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Abstract: We propose a mechanism for resolving bargaining problems.

The mechanism allows two players to make a sequence of simultaneous

propositions. At any step, as long as the players have not reached an

agreement, they can choose to implement a lottery between the di�erent

propositions. In this aspect, the mechanism is similar to the so called

�nal o�ers arbitration. However, contrary to the existing scheme, our

mechanism is not compulsory. The history of the negotiation process

is recorded and players can refuse an o�er and go back in the process

to a previous step. This generates an evolving sequence of status-quo

points and results in a sequence of equilibrium o�ers of the two play-

ers that gradually converge towards each other. Our model assumes no

discounting and complete information. Rather than time preferences,

the main incentive to reach an agreement under our mechanism comes

from risk aversion. Players have an incentive to avoid the uncertainty

related to the lotteries that occur when o�ers do not result in an agree-

ment. Rather than incomplete information, the process gradualism is

driven by the necessity to make step by step concessions in order to

generate evolving threat points. We show that under this mechanism,

the unique subgame perfect equilibrium that does not use weakly domi-

nated strategies coincides with a well-known static solution concept, the

Rai�a solution.

Keywords and phrases: bargaining theory, Rai�a bargaining solution,

risk aversion, �nal o�ers arbitration, chilling e�ect, gradualism.

1. INTRODUCTION

This paper proposes a mechanism to resolve bargaining disputes. This mech-
anism is not compulsory and leaves the bargaining parties with complete
freedom of choice whilst o�ering them a framework for reaching an e�cient

∗Corresponding author
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players2

agreement. It is a contribution to two di�erent branches of literature. The
�rst one concerns compulsory arbitration schemes. These interest practi-
tioners as much as researchers since there are actually used to resolve real
bargaining disputes. For example they are used to settle grievances in union-
management contracts or between buyers and sellers in commercial contracts
(for a variety of examples see Ashenfelter and Bloom (1984)). There are
essentially two categories of arbitration mechanisms. In conventional com-
pulsory arbitration (CCA), the arbitrator has the power to impose a set-
tlement of his choice on the bargaining agents if their negotiations break
down, that is if their demands are not compatible. It has been suggested
that this mechanism produces a chilling e�ect: it erodes agents' incentive to
make concessions in bargaining and their demands remain distant from each
other. Stevens (1966) proposed a simple procedure, the �nal o�er arbitration
(FOA) designed to counteract this e�ect: the arbitrator chooses among the
proposals the one she wants to impose. His idea was that: "... [FOA] gener-
ates just the kind of uncertainty about the location of the arbitration awards
that is well calculated to recommend maximum notions of prudence to the
parties and, hence, compel them to seek security in agreement" page 46. As
a result of this theoretical proposal, this procedure has been applied to settle
public sector labor disputes in several U.S. state jurisdictions (see Hebdon
1996). It turned out that this mechanism had to be implemented, meaning
that the bargaining parties did not reach an agreement by themselves, con-
trary to Stevens' argument. Indeed, several models in the literature show
that Stevens' intuition was wrong from two points of view.

First, Stevens thought that one quality of FOA was that it guarantees
that the bargaining parties negotiate in good-faith. The simple threat of ar-
bitration induces agents to reach agreement on their own . Crawford (1979)
showed that this is not true. He assumes that both parties know with cer-
tainty the arbitrator's preferred outcome and concludes under this assump-
tion that both arbitration mechanisms CCA and FOA support in fact the
same outcome at the Nash equilibrium. Proposals are not compatible at
the equilibrium of the conventional compulsory arbitration but are compat-
ible with FOA. However, "...there exists a unique Nash equilibrium in FOA,
which leads to the feasible �nal settlement considered most reasonable by
the arbitrator, without regard to the bargaining agents' preferences". Page
135. Under the threat of arbitration, the parties are not actually involved in
a real process of bargaining but are just trying to conform to the arbitra-
tor's preferred outcome. A �rst feature of our mechanism is that arbitration
consists of a pure lottery which chooses between the two parties' proposals
with equal probability. This eliminates Crawford's objection to the FOA.
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players3

