equilibrium distributions
w that are independent; that is, such that there exists mixed strakegieky in A(S)
such thaty(i, j) = x;y; Y(i,j) € S x S.

Definition The pure strategy in S (resp. the pure strategy profilg, j) in S x S)
is used in correlated equilibriumithere exists a correlated equilibrium distributign

such thatzjes w(t,7) > 0 (resp.u(i, j) > 0).

Remark 1 Due to the symmetry of the game, the existence of a correlated equilibrium
distri.buFionu _such thatzjes w(i, 7) > 0is equivalent to the existence of a correlated
equilibrium distributiony” such thaty _ ;5 uu(j, i) > 0.

Thus, when we say that some pure strategyused (or not used) in correlated equilib-
rium, it is unnecessary to specify whether we see this strategy as a strategy ofiplayer
or as a strategy of play@: Furthermore, due to the symmetry of the game and to the
convexity of the set of correlated equilibrium distributions, a pure strategy is used in
correlated equilibrium if and only if it is used in some symmetric equilibrium (i.e. ina
correlated equilibriumu such thatu(k, 1) = p(l, k) for every(k,1) in S x S). Thus,

we do not have to specify whether we are only interested in symmetric equilibria or
not.

1.4 Main result

Definition An initial condition(x(0), y(0)) of the two-population replicator dynamics
is interior if for every pure strategyin .S, bothz;(0) andy;(0) are positive.
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Proposition Consider a3 x 3 symmetric game. If the pure strategg not used in cor-
related equilibrium, ther;(¢) andy;(¢) both converge t@® under the two-population
replicator dynamics (1), for any interior initial conditiofx(0), y(0)).

As a particular case, this implies that:

Corollary In every3 x 3 symmetric game, every pure strategy that is not used in
correlated equilibrium is eliminated by trenglepopulation replicator dynamics, for
any interior initial condition (that is, for any initial conditiom(0) in A(.S) such that
x;(0) > 0 for everyi in S).

2 Proof

2.1 Elements of dual reduction

Let us first recall some properties of dual reduction (Myerson, 1997) on which the proof
is based. Dual reduction is defined for any finite game, but, so that no new notations
be needed, only two-player symmetric games are considered below. +ar, 2, let
a : S — A(S) denote a transition probability over the set of pure strategieshe
image of a pure strategyby this mapping is a mixed strategy. Denotedyy i this
mixed strategy.

The vectore = (a1, az) is adual vector(Myerson, 1997) if for all(¢, j) in S x S:

[Ulen % i,5) = Ui, )] + [Ulag * j,i) = U(4,4)] = 0 ()

Such a dual vector istrong(Viossat, 2004a) if the inequality (2) is strict for any strat-
egy profile(, j) that is not used in correlated equilibrium. It follows from (Nau &
McCardle, 1990, discussion on page 432 and proposition 2) that there exists a strong
dual vector and from a variant of the proof of proposition 5.26 in (Viossat, 2004a)
that this strong dual vector may be assumed to be symmetric (i.e. we may assume
a1 = as). In the remaining of the papet, denotes such a strong and symmetric dual
vector.

Note that if the pure strategyis not used in correlated equilibrium, then for all
in S, the strategy profil¢i, j) is not used in correlated equilibrium. Therefore (recall
thata is strong):

[U(axi,j) = U(i,j)] + [Ulaxj,1) = U(j,9)] >0 ®3)
(Here and in the remaining of the papers ¢ denotes eithet; * i or as * i. Sincea

is symmetric, i.ea; = a» this is unambiguous.)

2.2 Properties of the replicator dynamics

The only properties of the replicator dynamics that will be used in the proof are the
one given below. Let, i" andp denote respectively two pure strategies and a mixed
strategy of playet. Fix an interior initial conditionx(0), y(0)).
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Property 1 If there exist > 0 and atimeT" in R such that, foralk > T, U(i,y(¢)) <

U(#',y(t)) — e, thenx;(t) M 0.

Property 2 If pweakly dominatesand if there exists a pure strategyin Sy = {j €

S,U(p,j) > U(4,7)} such thaty, (t) does not go to zero as time goes to infinity, then
t——+4o0

Of course, the symmetric properties (i.e. on elimination of strategies of fayeid

just as well. The fact that the replicator dynamics checks properties 1 and 2 is proved

in the appendix. Property 2 imply the following better known property:

Property 3 If a pure strategy is strictly dominated by a mixed strategy, then for every
interior initial condition this pure strategy is eliminated by the two-population replica-
tor dynamics.

