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Résumé: Les jeux d'arrêt sont des jeux séquentiels où, à chaque étape, chacun des
joueurs peut décider d'arrêter ou de continuer. Le jeu s'arrête dès lors que l'un
au moins des joueurs décide de s'arrêter. Le paiement reçu alors par les
joueurs dépend de l'ensemble des joueurs qui ont  choisi de s'arrêter à cette
date. Si le jeu ne s'arrête jamais, le paiement est nul.
Nous étudions un jeu à quatre joueurs. Dans ce jeu, les équilibres les plus
simples sont périodiques de période deux. Par ailleurs, nous utilisons des
outils géométriques pour montrer que les techniques utilisées pour les jeux à
trois joueurs ne peuvent être adaptées au cas général.

Abstract: Quitting games are I-player sequential games in which, at any stage, each
player has the choice between continuing and quitting. The game ends as soon
as at least one player chooses to quit; player i then receives a payoff, which
depends on the set of players that did choose to quit. If the game never ends,
the payoff to each player is zero.
We study a four-player game, where the simplest equilibrium profile is cyclic
with period two. We also use geometrical arguments to show why techniques
that work for 3-player games cannot be applied in general.

Mots clés : Jeux d'arrêt, Jeux stochastiques, Equilibre

Key Words : Quitting games, Stochastic Games, Equilibrium

Classification AMS: 91A15, 91A55, 91A06

                                                            
1 MEDS Department, Kellogg School of Management, Northwestern University, and the School of Mathematical
Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
e-mail: eilons@post.tau.ac.il
2 Ecole Polytechnique and Département Finance et Economie, HEC, 78 351 Jouy-en-Josas, France.
e-mail: vieille@hec.fr

ha
l-0

02
42

99
5,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



1 Introduction

Quitting games are I-player sequential games in which, at any stage, each
player has the choice between continuing and quitting. We denote the two
actions of player i by {qi, ci}. The game ends as soon as at least one player
chooses to quit; player i then receives a payoff riS, which depends on the set
S of players that did choose to quit. If the game never ends, the payoff to
each player is 0.
In such a game, a strategy of player i is a sequence xi = (xin)n≥0, where

xin is the probability that player i continues at stage n, provided the game
has not terminated before. Such a strategy is stationary if xin is independent
of i. We denote by ain the action played by player i at stage n, and denote by
t = inf {n ≥ 1, ain = qi for some playeri ∈ I} the stage in which the game
terminates, and by St the set of players that choose to quit at that stage.
Given a proÞle x of strategies, the expected payoff to player i is

γi(x) = Ex

£
riSt1t<+∞

¤
,

where Ex stands for the expectation with respect to the probability distri-
bution induced by x over the set of plays.
It is not known whether quitting games have ε-equilibrium. Quitting

games therefore form an intriguing class of stochastic games. We recall brießy
existing results before presenting the contribution of this note.
In the case of two players, stationary ε-equilibria do exist. A three-

player example was devised by Flesch, Thuijsman and Vrieze (1997), where
ε-equilibrium strategies are more complex - they have a cyclic structure,
and the length of the cycle is at least 3. However, in this example, there
are equilibrium payoffs in the convex hull of the vectors r{i} ∈ RI , i ∈ I.
These payoffs can be obtained using a proÞle x that plays in any stage a
perturbation of (ci)i∈I . Therefore, it left open the possibility of Þnding ε-
equilibrium proÞles, by means of analyzing the limit behavior of stationary
equilibria of discounted games, letting the discount factor go to zero. Indeed,
such an analysis was provided by Solan (1999), for the more general class
of three-player games with absorbing states. These results are discussed in
Section 2.
The purpose of this note is twofold. First, we explain why the techniques

that work for 4-player games fail in general. Second, we provide a 4-player
example, where all the ε-equilibrium payoffs involve some kind of cyclic be-
havior, in which the probability of quitting in any stage is bounded away
from zero. The main consequence is that all the known tools for proving
the existence of equilibrium payoffs in stochastic games (see, e.g., Tuijsman
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and Vrieze (1989), Solan (2000), Vieille (2000a,2000b)) seem likely to fail to
yield any result in general I-player quitting games. In a companion paper
(Solan and Vieille (2001)) we introduced new tools and provided sufficient
conditions under which quitting games admit an equilibrium payoffs.

2 Two- and three-player quitting games

The purpose of this section is to discuss the case where the number of players
does not exceed 3. We shall hint that such games always have ε-equilibria of
a simple form.
We Þrst introduce a few notations. Given a proÞle x, and a stage n ∈ N ,

we denote by xn = (xn, xn+1, ...) the proÞle induced by x in the subgame
starting from stage n. We let c denote the proÞle of actions (ci), and by ci

the pure stationary strategy that plays repeatedly ci. When convenient, we
shall not distinguish between a stationary strategy xi = (xi, ..., xi) and the
probability xi ∈ [0, 1].

2.1 Two-player quitting games

For notational convenience, we represent a two-player quitting game as

c2 q2

c1 (b1, b2)
q1 (a1, a2) (d1, d2)

If there is a pure stationary equilibrium we are done. Otherwise either
a1 > 0 or b2 > 0 (otherwise (c1, c2) is an equilibrium). Assume w.l.o.g. that
a1 > 0. Then a2 < d2, which implies that d1 < b1, which implies that b2 < 0.
If a2 ≥ b2 then the stationary strategy (x1, c2) is an ε-equilibrium, where

x1n = (1− η)ci + ηqi, and η ∈ (0, 1) is sufficiently small.
Of a2 < b2 then the stationary strategy (x1,q2) is an ε-equilibrium, where

x1 is deÞned as above.

