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Abstract

Constant proportion portfolio insurance (CPPI) allows an investor to
limit downside risk while retaining some upside potential by maintain-
ing an exposure to risky assets equal to a constant multiple m > 1 of
the cushion, the difference between the current portfolio value and the
guaranteed amount. In diffusion models with continuous trading, this
strategy has no downside risk, whereas in real markets this risk is non-
negligible and grows with the multiplier value. We study the behavior
of CPPI strategies in models where the price of the underlying portfo-
lio may experience downward jumps. This allows to quantify the “gap
risk” of the portfolio while maintaining the analytical tractability of the
continuous–time framework. We establish a direct relation between the
value of the multiplier m and the risk of the insured portfolio, which al-
lows to choose the multiplier based on the risk tolerance of the investor,
and provide a Fourier transform method for computing the distribution of
losses and various risk measures (VaR, expected loss, probability of loss)
over a given time horizon. The results are applied to a jump-diffusion
model with parameters estimated from market data.

Key words: Portfolio insurance, CPPI, Lévy process, Value at Risk, expected
loss.

MSC Classification (2000) : 60G51, 91B28, 91B30.

1

ha
l-0

01
29

41
3,

 v
er

si
on

 1
 - 

7 
Fe

b 
20

07
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7311058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hal.archives-ouvertes.fr/hal-00129413/fr/
http://hal.archives-ouvertes.fr


Contents

1 Introduction 3

1.1 Constant Proportion Portfolio Insurance . . . . . . . . . . . . . . 3
1.2 Price jumps and “gap risk” . . . . . . . . . . . . . . . . . . . . . 4

2 Model setup 5

3 Measuring gap risk for CPPI strategies 7

3.1 Probability of loss . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Expected loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Loss distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 A jump–diffusion example 10

5 Discussion 14

2

ha
l-0

01
29

41
3,

 v
er

si
on

 1
 - 

7 
Fe

b 
20

07



1 Introduction

The term portfolio insurance refers to portfolio management techniques designed
to guarantee that the portfolio value at maturity or up to maturity will be
greater or equal to a given lower bound (floor), typically fixed as a percentage
of the initial investment. These techniques allow the investor to limit downside
risk while retaining some potential in case of an upside market move which is
however reduced in comparison with the unprotected portfolio (see [8] for a
comparison of cost of different portfolio insurance strategies).

One popular method (option based portfolio insurance — OBPI) [7, 12] is
to combine a position in the risky asset with a (put) option on this asset. In
this paper we are interested in another widely used strategy which, contrary to
OBPI, does not use options and is therefore simpler to implement: the constant
proportion portfolio insurance (CPPI), popularized by Black and Jones [2] and
Perold [3, 13]. This strategy is based on the notion of cushion, that is the differ-
ence between the fund value and the floor. An amount of money proportional
to the cushion is invested into the risky asset —typically an index or a portfolio
of stocks— and the remainder is used to buy riskless bonds. The exposure to
the risky asset is thus gradually reduced when the markets move down and the
portfolio value approaches the floor.

1.1 Constant Proportion Portfolio Insurance

The CPPI strategy is a self-financing strategy whose goal is to guarantee a fixed
amount N of capital at maturity T . To achieve this, at any date t, a fraction
of the portfolio is invested into the risky asset St and the remainder is invested
into zero-coupon bond with maturity T and nominal N , whose price is denoted
by Bt. Denoting the value of the fund by Vt,

• if Vt > Bt, the risky asset exposure (amount of money invested into the
risky asset) is given by mCt ≡ m(Vt −Bt), where Ct is the ’cushion’ and
m > 1 is a constant multiplier.

• if Vt ≤ Bt, the entire portfolio is invested into the zero-coupon.

Assume first that the interest rate r is constant and that the underlying asset
follows the Black-Scholes model

dSt
St

= rdt + σdWt.