Following Stevens' argument, the second advantage of the FOA is that it
eliminates the chilling e�ect. In Farber (1980, 1981) and Farber and Katz
(1979), the parties are uncertain as to the arbitrator's preference. In this
framework they show that the two di�erent mechanisms lead to di�erent
results which depend on the parties' attitude toward risk. However, the so
called chilling e�ect persists. More recently, the comparison of the two kinds
of mechanism has been the subject of experiments (Dickinson (2006), Kriti-
cos (2006)) which reinforce this last theoretical result. In our framework the
chilling e�ect is eliminated. At the subgame perfect Nash equilibrium the
two parties' proposals converge towards an e�cient consensus.

One criticism which can be addressed to all of this literature is that the
negotiation process is not described. The characterization of Nash equilibria
in a static framework in order to describe a strategic negotiation may not
capture important aspects of the process itself. These dynamic aspects may
nevertheless be relevant for the outcome. In our model, the bargaining parties
can make sequential proposals and can have recourse to the mechanism at
each step.

Now, we turn to the other branch of literature to which our mechanism
is related, the literature on bargaining theory. There are two types of ap-
proaches to bargaining theory, one of which is the axiomatic theory of bar-
gaining. In this case, a bargaining problem between two parties has a very
simple framework. It speci�es a set of possible outcomes and a threat point
which describes what the two players get in case of negotiation failure. The
various solution concepts such as the best known Nash bargaining solution
(1950) but also the Rai�a solution (1953) or the Kalai-Smorodinsky solu-
tion (1975) are all e�cient. The other approach, which follows the Nash
program, is then to implement the previous solutions in a strategic and se-
quential framework. Note that, when this is possible it is a justi�cation of
Coase's idea that negotiation must lead to an e�cient outcome. A classical
extensive form bargaining game is the Rubinstein alternating o�ers model
with in�nite horizon and discount factor (Rubinstein 1982). The unique sub-
game perfect equilibrium of this game coincides with the Nash bargaining
solution prescribed by the axiomatic theory. The discount factor is essential
in the Rubinstein model; players have an incentive to reach agreement be-
cause the "cake" to be shared shrinks over time. In Stahl's (1972) alternating
o�ers model the horizon is �nite with full disagreement. Sjöstrom (1991) uses
Stahl's model and shows that the Rai�a solution is its unique subgame per-
fect Nash equilibrium. The main criticism addressed to these models is that
at the equilibrium the bargaining parties reach the agreement immediately.
The �rst proposal is accepted. This lack of delay in a sequential bargaining
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players4

game has been considered to be unrealistic. The main objective was then
to explain which forces in reality drive the negotiating parties to gradually

improve their o�ers to each other.
Indeed, Rubinstein's paper generated a wide literature whose purpose was

to �nd ways to modify the model in order to obtain delay at the equilibrium.
A �rst answer was found with the introduction of incomplete information (see
the survey of Kennan and Wilson (1993)). In a recent paper Compte and
Jehiel (2004) show that even with complete information, the simple threat
of negotiation failure can generate gradualism in bargaining. The bargaining
parties have the possibility to opt out of the negotiation process. Opting out
is costly and results in a compromise partition which is a function of the pre-
vious proposals. This generates gradualism. They say in their discussion that
"... [their] �nding of gradualism is the dynamic counterpart of the chilling
e�ect identi�ed in [the �rst] literature". page 997.

In our framework there is complete information and the possibility of
opting out as in Compte and Jehiel (2004), but no discounting. Our analysis
is focused on the role of the parties' risk aversion in the negotiation which
was pointed out by Stevens. In the mechanism we propose, the incentive to
reach agreement is not based on the fact that utility is discounted over time
but on the fact that incompatible o�ers lead to uncertainty of outcomes and
players who are risk averse may prefer to modify their o�ers to obtain certain
payo�s.