Therefore, two-player quitting games always have stationary ε-equilibrium.
Note that equilibria need not exist, as e.g. in the zero-sum game

c2 q2

c1 (1,−1)
q1 (1,−1) (0, 0)

3
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2.2 Three-player quitting games

Flesch et al. (1997) exhibited a three-player quitting game with no stationary
ε-equilibrium. Solan (1999) proved the existence of ε-equilibria for the more
general class of three-player absorbing games. When specialized to quitting
games, Solan�s proof yields a proÞle x = (xn)n∈N that is either stationary or
such that kxn − ck < ε for each n ∈ N. The proof is based on a vanishing
discounting argument.
We offer here a geometric argument that is speciÞc to the case of quitting

games, in the hope of providing a better understanding of why the general-
ization to more-than-three-player games does not hold. However, it is not
our intention to provide a detailed proof. In particular, we shall only deal
with the case where ri{i} > 0 for each i ∈ N . The discussion of the other
cases is somewhat similar.
We normalize the payoffs to have ri{i} = 1 for each i. We organize the

discussion according to the conÞguration of payoffs. The different cases are
exhaustive, but not mutually exclusive. All strategies are stationary unless
explicitly speciÞed.

For every ε ∈ (0, 1] deÞne Tε = {x ∈ [0, 1]3 |
P3

i=1 x
i = ε, and ∆ε = {x ∈

[0, 1]3 | P3
i=1 x

i ≥ ε.
Case 0: There exists ε ∈ (0, 1) such that for every proÞle x ∈ Tε there is

at least one player i whose unique best reply to x is qi.

We prove that the game has a stationary equilibrium. The proof is based
on a standard Þxed-point argument, applied to the best-replies of a con-
strained game.
For every x ∈ Tε let Ix ⊆ I be the set of players i such that γi(x−i, qi)−

γi(x) > 0. The assumption tells us that Ix is not empty for every x ∈
Tε. Since γi(x) and γi(x−i, qi) are continuous over the compact set Tε, ρ =
minx∈Tε maxi∈Ix {γi(x−i, qi)− γi(x)} > 0.
It follows that there is ε1 > ε such that for every x ∈ Tε1 there is a

player i such that γi(x−i, qi) − γi(x) > ρ/2. DeÞne a continuous function
f : ∆ε → ∆ε by

f i(x) =

½
xi + (ε1 − ε)(γi(x−i, qi)− γi(x)) γi(x−i, qi) ≥ γi(x)
xi + ρ

2
(ε1 − ε)(γi(x−i, qi)− γi(x)) γi(x−i, qi) < γi(x).

Since f is continuous, it has a Þxed point in ∆ε, which is a stationary equi-
librium.

Case 1: r2{1}, r
3
{1} ≥ 1.

4
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In that case, both players 2 and 3 are at worst indifferent between quitting
alone or waiting for player 1 to quit. The stationary proÞle ((1 − η)c1 +
ηq1, c2, c3) is an ε-equilibrium, provided η is sufficiently small.
This analysis remains valid when the roles of the players are permuted.

Case 2 : There is no convex combination α1r{1}+α2r{2}+α3r{3} of the
three vectors (r{1}, r{2}, r{3}) such that α1r{1} + α2r{2} + α3r{3} ≥ (1, 1, 1).

By continuity, there is ρ > 0 such that in every convex combination of
r{1}, r{2} and r{3}, at least one player receives at most 1− ρ. It follows that
for ε > 0 sufficiently small, the assumption of Case 0 holds. In particular,
there is a stationary equilibrium.

Case 3 : r1{2}, r
1
{3} < 1.

One can easily verify that the assumption of Case 1 or Case 2 is satisÞed.

Case 4: There is a convex combination α1r{1} + α2r{2} + α3r{3} of the
three vectors (r{1}, r{2}, r{3}) such that α1r{1} + α2r{2} + α3r{3} = (1, 1, 1).

The stationary proÞle ((1 − ηα1)c1 + ηα1q1, (1 − ηα2)c2 + ηα2q2, (1 −
ηα3)c

3 + ηα3q
3) is an ε-equilibrium, provided η is sufficiently small.

We next introduce a convenient notational convention. For i 6= j, we shall
write ri{j} = �+

0 if ri{j} ≥ 1 and ri{j} = �−0 if ri{j} < 1. If none of the assump-
tions of Case 1 andCase 3 are satisÞed, the triple (r{1}, r{2}, r{3}) ∈ R9 is ei-
ther of the form ((1,+,−), (−, 1,+), (+,−, 1)) or ((1,−,+), (+, 1,−), (−,+, 1)).
Each of these two situations is reducible to the other by permuting two play-
ers. We will proceed under the assumption that

(r{1}, r{2}, r{3}) is of the form ((1,+,−), (−, 1,+), (+,−, 1)).

Case 5: There is a convex combination α1r{1} + α2r{2} + α3r{3} of the
three vectors (r{1}, r{2}, r{3}) such that α1r{1} + α2r{2} + α3r{3} ≥ (1, 1, 1).
The set of such (α1,α2,α3) is the intersection of three hyperplanes, each

involves two constraints, hence it is either a singleton or a triangle. If it is a
singleton the assumption of Case 4 is satisÞed.
We proceed with the case where the set is a triangle. The vertices are

labelled A,B,C in such a way that players 1 and 3 (resp. 1 and 2, 2 and
3) get a payoff equal to one under the convex combination A = (αA1 ,α

A
2 ,α

A
3 )

(resp. B,C) (see the Þgure).