Then it is easy to see from the definition of the strategy that the cushion also
satisfies the Black-Scholes SDE

dCt
Ct

= (mµ+ (1 −m)r)dt +mσdWt,

which is solved explicitly by

CT = C0 exp

(

rT +m(µ− r)T +mσWT − m2σ2T

2

)

.
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and hence

VT = N + (V0 −Ne−rT ) exp

(

rT +m(µ− r)T +mσWT − m2σ2T

2

)

(1)

This means that in the Black-Scholes model with continuous trading, the CPPI
strategy is equivalent to taking a long position in a zero-coupon bond with
nominal N to guarantee the capital at maturity and investing the remaining
sum into a (fictitious) risky asset which has m times the excess return and m
times the volatility of S and is perfectly correlated with S.

1.2 Price jumps and “gap risk”

Formula (1) shows that in the Black-Scholes model with continuous trading
there is no risk of going below the floor, regardless of the multiplier value. On
the other hand the expected return of a CPPI-insured portfolio is

E[VT ] = N + (V0 −Ne−rT ) exp(rT +m(µ− r)T ).

We then arrive to a paradoxical conclusion that in the Black-Scholes model,
whenever µ > r, the expected return of a CPPI portfolio can be increased
indefinitely and without risk, by taking a high enough multiplier.

In reality, the possibility of reaching the floor, known as “gap risk”, is widely
recognized by CPPI managers: there is a nonzero probability that, during a
sudden downside move, the fund manager will not have time to readjust the
portfolio, which then goes crashing through the floor. Beyond the (widely doc-
umented) econometric issue of whether jumps occur or not in a given asset’s
price, a fundamental point is one of liquidity of the underlying: many CPPI
strategies are written on funds which may be thinly traded, leading to jumps in
the market price due to liquidity effects.

Since the volatility of Vt is proportional to m, the risk of such loss increases
with m, and in practice, the value of m should be fixed by relating it to an
acceptance threshold for the probability of loss or some other risk measure.

One approach suggested in the literature [1] is to drop the continuous trading
hypothesis and use the large deviations theory to estimate the possible losses
between two consecutive trading dates. However the frequency of trading in-
terventions during a downside market move is hard to predict, making this
parameter difficult to determine.

We study the behavior of CPPI strategies in models where the price of the
underlying portfolio may experience downward jumps. This allows to quantify
in a meaningful manner the “gap risk” of the portfolio while maintaining the
analytical tractability of the continuous–time framework. We establish a direct
relation between the value of the multiplier m and the risk of the insured port-
folio, which allows to choose the multiplier based on the risk tolerance of the
investor, and provide a Fourier transform method for computing the distribu-
tion of losses and various risk measures (VaR, expected loss, probability of loss)
over a given time horizon. The original financial problem (relating the risk to
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the value of the multiplier) is thus easier to solve in a model with jumps than
in the classical Black-Scholes model.

Introducing price jumps to quantify the risk of CPPI strategies is quite
natural. In fact, to hedge against downward jumps, some CPPI managers have
issued “Crash notes”, paying on a quarterly basis a spread above LIBOR under
the condition that the value of the underlying portfolio does not drop by more
than, say, 5%, in which case only a fraction of the notional is refunded to the
holder of the note.

CPPI strategies in presence of jumps in stock prices were also considered in
[14]. With respect to their study, we consider various risk measures for the loss
and provide analytical methods to compute them.

Finally, CPPI strategies are increasingly applied to credit portfolios. Credit
CPPI products, such as BNP Paribas DYNAMO notes issued in 2005, are based
on CPPI-type strategies applied to a portfolio of defaultable bonds or credit
default swaps. In this case the underlying portfolio naturally experiences down-
ward jumps at each default event and the continuity assumption is simply not
tenable.

2 Model setup

We suppose that the price processes for the risky asset S and for the zero-coupon
B may be written as

dSt
St−

= dZt and
dBt
Bt−

= dRt,

where Z and R are semimartingales. As a simple example, one can take Z
a Lévy process and Rt = rT for some constant interest rate r. A less trivial
example of (Bt) is provided by the Vasicek model.