We specify a sequential bargaining game with simultaneous proposals.
When the proposals are not compatible the bargaining parties have the pos-
sibility of opting out by implementing an arbitration scheme in the spirit
of the FOA. A lottery draws with equal probability each party's proposal.
However, there are two important di�erences. The �rst di�erence is that the
resulting proposal cannot be imposed on the other party who has the right
to reject it. The second di�erence is that the mechanism allows the parties to
record the sequence of simultaneous but not compatible proposals. Thanks
to this historical list of disagreements there may be several options when a
party decides to opt out. Indeed, if a party rejects the proposal which has
been drawn by the lottery, the mechanism goes back to implement a lottery
with the previous proposals. If all the proposals are rejected the mechanism
goes back until it reaches the original threat point. Therefore, the mechanism
generates an evolving threat point. At the subgame perfect Nash equilibrium,
the simultaneous proposals gradually converge towards the Rai�a solution.
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players5

2. De�nitions, notation and setting of the model

In what follows, we will consider the following setting: two players J1 and J2

bargain over the partition of a pie of size K = 1, without loss of generality.
The possible ways to split the pie are

{(x, y) : x, y ∈ [0, 1] and x + y ≤ 1}

in which x is the share of Player J1 and y those of Player J2. Both players are
assumed to be (weakly) risk averse in the sense that they have linear or con-
cave utility functions, respectively U1 (x) , U2 (y) that are strictly increasing
on [0, 1] (this last assumptions is for convenience and to exclude some de-
generated cases). In terms of possible utility pairs (u, v) ∈ R2, the compact,
convex bargaining set is thus delimited by the curves u = U1(0), v = U2(0)
and the curve (U1(x), U2(1 − x)), x ∈ [0, 1]. At the status quo, the players
receive d1 and d2. The game is sequential but there is no discounting. At
any date t, the two players have to make simultaneous proposals (xt, yt). If
xt = 1−yt we will say that an agreement has been concluded. In this case, the
game ends. Player 1 gets xt and Player 2, yt = 1−xt. If the two proposals do
not result in an agreement, the di�erence Dt =: xt−(1−yt) measures the gap
between the two proposals or the level of disagreement. Then, the two play-
ers have the possibility to implement a fair lottery between the propositions
xt and yt in which each proposal is drawn with probability 1

2 . We will denote
this lottery between xt and yt by Lt. We will use the convenient notation
U1(Lt) =: 1

2U1(xt)+ 1
2U1(1− yt). If and only if both prefer to continue, they

go to the following period and make another pair of simultaneous proposals
(xt+1, yt+1). We adopt the convention that the payo�s induced by strategies
where an agreement is never reached and where neither player ever accepts to
implement a lottery are the threat point payo�s U1(d1) and U2(d2). Consider
a date t at which no player has decided to implement the lottery. At t, each
player makes a proposition xt (yt) and players then announce their decisions
to implement the lottery or to proceed to a new proposal. Let us denote by
ht the t-history generated by all the propositions up to and including time
t: (xs)s≤t and (ys)s≤t. The propositions xt and yt are then de�ned based
on ht−1 and the decision to continue or to implement the lottery after the
propositions xt and yt is conditioned on ht. The part of the game described
above is common to a model that we will �rst analyze rapidly and which can
be seen as a formalization of Stevens FOA mechanism and to the mechanism
we then propose. These mechanisms di�er in what happens after a player
decides to implement at the lottery.
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players6

2.1. Final o�ers arbitration without recursive structure

The following simple model can be seen as a formalization of Stevens FOA.
Let T be the date when the lottery is implemented. If xT (yT ) is drawn and
accepted, the game ends, and Player 1 gets xT (1− yT ) and Player 2, 1−xT

(yT ). If the proposition drawn by the lottery is rejected, then the game ends
and player i receives di. The sequential game is represented in �gure 1 An
outcome of this game is a (possibly in�nite) end date, denoted T , sequences
(xt)t≥0 and (yt)t≥0 of proposals, the name of the player who decided to
implement the lottery LT if the last simultaneous proposals did not result in
an agreement: xT 6= 1− yT , the outcome of the lottery LT and whether xT

