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Résumé: Nous étudions le modèle spatial de différentiation d'Hotelling, mais au lieu de 
supposer que le marché est couvert quelles que soient les localisations des 
deux firmes, nous supposons qu'il existe une distance maximale 
(éventuellement infinie) qu'un consommateur est prêt à parcourir pour acheter 
le bien. Cette généralisation apparemment anodine des hypothèses d'Hotelling 
modifie complètement les résultats : le principe de "différentiation minimale" 
d'Hotelling n'est plus vérifié en général. A l'équilibre, les firmes s'engagent 
dans un processus de différentiation maximale, intermédiaire ou minimale, 
selon la forme de la distribution des positions des consommateurs et cette 
distance critique qu'un consommateur est prêt à parcourir pour acquérir le 
bien.  

 
Abstract: This paper studies Hotelling's spatial competition between two firms, but 

rather than assuming that consumers are ready to buy the good whatever the 
locations of the firms are, it is assumed here that there is an upper limit 
(possibly infinite) to the distance a consumer is ready to cover to buy the 
good. Under this slight generalization of Hotelling's assumptions, Hotelling's 
``minimal differentiation principle'' does not hold in general. At equilibrium, 
firms choose ``minimal'', ``intermediate'' or ``complete'' differentiation, 
depending on this critical distance a consumer is ready to cover and on the 
shape of the distribution of consumers' locations. 
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1 Introduction
Product differentiation is a central issue in Industrial Organization. A large
number of studies on this topic build on Hotelling’s seminal model of location
or spatial-differentiation (See Hotelling 1929).
In Hotelling’s location model, consumers are located at different places on a

line. Two firms — selling the same product at the same price — simultaneously
choose a location on this line. Consumers are ready to buy one unit — and only
one unit — of the good and they pay transportation costs when going and pur-
chasing the good. Hotelling’s “miminal differentiation principle” (1929) states
that at Nash equilibrium, both firms choose the “median consumer” location
(i.e. the location such that one half of the consumers lay at his left-hand side,
and one half of the consumers lay at his right-hand side) — hence the name of
“miminal differentiation principle” given to Hotelling’s result.
D’Aspremont et al. (1979) challenge this convergence result, arguing that

the assumption that both firms sell at the same price can not be derived as
an equilibrium result, if sellers are not far enough one from the other. More
specifically, if firms simultaneously choose their locations in a first stage, and
then, once locations are observed, simulteously choose the price at which they
sell the good, then no price equilibrium exists, when both sellers are locatted
exactly at the same place — as is the case in Hotelling’s result. They provide
an example of a slightly modified version of Hotelling’s framework (explicitly
introducing prices together with transportation costs in consumers’ preferences),
in which this two-stage game between the firms always have an equilibrium.
They show in that example than “maximum differentiation” can be observed
between firms, firms choosing to locate at the two ends of the line1. This
two-stage model where firms choose products first and price second offers the
standard explanation in Industrial organization as to why ”firms generally do not
want to locate at the same place in the product space. The reason is simply the
Bertrand paradoxe: Two firms producing perfect substitutes face unbridled price
competition (at least in a static framework). In contrast, product differentiation
establishes clienteles (”market niches”, in the business terminology) and allows
firms to enjoy some market power over these clienteles. Thus, firms usually wish
to differentiate themselves from other firms” (Tirole 1997, p. 278).
In the present paper, Hotelling’s convergence result will also be challenged,

but on different grounds. Softening of price competition is not the only force
which may drive firms to differentiate. Indeed, even with no price competition,
it will be shown that firms may choose to differentiate. I will keep Hotelling’s
assumption that both firms sell the product at the same price, whatever their
locations are. As d’Aspremont et al. (1979) have shown, this assumption can
not be supported as an equilibrium result. Rather I simply take the view that
prices are imposed upon the firms; for legal or technical reasons, price is not
a free parameter in the competition.2 . I rather alter another assumption in

1See also Osborne and Pitchik (1987) for further discussion on Hotelling’s result in a two-
stage game.