Example 1. The Vasicek model is a one-factor interest rate model where the
short rate rt follows (under the risk-neutral probability) an Ornstein-Uhlenbeck
process:

drt = (α− βrt)dt+ σdWt.

The zero coupon is given by

Bt = B(t, T ) = E[e−
R

T

t
rsds].

It follows that in the Vasicek model the zero-coupon satisfies the stochastic
differential equation

dBt
Bt

= rtdt− σ
1 − e−β(T−t)

β
dWt.

We make the following hypotheses:

• ∆Zt > −1 almost surely.
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• The zero-coupon price process B is continuous.

While the first hypothesis guarantees the positivity of the risky asset price,
the second one allows to focus on the impact of jumps in the underlying asset.
This assumption implies in particular

Bt = B0 exp

(

Rt −
1

2
[R]t

)

> 0 a.s.

Let τ = inf{t : Vt ≤ Bt}. Since the CPPI strategy is self-financing, up to time
τ the portfolio value satisfies

dVt = m(Vt− −Bt)
dSt
St−

+ {Vt− −m(Vt− −Bt)}
dBt
Bt

,

which can be rewritten as

dCt
Ct−

= mdZt + (1 −m)dRt,

where Ct = Vt −Bt denotes the cushion.

Change of numeraire Introducing the discounted cushion C∗
t = Ct

Bt

and
applying Itô formula to this process, we find

dC∗
t

C∗
t−

= m(dZt − d[Z,R]t − dRt + d[R]t), (2)

and from now on we will write

Lt ≡ Zt − [Z,R]t −Rt + [R]t.

Equation (2) can then be rewritten compactly as

C∗
t = C∗

0E(mL)t,

After time τ , according to our definition of the CPPI strategy, the process C∗

remains constant. Therefore, the discounted cushion value for this strategy can
be written explicitly as

C∗
t = C∗

0E(mL)t∧τ ,

or alternatively

Vt
Bt

= 1 +

(

V0

B0
− 1

)

E(mL)t∧τ . (3)

Since the stochastic exponential can become negative, in presence of negative
jumps of sufficient size in the stock price, the capital N at maturity is no longer
guaranteed by this strategy.
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3 Measuring gap risk for CPPI strategies

3.1 Probability of loss

A CPPI-insured portfolio incurs a loss (breaks through the floor) if, for some
t ∈ [0, T ], Vt ≤ Bt. The event Vt ≤ Bt is equivalent to C∗

t ≤ 0 and since R is
continuous and E(X)t = E(X)t−(1 + ∆Xt), C

∗
t ≤ 0 for some t ∈ [0, T ] if and

only if m∆Lt ≤ −1 for some t ∈ [0, T ]. This leads us to the following result:

Proposition 1. Let L be of the form L = Lc + Lj, where Lc is a continuous

process and Lj is an independent Lévy process with Lévy measure ν. Then the

probability of going below the floor is given by

P [∃t ∈ [0, T ] : Vt ≤ Bt] = 1 − exp

(

−T
∫ −1/m

−∞

ν(dx)

)

.

Proof. This result follows from the fact that the number of jumps of the Lévy
process Lj in the interval [0, T ], whose sizes fall in (−∞,−1/m] is a Poisson
random variable with intensity Tν((−∞,−1/m]).

Corollary 1. Assume that S follows an exponential Lévy model of the form

St = S0e
Nt ,

where N is a Lévy process with Lévy measure ν. Then the probability of going

below the floor is given by

P [∃t ∈ [0, T ] : Vt ≤ Bt] = 1 − exp

(

−T
∫ log(1−1/m)

−∞

ν(dx)

)

. (4)

Proof. It follows from proposition 3 that there exists another Lévy process L
satisfying

dSt
St

= dLt.

The Lévy measure of L is given by

ν̃L(A) =

∫

1A(ex − 1)ν(dx).

Applying proposition 1 finishes the proof.