(or yT ) was accepted. It is readily observed that this mechanism does not
result in agreement. Indeed, at equilibrium the unique pair of simultaneous
proposals at each step is (1, 1). Suppose it is not the case at the last period
of the game or when at least one player decides to opt out. Then, when the
game stops a lotery L(x, y) is implemented, with x < 1. However, this cannot
be the case at the equilibrium since Player 1 has an incentive to deviate and
propose 1. Therefore at the equilibrium, when the game stops the pair of
proposals is (1, 1). Now consider a step before the game stops, when the two
players continue. If the pair of proposals is (x, y), with y < 1, Player 1 has
an incentive to deviate: she can decide to propose 1 and to opt out.

2.2. The recursive model

In the previous model, rejection of a proposition in the �rst lottery LT en-
tailed the end of the game and threat point payo�s Ui(di) to both players.
Let us now consider a model where rejection of a proposition xT (or yT )
in LT will instead release the implementation of the lottery LT−1 between
the propositions xT−1 and yT−1 and rejection in this lottery releases the im-
plementation of LT−2 and so on. This way, if each player always rejects her
partner's proposal drawn randomly, they can go back to the �rst degenerated
lottery in which the status quo payo�s are applied. The sequential game can
be represented by the extensive form in Figure 2.

Let T be the �rst date where at least one player decides to implement
the lottery. For every 1 ≤ s ≤ T , player 1 and 2 must decide whether or
not to accept proposition ys and xs respectively if it is drawn. The decision
to accept ys (or xs) is a function of hT and of the outcomes of the lotteries
LT ,LT−1, ...,Ls+1. This sums up all the relevant information on which the
decision to accept or reject xs can be conditioned. Indeed, if a player faces a
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players7

decision related to Ls, it necessarily implies that the propositions drawn in
the lotteries LT ,LT−1, ...,Ls+1 have been rejected.

We note that the recursive structure of the lotteries can be represented
in its extensive form as a tree (see �gure ). If the decision to implement
the lottery was taken after T propositions, the tree has length T . The �rst
branches from the root lead to two nodes at which xT and yT respectively are
proposed. Each player intervenes at the nodes where his oponents proposition
is drawn and decides to accept or reject it. If there is rejection of xT or yT

at level T , we follow one of the branches to either xT−1 or yT−1 which will
be one level further from the root. Each node has two branches leading to
successor nodes. Whenever the proposition at a node is rejected, each branch
leading to a successor node at the level below is chosen with probability 1

2
leading to a node at the level below (i.e. one step further from the root).

An outcome of this game is a (possibly in�nite) end date, denoted T ,
sequences (xt)t≥0 and (yt)t≥0 of proposals, the name of the player who de-
cided to implement the lottery LT if the last simultaneous proposals did
not result in an agreement: xT 6= 1 − yT , and the outcomes of the lotteries
LT ,LT−1, ...,Ls where Ls is the �rst lottery in which the drawn proposi-
tion was accepted. As we have noted previously, the fact that the lotteries
LT , , ...,Ls were implemented necessarily implies that the player whose de-
cision was not drawn rejected his partner's proposition in all the lotteries
LT ,LT−1, ...,Ls+1.

3. Characterizing the equilibria in the recursive model

In this section we will characterize the equilibria of the game. The proof
will involve two phases. First we take the propositions x = (xt)t≥1 and
y = (yt)t≥1 as given and we consider the extensive form game whose payo�s
are determined by these propositions and by the outcomes of the lotteries.
We examine the players' strategies concerning which propositions they will
accept in each lottery and we show that subgame perfection imposes precise
constraints on the propositions that are accepted. Having done so, we can
then characterize the equilibrium propositions.