Proof. This corresponds to the special case of property 2 whgre= S,. Since a
dynamics cannot eliminate all the pure strategies of a player, the result follows.

2.3 Proof of the proposition

We are now ready to prove the proposition. From now on, there are only three pure
strategies:S = {1, 2, 3}, and strategy is not used in correlated equilibrium. The aim
is to show that strategy is eliminated by the replicator dynamics. By symmetry, we
only need to show thats(¢) converges td). We first exploit the inequations (2) and
(3). These inequations are particularly interesting in two cases: first=ifi then (2)
yields

U(axi,i) > U(i,i) 4)

If moreover strategy is not used in correlated equilibrium then (3) yields:
Ulaxi,i) > U(i,)

In particular,
U(ax3,3) > U(3,3) (5)

Second, ifj is a-invariant, i.e. ifa x j = 7, then (2) yields
Ulaxi,j) 2 U(i,j) (6)
If moreover strategy is not used in correlated equilibrium then (3) yields:
Ulaxi,j)>U(i,j) (7)
Now, distinguish the following cases:

Case 1If one of the strategies and?2 is a-invariant
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Assume, for instance, that stratehis a-invariant. Then, by (7),
U(ax3,1)>U(3,1) (8)

and by (6)
U(ax2,1)>U(2,1) (9)

Furthermore, taking = 3 andj = 2 in (3) yields:
[Uax3,2)—U(3,2)]+ [U(a*2,3) —U(2,3)] >0

Thus, at least one of the two brackets must be positive. If the first bracket is positive
(subcase 1.1), i.e. 7 (« * 3,2) > U(3,2), then (5) and (8) imply that * 3 strictly
dominates3, hencers(t) converges td by property 3 and we are done.

Otherwise (subcase 1.2), the second bracket is positivé] {@x 2,3) > U(2, 3).
Together with (4) and (9) this implies that 2 weakly dominates strate@y with strict
inequality against stratedy Thus, by property 2, if:3(¢) does not converge @ then
y2(t) does. Now consider the x 2 game obtained by eliminating the second strategy
of player2: in this reduced game, by (5) and (8), the third strategy of playestrictly
dominated by x 3; furthermore, since strate@yis weakly dominated, it follows that,
in the reduced game, strategys strictly dominated by strategl. This implies that
there exists a positivesuch that, once, () is low enough/(3,y) < U(1,y) —¢. By
property 1, this implies thats(t) converges t®.

Case 2 If neither strategyl nor strategy? is invariant

Consider the2 x 2 game(, obtained by elimination of the third strategy of both
players. Sincé7, is a2 x 2 symmetric game, it may a priori be of three kinds:

Subcase 2.1a coordination game, i.e. a game with two strict Nash equilibria and a
completely mixed one

Subcase 2.2a game with a weakly or strictly dominated strategy

Subcase 2.3a trivial game, i.e. a game where the players have no influence on their
own payoff.

Sincex is a strong dual vector and since strat8gy not used in correlated equilibrium,

it follows from (Viossat, 2004a, proof of proposition 5.16, steps 2 and 3) that strategy
3 is transient under the Markov chain Srinduced byw. This implies that the support

of a x 1 (resp. a * 2) contains strateg® (resp. 1) but not strategyd. This, in turn,
implies two things:

First, the gamé>,. has no strict Nash equilibrium (indeed(if, j') is a strict Nash
equilibrium of G,. then the inequality (2) foi = +' andj = 5’ cannot be satisfied).
This rules out subcase 2.1.

Second, the Markov chain agfiinduced byx has a unique recurrent communicat-
ing set: {1,2}. By the basic theory of dual reduction (Myerson, 1997), this implies
that the game= may be reduced, in the sense of dual reduction, into a game with a
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unique strategy profile, which corresponds to a mixed strategy profilewith sup-
port{1,2} x {1,2}. By proposition 5.9 of (Viossat, 2004a), this implies thahas a
Nash equilibrium with suppo#l, 2} x {1, 2} and so, tha&, has a completely mixed
Nash equilibrium. This rules out subcase 2.2. Thus, the dg&jrie necessarily a trivial
game.