3.2 Expected loss

We now study the distribution of loss of a CPPI-managed portfolio given that
a loss occurs, with the aim of computing its expectation and other functionals
(risk measures).

To obtain some explicit formulae, we assume that the process L appearing
in the stochastic exponential in (3) is a Lévy process, and we denote its Lévy
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measure by ν. We can always write L = L1 + L2 where L2 is a process with
piecewise constant trajectories and jumps satisfying ∆L2

t ≤ −1/m and L1 is
a process with jumps satisfying ∆L1

t > −1/m. In other words, L1 has Lévy
measure ν(dx)1x>−1/m and L2 has Lévy measure ν(dx)1x≤−1/m, no diffusion
component and no drift. Denote by λ∗ := ν((−∞,−1/m]) the jump intensity of
L2, by τ the time of the first jump of L2 (it is an exponential random variable
with intensity λ∗) and by L̃2 = ∆L2

τ the size of the first jump of L2. Let
φt be the characteristic function of the Lévy process log E(mL1)t and ψ(u) =
1
t logφt(u). Finally, we suppose without loss of generality that the discounted
cushion satisfies C∗

0 = 1.
First we compute the expectation of loss given that a loss occurs.

Proposition 2. Assume
∫ ∞

1

xν(dx) <∞.

Then

E[C∗
T |τ ≤ T ] =

λ∗ +m
∫ −1/m

−1 xν(dx)

(1 − e−λ∗T )(ψ(−i) − λ∗)
(e−λ

∗TφT (−i) − 1).

Proof. The discounted cushion satisfies

C∗
T = E(mL1)τ∧T (1 +mL̃21τ≤T ) = E(mL1)T 1τ>T + E(mL1)τ (1 +mL̃2)1τ≤T .

(5)

Since L1 and L2 are Lévy processes, τ , L̃2 and L1 are independent. Since by
[15, Theorem 25.17], and by definition of φt,

E[E(mL1)t] = φt(−i),

we have

E[C∗
T |τ ≤ T ] =

E[1 +mL̃2]

1 − e−λ∗T

∫ T

0

λ∗e−λ
∗tE[E(mL1)t]dt

= (λ∗ +m

∫ −1/m

−1

xν(dx))
1

1 − e−λ∗T

∫ T

0

e−λ
∗tφt(−i)dt.

and the result follows.

Remark 1. Suppose that
∫

R
|x|ν(dx) <∞ and let (σ2, ν, γ) be the characteristic

triplet of L with respect to zero truncation function (general Lévy measures may
be treated along the same lines with a slightly heavier notation). Proposition
3 and the Lévy-Khintchine representation then give the characteristic exponent
of log E(mL)t:

ψ(u) = −m
2σ2u2

2
+ iu

(

mγ − σ2m2

2

)

+

∫

z>−1/m

(eiu log(1+mz) − 1)ν(dz)

ψ(−i) = mγ +m

∫

z>−1/m

zν(dz). (6)
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From equation (5) it follows that the expected gain conditional on the fact
that the floor is not broken satisfies

E[C∗
T |τ > T ] = E[E(mL1)T ] = φT (−i) = exp

{

Tmγ + Tm

∫

z>−1/m

zν(dz)

}

.

Therefore, similarly to the Black-Scholes case, conditional expected gain in an
exponential Lévy model is increasing with the multiplier, provided the underly-
ing Lévy process has a positive expected return.

3.3 Loss distribution

For computing risk measures, we need the distribution function of the loss given
that a loss occurred, that is, we want to compute, for x < 0, the quantity

P [C∗
T < x|τ ≤ T ].

Our approach for computing this conditional distribution function is to express
its characteristic function explicitly in terms of the characteristic exponents of
the Lévy processes involved and recover the distribution function by numerical
Fourier inversion. A similar strategy was used in [4, 11] for pricing European
options. In the theorem below,

φ̃ :=
1

λ∗

∫ −1/m

−∞

eiu log(−1−mx)ν(dx)

denotes the characteristic function of log(−1 −mL̃2).