5
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Figure 1

We next write A (resp. B, C) as a convex combination of (1, 0, 0) and B
(resp. of (0, 1, 0) and C, of (0, 0, 1) and A):

A = β1(1, 0, 0) + (1− β1)B
B = β2(0, 1, 0) + (1− β2)C
C = β3(0, 0, 1) + (1− β3)A.

Fix M ∈ N, large enough. DeÞne a non-stationary proÞle σ as follows.
Players 1, 2 and 3 (in that order) alternate indeÞnitely as follows. During
M stages, player i quits with probability βi

M
(while the other two players

continue). Depending on who starts Þrst, the payoff induced by σ is close to
the payoff associated with the convex combination A, B or C respectively.
Moreover, the proÞle σ is an ε-equilibrium of the quitting game.

Therefore, for three-player quitting games, there always exists a station-
ary ε-equilibrium or an ε-equilibrium x = (xn)n∈N, such that kxn − ck < ε
for each n.

6
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2.3 Discussion

This geometric construction may help to understand why in general there
need not be neither a stationary ε-equilibrium nor an equilibrium payoff in
the convex hull of {r{i}}i∈I . Assume for simplicity that ri{i} = 1 for each
player i.
Consider for a moment a 3-player game. From each point u ∈ [1,∞)3,

and every i such that ui = 1, draw a small arrow in the direction u−r{i} (the
number of arrows from each u can be 0,1,2 or 3). If there is a Þxed point u
(that is, u = r{i} for some player i), then there is a stationary ε-equilibrium,
that corresponds to Case 1 above. If the arrows form a closed path, then
there is a cyclic equilibrium, that corresponds to Case 5 above.
In general, for every vector u ∈ [1,∞)I , let Iu = {i ∈ I | ui = 1}, and

Vu =

(
v =

X
i∈Iu

αir{i},αi ≥ 0,
X
i∈Iu

αi = 1,αi > 0⇒ vi = 1

)
,

be all vectors in the convex hull co(r{i}, i ∈ Iu) such that each player that
takes part in the convex combination receives 1. For every u ∈ [1,∞)3 draw
small arrows in direction u − v, for every v ∈ Vu. Any Þxed point (that
is, if u ∈ Vu), correspond to a stationary ε-equilibrium. Any closed path
that is formed by the arrows corresponds to a cyclic ε-equilibrium. More
generally, if there is an open path of inÞnite length then there is a non-cyclic
ε-equilibrium. Moreover, if there is an equilibrium payoff in the convex hull
of {r{i}}i∈I , then there is either a Þxed point, a closed path, or an open path
with length inÞnity.
Alas, as the next example shows, there are 4-player games in which there

are no Þxed points, and all paths are open and have Þnite length.

3 The Example
We will study the following four player quitting game:

7
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1

1

1

1

22

3

4

1, 4, 0, 0

continue

1, 1, 1, 1

4, 1, 0, 0

1, 0, 1, 1

0, 0, 4, 1

0, 1, 0, 0

1, 1, 0, 1

1, 1, 1, 0

0, 0, 1, 4

1, 0, 0, 0

0, 1, 1, 1

0, 0, 0, 1

1, 1, 1, 1

−1,−1,−1,−1
0, 0, 1, 0

Figure 2

In this game player 1 chooses a row (top row = continue), player 2 chooses
a column (left column = continue), player 3 chooses either the top two ma-
trices or the bottom two matrices, (top two matrices = continue) and player
4 chooses either the left two matrices or the right two matrices (left two
matrices = continue).
Note that there are the following symmetries in the payoff function: for

every 4-tuple of actions (a, b, c, d) we have:

v1(a, b, c, d) = v2(b, a, d, c),

v1(a, b, c, d) = v4(c, d, b, a) and

v2(a, b, c, d) = v3(c, d, b, a),

where vi(a, b, c, d) is the payoff to i if the action combination is (a, b, c, d)
(vi(c1, c2, c3, c4) = 0).
In section 3.1 we prove that this game admits an equilibrium proÞle y

that has the following structure:

yn =

½
(x, 1, z, 1) n odd
(1, x, 1, z) n even

where x, z ∈]0, 1[ are independent of n; that is, at odd stages players 2 and 4
continue, while 1 and 3 quit with positive probability, whereas at even stages
1 and 3 continue, while 2 and 4 quit with positive probability.
Thus, the game admits a cyclic equilibrium with period 2.
We then prove the following:

Proposition 1 The game does not admit a stationary equilibrium.

Proposition 2 For ε small enough, the game does not admit an ε-equilibrium
x such that ||xn − c|| < ε for every n.

8
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It follows from Propositions 1 and 2 that the game does not admit a
stationary ε-equilibrium, provided ε is small enough. Indeed, let us argue
by contradiction, and assume that for every ε there exists a stationary ε-
equilibrium xε. Let x? be an accumulation point of {xε} as ε → 0. If x? is
terminating (x∗ 6= c) then it is a stationary 0-equilibrium, which is ruled out
by Proposition 1. Otherwise, x? = c, and then, for ε sufficiently small, there
is an ε-equilibrium x where k xn − c k< ε, which is ruled out by Proposition
2.
Proposition 1 is proved in section 3.2, while Proposition 2 is proved in

section 3.3.

3.1 Cyclic equilibrium

We prove that the game possesses a cyclic equilibrium, where the length of
the cycle is 2. At odd stages players 2 and 4 play c2 and c4 respectively, and
players 1 and 3 continue with probability x and z respectively, both strictly
less than 1. At even stages players 1 and 3 play c1 and c3 respectively, and
players 2 and 4 continue with probability z and x respectively.
Formally, we study now proÞles y that satisfy:

yn =

½
(x, 1, z, 1) n odd
(1, z, 1, x) n even

where x, z ∈]0, 1[ are independent of n.
The one-shot game played by players 1 and 3 at odd stages is

1

3

1− x
x

z 1− z

1, 0

γ1c , γ
3
c

1,1

0,1

Figure 3: The game of players 1 and 3 at odd stages

In this game player 1 is the row player, player 3 is the column player, and γic
is the continuation payoff of player i = 1, 3. The payoffs received by players 2
and 4 if termination occurs in an odd stage are given by the matrix below, in
which the Þrst coordinate of each entry is player 2�s payoff, and the second
coordinate is player 4�s payoff.