Suppose that some arbitrary sequence of propositions (xt)t≥1 and (yt)t≥1

are given. We de�ne two recursive functions V 1
t and V 2

t such that V i
t depends

on (xs)s≤t and (ys)s≤t and show that player 1 accepts any proposition yt such
that U1(1 − yt) ≥ V 1

t−1 and player 2 accepts any proposition xt such that
U2(1−xt) ≥ V 2

t−1. The recursive functions V 1
t and V 2

t which depend of course
on x and y, are in fact the expected payo�s that player 1 and 2 can ensure
in the extensive form game where lottery Lt is about to be implemented,
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players8

given that both players' acceptation strategies are subgame perfect. These
functions are de�ned as follows:

V 1
0 = U1(d1), V 2

0 = U2(d2)

V2
t = 1

2

{
U2(yt) if U1(1− yt) ≥ V 1

t−1

V 2
t−1 otherwise

}
+ 1

2 max[U2(1− xt), V 2
t−1].

V1
t = 1

2

{
U1(xt) if U2(1− xt) ≥ V 2

t−1

V 1
t−1 otherwise

}
+ 1

2 max[U1(1− yt), V 1
t−1].

We have the following lemma:

Lemma 3.1. Suppose that propositions x and y are given. Subgame perfec-

tion implies that player 1 accepts any proposition yt such that

U1(1− yt) ≥ V 1
t−1 (1)

and player 2 accepts any proposition xt such that

U2(1− xt) ≥ V 2
t−1, (2)

where V 1
t and V 2

t are de�ned above. Moreover, if the lottery Lt is imple-

mented, player 1 and 2 can ensure an expected (before implementation)payo�

of V 1
t and V 2

t respectively.

We will refer to propositions that must be accepted whenever players use
subgame perfect strategies as acceptable propositions. We will now prove the
lemma by induction. At t = 1, player 1 must accept any proposition y1 such
that U1(1− y1) ≥ V 1

0 = U1(d1) since she gets U1(d1) if she refuses, the same
is true for player 2. It follows that when player 1 is faced with the lottery
L1, in the extensive form game, she is ensured of an expected payo� of V 1

1

in the lottery between x1 and y1. Indeed, with probability 1
2 , y1 is drawn

and she accepts this only if U1(1 − y1) ≥ V 1
0 . With probability 1

2 , x1 is
drawn and it is accepted if U2(1− x1) ≥ V 2

0 . Thus player 1 is ensured of an
expected utility V 1

1 . Suppose that the statements are true at t− 1. Suppose
that player 1 rejects yt. She then faces the lottery Lt−1. By the induction
hypothesis, she is ensured of V 1

t−1. Thus she should accept yt if and only
if U1(1 − yt) ≥ V 1

t−1. An analogous statement is true for player 2. Having
shown this, we can show that player 1 is ensured of an expected utility V 1

t
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players9

when she faces the lottery Lt between xt and yt: With probability 1
2 , xt is

drawn. It is accepted if U2(1 − xt) ≥ V 2
t . If it is refused, player 1 faces the

lottery Lt−1 where she is ensured of V 1
t−1 by the induction hypothesis. With

probability 1
2 , yt is drawn. Player 1 accepts if U1(1 − yt) ≥ V 1

t−1 otherwise
she is again ensured of V 1

t−1 by the induction hypothesis. Consequently, in
the lottery Lt she is ensured of

V 1
t =

1
2

{
U1(xt) if U2(1− xt) ≥ V 2

t−1

V 1
t−1 otherwise

}
+

1
2

max[U1(1− yt), V 1
t−1].

This concludes the proof of the lemma.

Having shown this, it is obvious that the strategies must be such that
they induce a common end date for the bargaining. If one player, say player
1 uses a strategy such that she ends the proposition phase at t while the
other player's strategy is to continue beyond this date, then player 1 would
bene�t from deviating to a strategy where she proposes an xt+1 such that
U1(xt+1) > V 1

t and U2(1 − xt+1) ≥ V 2
t . Lemma 3.2 below shows that if

at least one player is risk averse such an xt+1 always exists. Consequently,
the strategies in every equilibrium must induce a common date T at which
both players cease to make propositions and implement the lottery. We note
that if the end date T was instead a pre-determined horizon after which no
further propositions could be made, this would not a�ect the argumentation
in what follows. We can use backward induction, starting from the end date
T to determine the players' proposition strategies. As the lemma establishes,
the expected utility of player 1 when she faces the lottery LT is V 1