Theorem 1. Choose a random variable X∗ with characteristic function φ∗,

such that E[|X∗|] <∞ and
|φ∗(u)|
1+|u| ∈ L1. If

|φ̃(u)|
(1 + |u|)|λ∗ − ψ(u)| ∈ L1 (7)

∫

R\[−ε,ε]

| log |1 +mx||ν(dx) <∞ (8)

for sufficiently small ε, then for every x < 0,

P [C∗
T < x|τ ≤ T ] = P [−eX∗

< x]

+
1

2π

∫

R

e−iu log(−x)

(

λ∗φ̃(u)

iu(λ∗ − ψ(u))

1 − e−λ
∗T+ψ(u)T

1 − e−λ∗T
− φ∗(u)

iu

)

du. (9)

Remark 2. The random variableX∗ is needed only to regularize the characteris-
tic function of the loss distribution, since its cumulative distribution function is
not integrable. In practice, X∗ can always be taken equal to a standard normal
random variable.
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Proof. From equation (5) it follows that the characteristic function of log(−C∗
T )

conditionally on the fact that a loss occurs, satisfies

E[eiu log(−C∗

T
)|τ ≤ T ] =

1

1 − e−λ∗T

∫ T

0

λ∗e−λ
∗tE

[

eiu log(−E(mL1)t(1+mL̃
2))
]

dt

=
1

1 − e−λ∗T

∫ T

0

λ∗e−λ
∗tetψ(u)φ̃(u)dt

=
φ̃(u)(1 − e−λ

∗T+ψ(u)T )

(λ∗ − ψ(u)(1 − e−λ∗T )
.

The integral in (9) converges at u → ∞ due to the theorem’s conditions and
the fact that

∣

∣

∣

∣

1 − e−λ
∗T+ψ(u)T

1 − e−λ∗T

∣

∣

∣

∣

<
1 + e−λ

∗T

1 − e−λ∗T
,

On the other hand, condition (8) is equivalent to

E[| log(−1 −mL̃2)|] <∞
E[| log E(mL1)T |] <∞,

and together with the hypotheses E[‖X∗‖] < ∞, this proves that φ(u) = 1 +
O(u), φ̃(u) = 1 + O(u) and φ∗(u) = 1 + O(u) as u → 0, and therefore the
integrand in (9) is bounded and therefore integrable in the neighborhood of
zero. The proof is completed by applying Lemma 1.

4 A jump–diffusion example

Let us now illustrate the results of section 3 in the case of Kou’s jump diffusion
model [10] with parameters estimated from daily returns of a stock and a market
index.

Presentation of the model and parameter estimation The Kou model
is an exponential Lévy model where the driving Lévy process has a non-zero
Gaussian component and a Lévy density of the form

ν(x) =
λ(1 − p)

η+
e−x/η+1x>0 +

λp

η−
e−|x|/η−1x<0. (10)

Here, λ is the total intensity of positive and negative jumps, p is the probabil-
ity that a given jump is negative and η− and η+ are characteristic lengths of
respectively negative and positive jumps.

To estimate the model from market data, we use the empirical charac-
teristic function as suggested in [16, 17]: we find the parameter vector θ =
(b, σ, λ, p, η+, η−) by minimizing

∫ K

−K

|ψθ(u) − ψ̂(u)|2w(u)du.
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Series µ σ λ p η+ η−
MSFT −0.11 0.257 83.5 0.34 0.0209 0.0262
GM −0.518 0.271 76.9 0.243 0.0166 0.0240

Table 1: Kou model parameters estimated from MSFT and GM time series.

where

ψ̂(u) =
1

t
log

1

N

N
∑

k=1

eiuXi

is the empirical characteristic exponent,

ψθ(u) = −σ
2u2

2
+ iγu+

λp

1 + iuη−
+
λ(1 − p)

1 − iuη+
− λ

is the characteristic exponent of the Kou model and

w(u) =
1

1 + αu2

is the weight function used to attribute more weights to low frequencies and
thus to the tails of the distribution. The tuning parameter values were fixed to
α = 0.01 and K = 50 based on tests with simulated data.