0, 4
4, 0 1, 0

(1)

9

ha
l-0

02
42

99
5,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



The one-shot game played by players 2 and 4 at even stages is

2

4

1− z
z

x 1− x

1, 0

γ2c , γ
4
c

1,1

0,1

Figure 4: The game of players 2 and 4 at even stages

where player 2 is the row player, player 4 is the column player, and the
payoffs that are received by players 1 and 3 if termination occurs are given
by matrix (1). The two situations are identical (up to the continuation pay-
offs).
We now Þnd necessary conditions on (x, z). First, (x, z) is a fully mixed

equilibrium of the matrix game in Figure (3), so that

xγ3c = 1 and zγ
1
c = 1, (2)

and both players 1 and 3 receive 1 in this equilibrium.
By the symmetry of the proÞle, the continuation payoffs (resp. initial

payoffs) of players 4 and 2 must coincide with the initial payoffs (resp. con-
tinuation payoffs) of players 1 and 3. That is, (γ3c , γ

1
c ) is the payoff received

in the matrix game (1), when the empty entry is Þlled with (1, 1) and the
row and column players play according to x and z respectively, so that½

γ3c = xz + 4z(1− x) + (1− x)(1− z)
γ1c = xz + 4x(1− z)

Using (??), the second equation implies that x = 1
z(4−3z) , and therefore the

Þrst equation translates to z(4− 3z) = 1 + 3z − 1+2z
z(4−3z) , or

z(1− z + 3z2)(4− 3z) = 1 + 2z.
Call f(z) the polynomial in the left hand side, and g(z) the one on the right
hand side. Then f(0) = 0 < 1 = g(0), f(1) = 3 = g(1), and f 0(1) = −1 <
2 = g0(1). In particular, there exists z ∈ (0, 1) such that f(z) = g(z), hence
a cyclic equilibrium exists.

3.2 No Stationary Equilibria

We check here that the game has no stationary equilibrium. We organize the
discussion according to the number of players who play both actions with
positive probability.

10
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It is immediate to check that there is no stationary equilibrium in which
at least three players play pure strategies.

We shall now verify that there is no stationary equilibrium where two
players play pure stationary strategies. Using the symmetries in the payoff
function, it is enough to consider the cases where either player 3 and 4 play
pure strategies, or players 2 and 4 play pure strategies.
Assume Þrst that there is an equilibrium in which players 3 and 4 play

pure stationary strategies. The strategies of players 1 and 2 form then an
equilibrium of a 2 × 2 game. We will see that these two-player games have
only pure equilibria. The four-player game would thus have an equilibrium
in pure stationary strategies - a contradiction. In the Þrst three cases, the
induced game is equivalent to a one-shot game. In the last case, it is a
quitting game.
Case 1: Players 3 and 4 play (q3, q4): the unique equilibrium in the induced
game is (c1, c2).
Case 2: Players 3 and 4 play (c3, q4): the unique equilibrium is (c1, q2).
Case 3: Players 3 and 4 play (q3, c4)� symmetric to case 2.
Case 4: Players 3 and 4 play (c3, c4): the unique equilibria are (q1, c2) and
(c1, q2).
We shall now see that there is no stationary equilibrium where players 2

and 4 play pure actions, by analyzing the induced game between players 1
and 3.
Case 1: Players 2 and 4 play (c2, c4): the induced game has a unique equi-
librium (q1, q3).
Case 2: Players 2 and 4 play (q2, c4): the unique equilibrium in the induced
game is (1

2
c1 + 1

2
q1, 1

4
c3 + 3

4
q3). Player 2 would receive 5

8
, but he would get 1

by playing c2.
Case 3: Players 2 and 4 play (c2, q4): the unique equilibrium is (q1, c3).
Case 4: Players 2 and 4 play (q2, q4): the unique equilibrium is (c1, q3).

Next, we check that there is no stationary equilibrium where one player,
say player 4, plays a pure strategy, and all the other players play a fully mixed
strategy. We denote by (x, y, z) the fully mixed stationary equilibrium in the
three-player game when player 4 plays some pure stationary strategy.
Assume Þrst that player 4 plays q4. Then, in order to have player 2

indifferent, we should have

x(1− z) = z − (1− x)(1− z)

which implies that z = 1/2. In order to have player 1 indifferent, we should

11
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have

(1− y)z + y(1− z) = yz − (1− y)(1− z)
which solves to yz = 1/2, and therefore y = 1, which is pure.
Assume now that player 4 plays c4. First we note that x < 1/2, otherwise

player 3 prefers to play q3 over c3. Next, if player 2 is indifferent between his
actions, then

(1− x)(1 + 3z)
1− xz = x+ (1− x)z

or equivalently,

(1− x)(1 + 2z + xz2) = (1− xz)x.
Since x < 1/2, it follows that 1− x > x. Therefore it follows that

1 + 2z + xz2 < 1− xz
which is clearly false.