T . If the
lottery is implemented after the propositions xT and yT , player 1 must choose
xT to maximize V 1

T = V 1
T (xT , yT , V 1

T−1, V
2
T−1), and similarly for player 2. It

is easy to see from the recursive de�nition of V i
t that for every t, V 1

t is an
increasing function of V 1

t−1 and a decreasing function of V 2
t−1 and conversely

for player 2. At each t, player 1 must thus choose xt to maximize V 1
t . Let

us show now that if players have strictly increasing utility functions and at
least one player is risk averse, then the maximizing xt and yt respectively are
unique and are such that V 1

t (or V 2
t ) is strictly greater than V 1

t−1 (or V 2
t−1).

Lemma 3.2. If at least one player is risk averse in the sense that his utility

function is strictly concave on [0, 1] and if both players utility functions are

strictly increasing on [0, 1], then there exists, for any history ht ∈ Ht, a

unique xt+1 that maximizes V 1
t+1 and for which V 1

t+1 > V 1
t and there exists

a unique yt+1 that maximizes V 2
t+1 and for which V 2

t+1 > V 2
t
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players10

To show this, we note that at any date t > 1, we can write

V 1
t (x, y) =

i=t∑
i=1

piU1(xi) + qiU1(1− yi)

V 2
t (x, y) =

i=t∑
i=1

piU2(1− xi) + qiU2(yi)

with
i=t∑
i=1

pi + qi = 1.

The probabilitites qi and pi may be zero if proposition xi (yi) is rejected, or
if both xj and yj were acceptable for some j > i. If we posit x̃ =

∑i=t
i=1 pixi +

qi(1− yi) we have

V 1
t (x, y) ≤ U1[

i=t∑
i=1

(pixi + qi(1− yi))] = U1(x̃)

V 2
t (x, y) ≤ U2[

i=t∑
i=1

(pi(1− xi) + qiyi))] = U2(1− x̃).

Let us �rst assume that both players are risk neutral. In this case, the
�rst inequalities are equalities. If both players have strictly increasing utility
functions, there is no proposition that can make a player strictly better o�
and that is acceptable to his oponent. Indeed, if U1(x) > V 1

t , necessarily
x > x̃ but then U2(1 − x) < V 2

t and player 2 would not accept x. In fact,
(V 1

t , V 2
t )t≥0 will be stationary for t ≥ 1. Thus, when both players are risk

neutral, there is indeterminacy since players will be indi�erent between sev-
eral alternatives: making a new proposition that is acceptable but not strictly
utility improving or making a proposition that will be rejected. Player i may
thus keep proposing 1−di for himself for an indeterminate number of periods
and then implement a lottery between the incompatible propositions or play-
ers may reach agreement on the propositions x2 = 1+d1−d2

2 , y2 = 1+d2−d1
2 .

If, on the other hand, at least one player is risk averse, player i can always
�nd a proposition (for example x̃ and 1 − x̃ respectively) that makes him
strictly better o� and the other player no worse o� than before. Moreover,
if U1 and U2 are strictly increasing, then for every t, agent i has a unique
proposition that maximizes V i

t . It is the proposition that leaves the other
player exactly his certainty equivalent of the lottery Lt−1, that is the utility
Ui(Lt−1). In equilibrium, the propositions are thus uniquely de�ned by the
following recursion:
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players11

x1 = 1− d2, y1 = 1− d1

xt = {x|U2(1− x) = U2(Lt−1)}
yt = {y|U1(1− y) = U1(Lt−1)}. (3)

Having established this, let us summarize the properties of the equilibrium
strategies in the following propositions

Proposition 1. In the recursive model, under the given assumptions(U1,U2

strictly increasing, at least one risk averse player), the only subgame perfect

equilibrium strategies are such that

• Conditional on the game history, both players stop making propositions

and implement the lottery at a common date T = 1, 2, .....
• Before this date T , the proposition strategies are: x1 − d2, y1 = 1− d1

and for t ≥ 1 each player proposes the maximal xt (yt) that veri�es

U2(1− xt) ≥ V 2
t−1 (U1(1− yt) ≥ V 1

t−1).