The parameters of Kou’s jump diffusion model were estimated for daily time
series of the General Motors Corporation (GM) and of the Microsoft Corpora-
tion (MSFT) share prices. We used 10 years of data, from December 1st 1996 to
December 1st 2006, making a total of 2500 data points for each series. The es-
timated parameter values are shown in table 1. Figure 1 shows that Kou model
fits the smoothed returns density quite well, in particular, the exponential tail
decay seems to be a realistic assumption.

Loss probability Assuming the (discounted) risky asset price process follows
the Kou exponential Lévy model, equation (4) for loss probability yields

P [∃t ∈ [0, T ] : Vt ≤ Bt] = 1 − exp
(

−Tpλ (1 − 1/m)
1/η−

)

.

Figure 2 shows the dependence of the loss probability on the multiplier for a
CPPI portfolios containing MSFT and GM stocks as risky assets. Although
Microsoft is slightly riskier, the loss probabilities for the two stocks are quite
similar. A 5% loss probability over 5 years corresponds to a multiplier value of
about 5.5 for Microsoft and 6 for General Motors.

Expected loss Once again, suppose that the discounted risky asset

S∗
t = E(L)t

follows the Kou exponential Lévy model

S∗
t = S∗

0e
Nt ,
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Figure 1: Logarithm of the density for MSFT time series. Solid line: kernel
density estimator. Dashed line: Kou model with parameters estimated via
empirical characteristic function.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

General Motors

Microsoft

Figure 2: Probability of loss as a function of the multiplier.
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where N is a Lévy process with volatility σ, drift b and Lévy density ν of
the form (10). For convenience of notation we write λ± = 1/η±; c− = pλ;
c+ = (1 − p)λ.

We suppose λ+ > 1. Proposition 3 implies that L is a Lévy process with

volatility σ, drift b + σ2

2 and Lévy density

νL(x) = λ+c+(1 + x)−1−λ+1x>0 + λ−c−(1 + x)−1+λ−1−1<x<0.

Splitting this Lévy density in two parts, we find on one hand

λ∗ = c−(1 − 1/m)λ− ,

1 +
m

λ∗

∫ −1/m

−1

xνL(dx) = − m− 1

λ− + 1
,

and on the other hand, from (6), the characteristic exponent of the Lévy process
log E(mL1)t at the point −i is

ψ(−i) = m(b + σ2/2) +
c+m

λ+ − 1
− c−m

λ− + 1

− c−λ−m (1 − 1/m)λ−+1

λ− + 1
+ c−m (1 − 1/m)

λ− .

Finally, assembling the two factors we get the expected loss:

E[C∗
T |τ ≤ T ] = − (m− 1)(1 − e−λ

∗T+ψ(−i)T )λ∗

(λ− + 1)(1 − e−λ∗T )(λ∗ − ψ(−i)) .

Figure 4 shows the dependence of the conditional (on the fact that a loss
occurs) and the unconditional expected loss of a CPPI portfolio with MSFT
and GM stocks as risky assets for a time horizon of T = 3 years. While the
loss probability for the two CPPI funds is roughly the same, the MSFT-based
fund has a much bigger expected loss, almost matching the initial investment
for m = 5. This happens because the MSFT stock has a bigger expected return
(about 30% per year compared to around zero for GM). Before the loss-making
jump, the MSFT-based fund will have a better performance, leading to a bigger
proportion of risky asset in the portfolio and therefore a bigger loss after a large
negative jump. Of course, not only the expected loss but also the expected gain
of the MSFT-based portfolio will be much bigger than that of GM-based one.