3.2.1 No fully mixed stationary equilibrium

We prove now that there is no fully mixed stationary equilibrium. We start
by a few notations. Let (x, y, z, t) be a supposed fully mixed stationary equi-
librium. By symmetry, we may assume that y = min(x, y, z, t). Write
a := γ1(x, y, z, t) ≥ γ1(0, y, z, t) > 0.
Assume players 2,3,4 play the stationary proÞle (y, z, t), and that player

1 plays from the second stage on the stationary proÞle x. By playing c1 at
stage 1 player 1 gets

α(a; y, z, t) := yzt(a− 2)− 2yz + 3zt− yt+ y + z,
whereas by playing q1 at stage 1 he gets

β(y, z, t) := t+ (1− t)(y + z − 1).
Since in a fully mixed equilibrium it is optimal to use both c1 and q1 with
positive probability, one has

a = β(y, z, t) = α(a; y, z, t).

Therefore, the polynomial

∆1(y, z, t) := α(β(y, z, t); y, z, t)− β(y, z, t)

12
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vanishes at (y, z, t). For simplicity, we write

∆1(y, z, t) = (β − 2)yzt− 2yz + 4zt+ 1− 2t,
thereby omitting the arguments in β. We deÞne ∆2(x, z, t),∆3(x, y, t) and
∆4(x, y, z) in a symmetric way.
To rule out the existence of a fully mixed stationary equilibrium , we shall

prove that there is no (x, y, z, t) ∈ (0, 1)4 such that (i) y = min(x, y, z, t),(ii)
∆1(y, z, t) = ∆4(x, y, z) = 0 and (iii) β(y, z, t) ∈ (0, 1).
Lemma 3 ∆1(t, t, t) > 0 for each t ∈ [0, 1].

Proof. t 7→ ∆1(t, t, t) is a polynomial in one variable. The result follows
by using any of the standard methods for counting the number of zeroes of
a polynomial in a compact interval, e.g. Sturm�s method.

We list a few useful observations, valid on {y ≤ z, t}
Fact 1 β is (strictly) increasing in each variable.

Fact 2 ∆1 is decreasing in y.

Fact 3 ∆1 is increasing in z.

The proofs of the Þrst two facts are obtained by elementary algebraic
manipulations, and are therefore omitted. For the third one, prove Þrst that
∂∆1

∂z
is decreasing in y. Since y ≤ t, this yields ∂∆1

∂z
(y, z, t) ≥ ∂∆1

∂z
(t, z, t) =

(β − 2)t2 + t2z(1− t) + 2t > 0.
By Fact 2 and Fact 3, ∆1(y, z, t) ≥ ∆1(t, t, t) > 0 if y ≤ t ≤ z.

Lemma 4 The polynomial ∆1 does not vanish on Ω := {y ≤ z ≤ t} ∩ {z ≥
1
2
}.

Proof. Step 1: ∆1 > 0 on Ω ∩
©
y < 1

2

ª
.

Indeed, in that region, one has y ≤ 1
2
≤ z ≤ t, hence, by Facts 2 and 3,

∆1(y, z, t) ≥ ∆1(1
2
,
1

2
, t) =

1

2
− t

2
+ β

t

4
> 0.

Step 2: ∆1 > 0 on Ω1 := {12 ≤ y ≤ z ≤ t ≤ 2
3
}.

We restrict (y, z, t) to be in Ω1. By Fact 2, ∆1(y, z, t) ≥ ∆1(z, z, t). We
prove below that ∆1(z, z, t) is decreasing in z. This will imply ∆1(z, z, t) ≥
∆1(t, t, t) > 0, hence the claim.
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Note Þrst that, by Fact 1,

β(y, z, t) ≤ β(2
3
,
2

3
,
2

3
) =

7

9
. (3)

An elementary computation gives

∂

∂t

∂

∂z
{∆1(z, z, t)} = 2z(β − 2) + 2zt(2− y − z) + 2z2(1− t)− 2z2t+ 4 > 0.

Therefore,

∂

∂z
∆1(z, z, t) ≤ ∂

∂z
∆1(z, z,

2

3
) =

4

3
z(β − 2) + 4

9
z2 − 4z + 8

3
. (4)

The right-hand side in (4) is decreasing in z. It is therefore maximal for
z = 1

2
. It is then equal to 2

3
(β − 1) + 1

9
which is negative by (3). This proves

that ∆1(z, z, t) is decreasing in z.
Step 3: ∆1 > 0 on Ω2 := {12 ≤ y < 2

3
≤ z ≤ t}.

We restrict (y, z, t) to be in Ω2. Notice Þrst that β ≥ 2
3
. One has

∆1(y, z, t) ≥ ∆1(2
3
,
2

3
, t) = (β(

2

3
,
2

3
, t)− 2)4

9
t+

1

9
+
2

3
t

≥ t+ 1

9
.

The Þrst inequality uses Facts 2 and 3. The second one follows from (Fact
1) β(2

3
, 2
3
, t) ≥ β(2

3
, 2
3
, 2
3
) ≥ 3

4
.

Step 4: ∆1 > 0 on Ω3 :=
©
2
3
≤ y ≤ z ≤ tª.

We restrict (y, z, t) to be in Ω3. As in Step 3, β ≥ 2
3
. We prove below that

∆1 is increasing in t. Using Fact 2, this will imply∆1(y, z, t) ≥ ∆1(z, z, z) >
0. One has

∂∆1
∂t

= (β − 2)yz + yzt(2− y − z) + 4z − 2 ≥ (β − 2)yz + 4z − 2. (5)

Plainly, the right-hand side of (5) is increasing in z. Therefore, it is minimal
when z = y, hence at least −5

4
y2 + 4y − 2. This latter expression is itself

minimized at y = 2
3
and then equal to 1

9
. Thus, ∂∆1

∂t
> 1

9
.