Now, only two possibilities remain: first (subcase 2.3.1), it may bethat 3) =
U(2,3),sothatU(1,j) = U(2,j) forall jin S. Inthat casel/ (a4, j) = Ui, j) for
everyi in {1,2} and everyj in S (recall that fori in {1, 2}, ax¢ has supportiq1, 2}).
Therefore, repeated applications of (3) show that stragegpystrictly dominated by
a x 3, so thatrs(t) converges to).

Otherwise (subcase 2.3.2)(1,3) # U(2, 3), so that we may assume for instance
U(1,3) > U(2,3). This implies that strateg® is weakly dominated by strategly
with strict inequality against stratedy Thus, if z5(¢) does not converge 10, then
y2(t) does. But in the3 x 2 game obtained by elimination of the second strategy of
player2, strategyl strictly dominatess. Therefore, as in subcase2, z5(t) converges
to 0.

3 Extensions and comments

3.1 Other dynamics

The only properties of the replicator dynamics that are used in the proof of the proposi-
tion are properties 1 to 3 of section 2.2. Thus, the proposition extends to any dynamics
that satisfies these properties. This is the case in particular bEteresponse dynam-

ics of Matsui (1992) and of theonvex monotonic dynamic$ Hofbauer and Weibull
(1996). See the appendix.

3.2 Asymmetric games

When considering multi-population dynamics, there is no compelling reason to focus
on symmetric games. A more general result than our proposition would consist in
proving that the two-population replicator dynamics eliminates all strategies that are
not played in correlated equilibrium in eveByx 3 game (and not only in symmetric
ones)!. 1 do not know whether this is true or not. However, it may be shown that in
every2x2 game, the two-population replicator dynamics eliminates all stradegifes
that are not used in Nash equilibrium in the following sense: if the pure strategy profile
(4, 4) has probability zero in all Nash equilibria, thepn(t)y;(t) — 0 ast — +oo for
any interior initial condition(x(0),y(0)). This implies that in everg x 2 game, the
two-population replicator dynamics eliminates all strategies that are not used in Nash
equilibrium.

Here again, the proof relies solely on properties 1 to 3, so that this extends to
the two-population best-response dynamics as well as to any two-population convex
monotonic dynamics.

1For two-player nonsymmetric games, the replicator dynamics is defined by taking\(S1), y in
A(S2) and by replacind/ by U (resp.Uz) in the first (resp. second) equation of (1)
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3.3 Nash Equilibrium

Zeeman (1980, p.488-489) studies the behaviour of the single population replicator
dynamics in3 x 3 symmetric games. In all the cases he considered, every strategy
that is not used isymmetric Naslequilibrium is eliminated by the single population
replicator dynamics, for any interior initial condition. This suggests that:

Conjecture In any 3 x 3 symmetric game, every strategy that is not usexymmetric
Nashequilibrium is eliminated by the single population replicator dynamics, for any
interior initial condition.

This result would be stronger than our corollary. Its proof however (if in the spirit
of Zeeman (1980)) would probably be much more involved, and maybe less amenable
to extensions to other dynamics and to the two-population replicator dynamics.

3.4 Higher dimensional games

It seems that the result of this paper is one of the many results of game theory which
holds true only in small dimensions. Indeeddixx 4 symmetric games (and in higher
dimensions), the single population replicator dynamics need not eliminate the pure
strategies that are not played in correlated equilibrium. Actually, for the replicator and
the best-response dynamics, as well as for every smooth payoff monotonic dynamics
(for a definition of payoff monotonic dynamics, see Hofbauer and Sigmund, 1998, p.
88), there exists & x 4 symmetric game in which, for an open set of initial conditions,

all strategies that are used in correlated equilibrium are eliminated (hence, in the long
run, only strategies that are NOT used in correlated equilibrium remain). See (Viossat,
2004b) for a proof and related results.

A Some properties of convex monotonic dynamics and
of the best-response dynamics

The aim of this section is to show that every convex monotonic dynamics (in particular,
the replicator dynamics), as well as the best-response dynamics, checks prdperties
3 of section 2.2. We actually prove a slightly more general result.