Loss distribution In the case of a general Kou’s model, the integrand in (9)
must be evaluated numerically. Therefore, for illustration purposes we consider
here a particular case of Kou model with p = 1 (only negative jumps) and
η− = 1. This amounts to saying that

Lt = µt+ σWt +

Nt
∑

i=1

Yi,
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Figure 3: Expected loss over T = 3 years as a function of the multiplier, for
nominal N = 1000$ and r = 0.04. Left: MSFT; Right: GM.

whereN is a Poisson process with intensity λ and {Yi} are independent uniforms
on [−1, 0]. That is, we suppose that during a crash the jump size distribution
is uniform on [−1, 0]. It is easy to check that the condition (8) is satisfied.
This model can describe, for example, a defaultable asset with random recovery
on the interval [0, 1] in case of default. In this case, λ∗ = λ(1 − 1/m) and
L̃2 ∼ U([−1,−1/m]). An easy computation then shows that

φ̃(u) = E[eiuL̃
2

] =
(m− 1)iu

1 + iu
,

hence, condition (7) is also satisfied. On the other hand,

log E(mL1)t = m(µ− r)t +mσWt +

Nt
∑

i=1

log(1 +m∆L1
t ),

and therefore

ψ(u) = iu

{

m(µ− r) − m2σ2

2

}

− u2m2σ2

2
− λ

m

iu

1 + iu
.

We see that the expression under the integral in (9) is explicit and only the final
integration must be done numerically.

Figure 4 shows the (unconditional) distribution of losses in this example,
with data µ = 0.1, σ = 0.2, r = 0.03, λ = 1/3. The initial capital was
N = 1000$, the time horizon T = 2 years and the multiplier m = 2. The 5%
probability corresponds approximately to a loss size of 62$ (this is the 5% VaR).

5 Discussion

We have proposed a simple framework for studying the “gap risk” of CPPI
strategies, caused by downward jumps in the value of the underlying portfolio.
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Figure 4: Probability of loss of a given size as a function of loss size (distribution
function of losses).

Our study shows that jump risk is not only significant for CPPI strategies but
also leads to a criterion for adjusting the multiplier based on the investor’s
risk aversion. Our framework leads to analytically tractable expressions for the
probability of hitting the floor, the expected loss and the distribution of losses.

We have illustrated these computations in the case of a jump-diffusion model,
with parameters estimated on daily stock returns. While these data reveal
a relatively low level of jump risk, they are not necessarily the ones to use
from a risk management perspective: for a CPPI strategy, the choice of jump
parameters can be used to design a stress test of the strategy and the values of
jump parameters can be determined with this interpretation in mind.

A natural question is to compute the cost of hedging this gap risk. As
mentioned earlier, this is sometimes done by using “crash notes”. The values
of spreads paid for such notes (typically 100 bps above LIBOR for many CPPI
funds) can also be used as an indicator of “risk–neutral” jump parameters which
can be used for pricing the gap risk.

Another interesting extension is to consider, in the present framework, the
valuation of options on CPPI funds: such options are currently traded in the
markets. In this case, we are dealing with options on an underlying whose price
can experience jumps: since jump risk will play an important role for the CPPI
fund, our previous study [6] suggest that delta-hedging may not be the best
choice and other hedging strategies can be more efficient.

We hope to address these issues in a forthcoming work.
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Appendix A

In this appendix, we recall two results from stochastic calculus. Details and
proofs may be found in [5, Chapter 9] or [9].

Let X be a semimartingale. Then the stochastic differential equation

dYt
Yt−

= dXt, Y0 = 1,

has a unique strong solution called stochastic or Doléans-Dade exponential of
X , denoted by E(X)t and written explicitly as

E(X)t = X0e
Xt−

1
2
[X]c

t

∏

s≤t,∆Xs 6=0

(1 + ∆Xs)e
−∆Zs .

Let us now recall a result linking the ordinary and stochastic exponentials
of a Lévy process:

Proposition 3. 1. Let (X)t≥0 be a real valued Lévy process with Lévy triplet

(σ2, ν, γ) and Z = E(X) its stochastic exponential. If Z > 0 a.s. then there

exists another Lévy process (Lt)t≥0 such that Zt = eLt where

Lt = lnZt = Xt −
σ2t

2
+
∑

0≤s≤t

{

ln(1 + ∆Xs) − ∆Xs

}

.