• In the lottery Lt, player 1 accepts the proposition yt if and only if

U1(1− yt) ≥ V 1
t−1, and similarly for player 2.

For every T ≥ 1, there is thus a unique subgame perfect equilibrium
where the lottery is implemented after T propositions. In each one of these,
the strategies for the propositions that are made before T and the decisions
about whether to accept them are identical and have a simple structure. Each
player initially proposes 1 − dj for himself. At 1 ≤ t ≤ T each player then
proposes the xt and the yt de�ned by the recursive expression 3. In other
words, they demand as much as they can, given that they need to leave to
the other player the utility that corresponds to her certainty equivalent of
the lottery between the previous propositions, xt−1 and yt−1. In the following
corollary, we compare the equilibria as a function of the date T where the
lottery was implemented.

Corollary 1. (Comparison of the equilibria) For every T > 0, there is a

unique subgame perfect equilibrium where the lottery LT between xT and yT

is implemented and the drawn propositions accepted. Comparing the equilibria

as a function of T we have:

• DT = xT − (1− yT ) is decreasing in T .

• The expected equilibrium payo�s of the players, U1(xT )+U1(1−yT )
2 and

U2(yT )+U2(1−xT )
2 respectively are increasing in T .

• For any T ≥ 0, the players' strategies in the equilibrium where the play-

ers make exactly T propositions are weakly dominated by their strategies
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players12

in the equilibrium where they make exactly T +K propositions, for any

K > 0.

Note that the sequences of propositions (xt)t≥0,(yt)t≥0 de�ned recursively
by 3 are in fact the sequences de�ning the Rai�a bargaining process, so that
limt→∞xt = limt→∞(1 − yt) and limt→∞xt and limt→∞yt are the shares
of the pie received by the players in the Rai�a solution (see Rai�a 1952).
Figure 3 shows a geometric representation of the Rai�a solution. In our
bargaining mechanism, some of the equilibria "truncate" the process before it
converges to the Rai�a solution. However, these equilibria are dominated by
the ones where the process continues. In the following corollaries we give some
properties of the equilibria and state their relation to the Rai�a solution.

Remark 1. The game we have described does not have any predetermined

end date. If we imposed such an end date T in the game, the unique subgame

perfect equilibrium would coincide (in terms of propositions and acceptation

strategies) with the equilibrium where the players coordinated themselves on

the end date T .

It follows from Proposition 1 that despite the presence of equilibria where
the proposition process ends before payo�s are close to those of the Rai�a
solution, the strategies used in these are weakly dominated. We summarize
this in what follows.

Corollary 2. For every ε > 0, there is a T̂ such that for every T ≥ T̂ :

||(U1(xT ) + U1(1− yT )
2

,
U2(yT ) + U2(1− xT )

2
)− (e1

R, e2
R)|| ≤ ε (4)

Moreover, the strategies used in any equilibrium whose payo�s are not close to

the Rai�a solution in the sense of (4) are weakly dominated by the strategies

used in any of the equilibria where payo�s verify (4)

Equilibrium re�nement concepts such as iterative dominance solvability
would thus select the equilibria that coincide with the Rai�a solution.