Step 5: ∆1 > 0 on Ω4:=
¡
[1
2
, 2
3
]× [1

2
, 2
3
]× [2

3
, 1[

¢ ∩ {y ≤ z}.
We restrict (y, z, t) to be in Ω4. By Fact 1, β(y, z, t) ≥ 2

3
. By Fact 2,

∆1(y, z, t) ≥ ∆1(z, z, t). These inequalities imply

∆1(y, z, t) ≥ −4
3
z2t− 2z2 + 4zt+ 1− 2t. (6)
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Denote by f the function deÞned by the right-hand side of (6). We prove
below that, for each t ≥ 2

3
, the function f(·, t) is positive on

£
1
2
, 2
3

¤
. Let

t ≥ 2
3
be given. Plainly,

f(
1

2
, t) =

1

2
− t

3
>
1

6
and f(

2

3
, t) =

2

27
t+

1

9
>
1

7
. (7)

Next, note that

∂f

∂z
(z, t) = −8

3
zt− 4z + 4t

is increasing in t and decreasing in z. Therefore, ∂f
∂z
(z, t) is minimal at (2

3
, 2
3
),

where it equals −32
27
, and maximal at (1

2
, 1), where it equals 2

3
. In particular

sup
z∈[1/2,2/3]

¯̄̄̄
∂f

∂z
(z, t)

¯̄̄̄
≤ 12

7
. (8)

Since each z ∈ [1
2
, 2
3
] satisÞes |z − 1

2
| ≤ 1

12
, or |z − 2

3
| ≤ 1

12
, the inequality

f(z, t) > 0 follows from (7), (8) and the mean value theorem.

Lemma 5 The polynomial ∆4 does not vanish on Ω5 := {y ≤ z}∩ {z ≤ 1
2
}.

Proof. Recall that we only consider values of (x, y, z, t) such that γ4(x, y, z, t) >
0. Therefore

∆4(x, y, z) > −2xyz − 2xz + 4xy + 1− 2y = y(−2xz + 4x− 2) + 1− 2xz.
Denote fx,z(y) = y(−2xz + 4x − 2) + 1 − 2xz. Then fx,z(0) = 1 − 2xz > 0
and fx,z(z) = (1− 2z) + 2xz(1− z) > 0. In particular, the right hand side is
positive on Ω5.

3.3 Proof of Proposition 2

We Þrst present a sketch of the proof. The proof goes by contradiction. Let
x = (xn) be an ε-equilibrium such that kxn − ck < ε for each n. Since each
player gets 1 by quitting alone, the probability that no player ever quits is
close to zero. Moreover, since xn is close to c, the quitting coalition is a
singleton with high probability. In particular, the sum of the payoffs all four
players receive in the ε-equilibrium is close to Þve. Hence, at least one player
gets a payoff strictly higher than 1, while no player receives a payoff that
is much below one. We then deduce that for every player i, the probability
that i belongs to the quitting coalition is bounded away from zero.
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Next, we claim that there is no such ε-equilibrium that gives to players
1 and 2 (or 3 and 4) a payoff higher than one. Indeed, assume such an
equilibrium were to exist. In the Þrst stage of the game, both players 1
and 2 would choose to continue with very high probability, since the payoff
obtained by quitting is approximately 1. Moreover, they must do so in every
stage n such that their expected payoff, starting from stage n, is higher than
one, unless the probability that the game reaches stage n is close to zero.
Therefore, as long as their continuation payoff exceeds 1 and the probability
of surviving is not too small, players 1 and 2 will not contribute to the
quitting coalition. However, as long as players 1 and 2 do not contribute,
their continuation payoffs increases. Indeed, the expected payoff starting
from today is a weighted average of the payoff received if someone quits
today and of the expected payoff starting from tomorrow, and the payoff to
players 1 and 2 is less than one only if players 3 and 4 quit.
Assume now that player 1 (but not player 2) gets a payoff higher than

1, and let n1 be the Þrst stage such that the continuation payoff of player 1
is close to one. Since the continuation payoff of player 1 decreases between
stages 1 and n1, the probability that player 2 quits before stage n1 is non-
negligible. Since player 1 hardly contributes to the probability of quitting
before stage n1, the continuation payoffs of player 2 do not decrease over time
before stage n1. Since player 2 quits with non-negligible probability, his con-
tinuation payoffs must remain close to one for a while. In particular, players
3 and 4 should not quit in those stages. This implies that the continuation
payoffs of player 3 and 4 increase in these stages. After a while (stage n1
at the latest), both continuation payoffs of players 3 and 4 are higher than
one-a situation that has been ruled out above.

To facilitate reading, we let ρ = 8 be twice the maximal payoff in absolute
value, N = {1, 2, 3, 4} be the set of players, and N = 4 be the number of
players.
It is convenient to assume that, in any given stage, at most one player

quits with positive probability. This assumption entails no loss of generality,
as shown by the next lemma.

Lemma 6 Let ε < 1/8 and let x be an ε-equilibrium such that kxn − ck < ε
for each n. Then there exists a 11Nρε-equilibrium y such that, for every n,
kyn − ck < ε and |{i ∈ N , yjn > 0}| ≤ 1.

Proof. We construct y from x by dividing each stage into four substages,
and by letting each player quit in turn with the probability speciÞed by x.
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Formally, for n ∈ N and j ∈ C, we set

yi(n−1)N+j =
½
xin if i = j
0 if i 6= j .

By construction,

Py(t > nN |t > (n− 1)N) = Px(t > n|t > n− 1) =
nY
i=1

(1− xin) for each n ∈ N.