Its Lévy triplet (σ2
L, νL, γL) is given by:

σL = σ,

νL(A) = ν({x : ln(1 + x) ∈ A}) =

∫

1A(ln(1 + x))ν(dx),

γL = γ − σ2

2
+

∫

ν(dx)
{

ln(1 + x)1[−1,1](ln(1 + x)) − x1[−1,1](x)
}

.

2. Let (L)t≥0 be a real valued Lévy process with Lévy triplet (σ2
L, νL, γL) and

St = expLt its exponential. Then there exists a Lévy process (X)t≥0 such

that St is the stochastic exponential of X: S = E(X) where

Xt = Lt +
σ2t

2
+
∑

0≤s≤t

{

1 + ∆Ls − e∆Ls

}

.

The Lévy triplet (σ2, ν, γ) of X is given by:

σ = σL,

ν(A) = νL({x : ex − 1 ∈ A}) =

∫

1A(ex − 1)νL(dx),

γ = γL +
σ2
L

2
+

∫

νL(dx)
{

(ex − 1)1[−1,1](e
x − 1) − x1[−1,1](x)

}

.

16

ha
l-0

01
29

41
3,

 v
er

si
on

 1
 - 

7 
Fe

b 
20

07



Appendix B

Lemma 1. Let X1 and X2 be random variables with E[|Xi|] <∞, i = 1, 2, and

denote, by Fi the distribution function of Xi, e.g. Fi(x) = P [Xi ≤ x], and by

φi the characteristic function of Xi. Then

∫

R

eiux(F1(x) − F2(x))dx =
φ2(u) − φ1(u)

iu
, u 6= 0. (11)

In addition, if
∫

R

|φi(u)|
1 + |u|du <∞, i = 1, 2

then

F1(x) − F2(x) =
1

2π

∫

R

e−iux
φ2(u) − φ1(u)

iu
du, all x.

Proof. First part. Denoting by pi the laws of Xi, i = 1, 2, we have

∫

R

eiux(F1(x) − F2(x))dx

=

∫

R

dxeiux
∫

R

dz{1x<01z≤x − 1x≥01z>x}(p1(dz) − p2(dz)). (12)

From the integrability of Xi, it follows that

∫ 0

−∞

Fi(x)dx <∞ and

∫ ∞

0

(1 − Fi(x))dx <∞, i = 1, 2.

Therefore, we can use the Fubini theorem to interchange the integrals in (12),
which produces

∫

R

eiux(F1(x) − F2(x))dx

=

∫

R

dz(p1(dz) − p2(dz))

{

1z≤0
1 − eiuz

iu
− 1z≥0

eiuz − 1

iu

}

=
φ2(u) − φ1(u)

iu

for every u 6= 0.
Second part. Without loss of generality, suppose that F2 is continuous,

because otherwise we could introduce a continuous CDF F3 and decompose
F1 − F2 = F1 − F3 + (F3 − F2). Multiplying both sides of (11) by

1

σ
√

2π
e−

u
2

2σ2 e−iut

and integrating with respect to u, we get

1

2π

∫

R

e−
u
2

2σ2 e−iut
φ2(u) − φ1(u)

iu
du =

σ√
2π

∫

e−
σ
2

2
(x−t)2(F1(x) − F2(x))dx.
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When σ → ∞, the right-hand side converges to F1(t) − F2(t) in all continuity
points of F1. By the hypothesis E[|Xi|] <∞, i = 1, 2, φi(u) = 1+O(u), i = 1, 2,
φ2(u)−φ1(u)

iu is integrable near zero. Since it is also integrable at infinity by the
lemma’s condition, the left-hand side converges to

1

2π

∫

R

e−iut
φ2(u) − φ1(u)

iu
du

for every t, as σ → ∞, and the proof is completed.
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