4. Conclusion

In this paper we have suggested a mechanism for resolving bargaining con-
�icts. Without discounting and with complete information two parties with
con�icting interests reach an agreement gradually. A �rst key point to un-
derstand this result is that our mechanism exploits the parties' risk aversion.
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players13

Like with a �nal o�ers arbitration scheme (FOA), our mechanism solves dis-
agreement by means of a lottery between distant proposals. However, con-
trary to the FOA, it is not compulsory. The history of the negotiation process
is recorded and players can refuse an o�er drawn randomly and go back in
the process to a previous step. We showed that at the equilibrium this is
necessary for the players to make step by step concessions and to generate
evolving threat points. Compte and Jehiel (2004) also proposed a bargaining
game in which at the equilibrium status quo points evolve, which depend on
the previous propositions of the players. However, in the setting of Compte
and Jehiel, making generous o�ers would only improve the other players out-
side options, inducing a chilling e�ect. In our mechanism, this is not the case.
In fact, by making concessions, that is, propositions that would be accept-
able to the other player, a player can actually improve his own status quo
outcome, more than the player who makes only unacceptable propositions.
Compte and Jehiel also drew attention to the fact that imposing a deadline
for negotiation would in some cases dramatically alter the players' willing-
ness to make concessions, in such a way that players would choose to opt out
immediately. This problem does not arise in our mechanism. Here players
will begin to make concessions, even if an imposed deadline may prevent
them from reaching full agreement. Consensus is reached gradually and the
�nal o�ers which result in an agreement coincide with a well known static
solution concept, the Rai�a solution. Gradualism and �nal agreement are
salient properties of the consensus equilibrium only if at least one player is
risk averse. If neither player is risk averse, the players' payo�s at equilibrium
still coincide with the payo�s in the Rai�a solution but these payo�s may be
achieved through implementation of the lottery and not by consensus. When
at least one player is risk averse and if they can make as many proposals as
they want, at the consensus equilibrium they never choose to implement the
lottery but gradually move proposals towards each other to reach an agree-
ment. There are also equilibria where agreement is not reached. However,
these seem less likely since they use strategies that are weakly dominated
by those in the consensual equilibrium. While we have studied the mecha-
nism under the assumption that players have perfect information, it should
be noted that the mechanism "arbitrator" does not need to know anything
about the bargaining situation except information that is provided by the
players. Moreover, the mechanism can be implemented in a discreet choice
setting just as well as with a continuous bargaining domain, which is the
setting considered here. From a theoretical point of view, the mechanism we
propose has appealing properties. It is however more complicated than re-
lated ones that have been suggested in the literature on arbitration schemes,
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players14

due to the possibility of rejecting the arbitrator's choice in order to return
to a previous phase in the negotiation. Nevertheless, the behavior at equi-
librium involves a fairly simple strategy which can be summarized as asking
for as much as one can, without making the other player prefer a lottery. It
would be interesting to explore in an experimental setting whether individu-
als would be capable of �nding these strategies. Other interesting extensions
that we have not explored here is to consider the e�ects of a bias in the
lotteries.
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players16

 

1 2 (x1,y1)      1 2       (cont.,cont.)  (x2,y2)         1 2     (cont.,cont.)  (x3,y3) … 

(stop,-)    (-,stop)                             (-,stop)   

        L1          L2 

(d1,d2)   x1        y1          x2   y2 
(1/2)        (1/2)                                 (1/2)        (1/2) 

(x1,1-x1)    (1-y1,y1)      (x2,1-x2) (1-y2,y2)  

Fig 1. The extensive form of the non recursive model

imsart ver. 2006/03/07 file: bargain270608.tex date: July 1, 2008

ha
ls

hs
-0

03
25

69
5,

 v
er

si
on

 1
 - 

30
 S

ep
 2

00
8



Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players17

Fig 2. The extensive form of the recursive model
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Tanimura and Thoron/A mechanism for solving bargaining problems between risk averse players18

1 2 (x1,y1)      1 2      (cont.,cont.)  (x2,y2)         1 2     (cont.,cont.)  (x3,y3) …

          L1       L2

  x1       y1      x2  y2
(1/2)       (1/2)                       (1/2) (1/2)
2    1                 2   1

(x1,1-x1) (d1,d2)      (1-y2,y2) 

(stop,-)   (-,stop)                            (-,stop)

(x1,1-x1) (d1,d2) 

2    1

yes    no               yes    no 

yes       no

  x1           y1 
(1/2)        (1/2) 

L1

(d1,d2)

Fig 3. graphical representation of the Rai�a solution
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