Observe next that, for each j ∈ N ,

Py (St = {i} |(n− 1)N < t ≤ nN) = xin
Q
j<i(1−xjn)

1−Q
j∈N (1−xjn)

Px(St = {i} |t = n) = xin
Q
j 6=i(1−xjn)

1−Q
j∈N (1−xjn)

The denominator is at least 1−4ε ≥ 1/2, hence the difference between these
two probabilities is at most 2ε. Since

P
i∈N Py (St = {i} |(n− 1)N < t ≤ nN)

= 1, one has in particular Px(|St| > 1|t = n) ≤ 2Nε.
By summation over n, this yields

kγ(x)−γ(y)k ≤ 4Nρε. (9)

Next, we prove that player i has no pure proÞtable deviation from yi.
Consider Þrst the strategy ci. By repeating the above argument, one has

|γi(x−i, ci)− γi(y−i, ci)| ≤ 4Nρε. Since x is an ε-equilibrium, this yields, by
(9),

γi(y−i, ci) ≤ γi(y)+ε+ 8Nρε.

Consider next the strategy qi(n−1)N+k that quits in stage (n−1)N+k and
continues in the former stages. We compare the payoffs to player i under the
two proÞles (y−i,qi(n−1)N+k) and (x

−i,qin). By repeating the above argument,
one has

Py−i,qi
(n−1)N+k

(t ≤ (n− 1)N) = Px−i,qin(t ≤ n− 1)¯̄̄
Ey−i,qi

(n−1)N+k

£
riSt|t ≤ (n− 1)N

¤− Ex−i,qin

£
riSt|t ≤ (n− 1)

¤¯̄̄
≤ 4Nρε.

Next, Ey−i,qi
(n−1)N+k

£
riSt|t > (n− 1)N

¤ ≤ 1+(N−1)ρε+ρε, where (N−1)ρε
accounts for the probability that someone may quit in the Þrst k−1 substages
of stage n, and ρε accounts for the probability that some player other than i
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may quit in substage k. Also, Ex−i,qin

£
riSt|t > (n− 1)

¤ ≤ 1−ρNε. Collecting
these inequalities yields

γi(y−i,qi(n−1)N+k) ≤ γi(x−i,qin) + 6Nρε ≤ γi(y)+ε+10Nρε.

This concludes the proof.

We henceforth assume that x is an ε-equilibrium such that |{i ∈ N , xn > 0}| ≤
1 and kxn − ck < ε for each n. We also take ε > 0 sufficiently small to allow
various inequalities to hold.

Lemma 7 One has

1. Px(t < +∞) ≥ 1− ε.
2. γi(x) ≥1− ρε− ε for each i ∈ N , and γi(x) ≥5

4
− 2ε for some i ∈ N .

3. Px(St = {i}) ≥ 2
15
− ρε for each i.

Proof. Let yi,n the strategy of player i that coincides with xi in the
Þrst n stage and plays qi at stage n + 1. The payoffs γi(x−i,yi,n) converge
to γi(x) +Px(t = +∞), as n goes to inÞnity. Since γi(x−i,yi,n) ≤ γi(x) + ε,
claim 1 follows.
By quitting in the Þrst stage, player i obtains at least 1 − ρε. The Þrst

part of claim 2 follows. Next, whenever the quitting set is a singleton, the
payoffs to the players sum up to 5. Therefore,X

i∈N
γi(x) =5Px(t < +∞) ≥ 5− 5ε.

In particular, there exists i such that γi(x) ≥ 5
4
− 5

4
ε. The second part of

claim 2 follows.
We turn to the proof of 3. For notational convenience, set pi := Px(St =

{i}). Note that

γ1(x) =p1 + 4p2

and that analogous identities hold for players 2, 3 and 4. In particular, by
2, one has

p1 + 4p2 ≥ 1− 2ρε and 4p1 + p2 ≥ 1− 2ρε,
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which implies p1+ p2 ≥ 2
5
− 4

5
ρε. By exchanging the roles of the players, one

gets p3 + p4 ≥ 2
5
− ρε. Therefore, p1 + p2 ≤ 3

5
+ ρε. Thus, (p1, p2) satisfy

p1 + 4p2 ≥ 1− 2ρε, 4p1 + p2 ≥ 1− 2ρε, and p1 + p2 ≤ 3

5
+ ρε. (10)

Any solution to the system (10) satisÞes p1, p2 ≥ 2
15
− ρε.

Given i ∈ N , and n ∈ N, let xi(n) be the strategy which plays ci up to
stage n, and coincides with xi after stage n. Let also pin : = Px(t < n, St =
{i}). Then pi = limn→∞ pin.
Lemma 8 Assume that γi(xn) ≥ 1+

√
ε for some player i and every n ≤ n0.

Then

γi(x−i,xi(n)) ≥ γi(x) +√εpin, for every n ≤ n0.
Proof. We proced by induction. Assume n = 1. If xi1 = 0, then xi(1) =

xi and pi1 = 0, and the result holds. Otherwise, p
i
1 = 1− xi1, hence

γi(x) = pi1 + (1− pi1)γi(x−i,xi(1)).
Then

γi(x−i,xi(1)) = γi(x) +
pi1

1− pi1
(γi(x)− 1) ≥ γi(x) +√εpi1.

Assume now that 1 < n ≤ n0. If xin = 0, then xi(n) = xi(n − 1) and
pin = p

i
n−1. In particular, by the induction hypothesis,

γi(x−i,xi(n)) = γi(x−i,xi(n− 1)) ≥ γi(x) +√εpin−1 = γi(x) +
√
εpin,

and the result holds.
If xin > 0 then, applying the case n = 1 to the proÞle xn−1 we get

γi(x−in−1,x
i(n)n−1) ≥ γi(x−in−1,xi(n− 1)n−1) +

√
ε(1− xin).