Consider a two-player game with pure strategy&etind payoff functiori/,, for
playerk. Consider a dynamics of the form

T = 2i9i(X,Y) 95 = yih;(¥,X) (10)
where theC! functionsg; (resp.h;) have the property thatl,c g, igi(X,y) = 0 (resp.
> jes, Yihi(y,x) = 0)forall (x,y) in A(S1) x A(S2), so thatA(S1) x A(S2) and its
boundary faces are invariant. The replicator dynamics corresponds to the special case

gi(xa y) = Ul(lay) - Ul(xay) andhj(y7 X) = UZ(jv X) - Uz()’» X)-
Such a dynamics (10) onvex monotoniif

Ur(p,y) > Ur(i,y) = > prge(X,y) > gi(X,Y)
kES,
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forall iin Sy, allpin A(S7), and all(x,y) in A(S7) x A(S2), and similarly

U2(qax) > UZ(ja X) = Z qkhk(ya X) > hj(Ya X)
k€S>

for all j in Sz, all g in A(S2), and all(y,x) in A(S2) x A(Sy). In particular, the
replicator dynamics is convex monotonic.

Let: € Sy andp € A(S;) denote respectively a pure and a mixed strategy of player
1. Fix a convex monotonic dynamics and an interior initial condi(ef®), y(0)).

Proposition Assume that at least one of the following conditions holds:

1. There exist > 0 and a timeT" in R such that, for alk > T, Uy (4,y(t)) <
Ur(p,y(t)) — e

2. The mixed strategp weakly dominateg and there exists a pure strategjyn
S = {j € S2,Us(p,5) > Ui(i,5)} such thaty;(t) does not go to zero as time
goes to infinity.

Thenz;(t) converges td as time goes to infinity.
Proof. The below argument is essentially the one used by Hofbauer and Weibull (1996)

to show that convex monotonic dynamics eliminate the pure strategies that are itera-
tively strictly dominated. Let/(x) := z; [[cgq, 2, " andW(t) = V(x(t)). We

have: o

If condition 1 holds, then for all time > T, y(¢) belongs to the compact set

Ke = {y € A(SQ)7U1(pay) Z Ul(Zay) + 6}

Since fory in K, the quantity wherg;(X,y) — > prgr (X, y) is always positive, hence,
by continuity, always greater that some positive constaiit follows that, fort > T,
W < aW. Therefore,

t>T = W(t) < W(T)exp(a(t — T))

This implies thatz;(¢), which is smaller thaiV (¢), converges td.

If condition 2 holds, then for all time > 0, g;(X,y) — > p;g;(X,y) is negative,
hencelV is always decreasing. Furthermore, there exists0 and;j € S5 such that
limsupy;(t) > €. Since the velocityj; is bounded, it follows thay(t) spends an
infinite amount of time within the compact set

K. ={y € A(S2),y; > €/2}

Let 7(¢) be the time spent by in K up to timet:

7(t) = / 1, - a(y(t)) dt
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(wherel, >./5(y) is equal tol if y; > ¢/2 and to0 otherwise).
Since fory in K/, the quantityg;(x,y) — > p;g;(X,Yy) is always positive, hence,
by continuity, always greater that some positive constait follows that:

zi(t) < W(t) < W(0)exp(—a'T)

Sincer(t) goes to infinity, this implies that;(¢) converges td. m
Now consider the best-response dynamics (Matsui, 1992) given by:

x € BR(y) andy € BR(X)

whereBR(y) C A(Sy) (resp.BR(x) C A(S»)) is the of set of mixed best-responses
toy (respx):

BR(y) = {p € A(S1),Vi € S1,Ui(p,y) > Ui(i,y)}

Fix an arbitrary initial conditior{x(0), y(0)). Assuming that one of the two conditions
of the above proposition holds, then, at least after some Tinthe pure strategy
is not a best-response {dt) (for the second condition, use the fact that under the
best-response dynamics: yf(t) > 0, theny;(t') > 0 for all t > t’). Therefore,
x;(t) decreases exponentially to zero. Thus, the above proposition extends to the best-
response dynamics.

This implies that the best-response dynamics, as well as any convex monotonic
dynamics, checks propertiégo 3 of section 2.2.
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