Using the induction hypothesis we get:

γi(x−i,xi(n)) ≥ γi(x−i,xi(n− 1)) +Px−i,ci(t ≥ n− 1)
√
ε(1− xin)

≥ γi(x) +√ε(pin−1 +Px−i,ci(t ≥ n− 1)(1− xin))
≥ γi(x) +√εpin.

We say that players 1 and 2 (resp. 3 and 4) are partners. The partner of
player i is denoted by ei.
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Lemma 9 Let a, b > 0 and let ε > 0 be sufficiently small. Let y be a bε-
equilibrium such that ||yn − c|| < ε for each n. Let i ∈ N , and assume that
γi(y) ≥ 1 + a. Then there exists n1 such that (i) γi(yn1) < 1 +

√
ε, (ii)

pin1
≤ (b+ 1)√ε, and (iii) a ≤ 3p�õn1

+
√
ε.

Proof. For convenience, assume i = 1. Since p1 ≥ 2/15 − 3ε, Lemma 8
implies that there exists a stage n such that γ1(yn) < 1 +

√
ε. Let n1 be the

Þrst such stage. In particular, (i) holds. Observe that γ1(yn1−1) ≥ 1 +
√
ε,

hence by Lemma 8 bε ≥ √εpin1−1. Since the probability that player 1 quits
in stage n1 − 1 is at most ε, (ii) follows.
We now prove (iii). Since γ1(yn1) < 1 +

√
ε one has

1 + a ≤ γ1(y) = p1n1
+ 4p2n1

+ (1− p1n1
− p2n1

− p3n1
− p4n1

)γ1(yn1)

≤ p1n1
+ 4p2n1

+ (1− p1n1
− p2n1

) +
√
ε

≤ 1 + 3p2n1
+
√
ε,

and (iii) follows.

Corollary 10 Let b > 0 and a > 3(b + 2)
√
ε. There is no bε-equilibrium y

such that :

� ||yn − c|| < ε for each n
� γi(y), γ�õ(y)≥1 + a for some i ∈ N .
Proof. Let y be such a bε-equilibrium, and assume w.l.o.g. i = 1.

Apply Lemma 9 twice, to players 1 and 2. Call n1 and n2 the corresponding
two stages, and assume w.l.o.g that n1 ≤ n2. Thus, one has both p2n1

≥
a/3−√ε/3, and p2n2

≤ (b+ 1)√ε. Since n1 ≤ n2 p2n1
≤ p2n2

. Thus a−√ε ≤
3(b+ 1)

√
ε � a contradiction.

End of proof of Proposition 2: We assume w.l.o.g. that γ1(x) ≥
5/4 − 2ε. We will exhibit a stage n2 such that xn2 is a 8ε-equilibrium, and
γ3(xn2), γ

4(xn2) ≥ 1 + 1/12. By Corollary 10, we get a contradiction.
Apply Lemma 9 to x and i = 1, and denote n1 the corresponding stage.

Thus, p1n1
≤ 2√ε and p2n1

≥ 1
3
× 1

4
−√ε. By Lemma 8, there exists a stage

N2 < n1 with γ2(xN2) < 1 +
√
ε (otherwise, γ2(xn1 ≥ γ2(x) + 2

3

√
ε − ε/3,

contradicting the fact that x is an ε-equilibrium). We set

n2 = max{n ≤ n1, γ2(xn) ≤ 1 +
√
ε}.

Since p1n2
≤ p1n1

≤ 2√ε, and p1 ≥ 2
15
− ρε, one has

Px(t < n2) ≤ 1−P(t ≥ n2 and St = {1}) ≤ 13

15
+ ρε+ 2

√
ε ≤ 7

8
.

20

ha
l-0

02
42

99
5,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



Since x is an ε-equilibrium, xn2 is a 8ε-equilibrium.

Our next goal is to prove that p2n2
≥ 1

12
− 17√ε. If n2 = n1 there is

nothing to prove. Assume n2 < n1. This means that γ2(xn1) > 1 +
√
ε.

By the deÞnition of n2, γ2(xk) > 1 +
√
ε for every n2 < k ≤ n1. Apply

Lemma 8 with y = xn2
(thus yk = xn2+k, for each k) and n = n1 − n2.

Since xn2 is a 8ε-equilibrium, the conclusion, rephrased in terms of x, is that
Px(t < n1, St = {2} |t ≥ n2) ≤ 8ε/

√
ε = 8

√
ε. In particular p2n1

−p2n2
≤ 8√ε,

and therefore p2n2
≥ 1

12
− 9√ε.

We use this result to prove that γ3(xn2), γ
4(xn2) ≥ 1 + 1/12.

As previously, one has

1− 2ρε ≤ γ2(x) = 4p1n2
+ p2n2

+

Ã
1−

X
i∈N

pin2

!
γ2(xn2). (11)

By deÞnition of n2, γ2(xn2) ≤ 1 +
√
ε. Since p1n2

≤ p1n1
≤ 2√ε, one deduces

from (11) that p3n2
+ p4n2

≤ (7 + 2ρε)√ε+ 4ρε ≤ 8√ε.
On the other hand,

1− 2ρε ≤ γ3(x) = 4p4n2
+ p3n2

+

Ã
1−

X
i

pin2

!
γ3(xn2). (12)

Since p2n2
≥ 1/12 − 17√ε, (12) yields γ3(xn2) ≥ 1 + 1

11
− ε1/4 ≥ 1 +

1/12. Similarly, γ4(xn2) ≥ 1 + 1
12
. Since xn2 is a 8ε-equilibrium, we get a

contradiction to Lemma 10.
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