2As recalled by Tirole (1997), ”There may exist legal or technical reasons why the scope
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Hotelling’s model: namely that the market is always covered. In Hotelling’s
model, consumers are ready to buy one unit of the good, whatever the location
of the firms are. I assume instead that if both firms are too far away from
his location, a consumer prefers not buying the good, rather than paying the
transportation costs. All consumers equally value the good, and choose to buy
the good only if the transportation costs do not exceed the valuation of the good.
Of course I keep the assumption that when both firms are within “acceptable
distance”, the consumer selects the firms which is the closest. I only add the
restriction that there is an upper limit to the distance a consumer is ready
to cover to buy the good. This distance will characterize the width of the
“attraction zone” of the firms.
This may seem an innocuous restriction, and yet, as will be shown below,

it dramatically alters Hotelling’s result. The convergence result may not hold
anymore, and one may observe some “intermediate differentiation principle”
or ”maximal differentiation priciple”. The intuition supporting this result is
the following. All through this paper, a normal distribution of consumers’s
locations is assumed. Were a firm alone on the market, it would select the
modal position, where the larger number of consumers are located, according to
a ”Be where the demand is” principle. Now, in the two-firm competition, the
convergence to the modal position may not be observed.3 Indeed, suppose that
a firm has chosen the modal position. In that case, if its opponent also selects
this central position, they will share exactly the same attraction zone and thus
each will attract one half one the consumers who are located within acceptable
distance of the central position. The latter firm may fare better in that case by
avoiding complete competition, and prefer moving somewhat to the left or the
right. In doing so, it will move from the modal position — thus move away from
the situation where the concentration of consumers is the highest — but on the
other hand, it will avoid splitting in half the number of potential consumers.
We expect the incentives to move away to be greater when the distribution is
flatter (less concentration in the modal position) and when the width of the
attraction zone is larger. It will be shown to be the case indeed. Depending of
the size of the width of the attraction zone compared to the standard deviation
of the distribution of consumers’ location, we can observe convergence in the
central position, intermediate differentiation, or complete differentation (in the
sense that no consumer is located at equilibrium within acceptable distance of
both firms). In particular, some necessary and sufficient conditions on this ratio
are provided for the convergence result to hold.
The paper is organized as follows. The model is presented in more details

in section 2. Section 3 presents the firms’ best responses. Section 4 describes
the best response sets and section 5 characterizes all Nash equilibria in which

of price competition is limited. For instance, the prices of airline tickets in the United States
(before deregulation) where determined exogenously, as the price of gas and books in France
once were” (p. 287).

3Note that contrary to what happened in Hotelling’s setting, we expect here a “modal
consumer” theorem to hold rether than a “median consumer” theorem. Since the distribution
is assumed to be symmetric, the two notions coincide in this paper.
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firms play pure strategies. Section 6 briefly concludes The proofs are relegated
in an appendix in section 7. [Note to the referee : In the present version of the
paper, exhaustive proofs are provided. Since several parts of the proofs rely on
similar arguments or calculus, some of them might be ommitted in a published
version of the paper.]

2 The model
Two firms, labelled A and B, sell the same good at the same price, and choose
location on the real line where consumers are distributed. Consumer loca-
tions are assumed to have a normal distribution, with mean zero and stan-
dard deviation σ. The consumers have unit demand; i.e. each consumer
can either buy one unit of the good (from either firm), or abstain from buy-
ing. We assume quadratic transportation costs: when a consumer located at
t goes to a firm located atn bt, he pays a transportation cost c(t,bt) = −(t − bt)2.
All consumers derive the same net intrinsic positive utility δ2 from bying the
good. If a consumer located at t goes to a firm located at bt and buy the good,
he gets the total utility δ2− (t−bt)2. If he does not buy the good and incurs no
transporation costs, he gets the utility zero.
Suppose firm A chooses location tA, and firm B chooses location tB. When

facing the couple of location (tA, tB), a consumer located at t has three op-
tions: buy the good from firm A, buy the good from firm B, or abstain from
buying. Given the assumption on preferences made above, four cases are to be
dostinguished.
Case 1:

¯̄
tA − t¯̄ ≤ δ and

¯̄
tB − t¯̄ ≤ δ, both firms are within acceptable

distance4, meaning that he prefers buying the good from either firm rather
than not consuming the good. In that case, he buys the good from the closest
firm, just as in Hotelling’s model. If

¯̄
tA − t¯̄ < ¯̄tB − t¯̄, he buys the good from

firm A; if
¯̄
tA − t¯̄ > ¯̄tB − t¯̄, he buys the good from firm B; if ¯̄tA − t¯̄ = ¯̄tB − t¯̄

he is indifferent between buying from firm A and buying from firm B, and we
assume that in that case he chooses both firms with equal probability 1/2.
Case 2:

¯̄
tA − t¯̄ ≤ δ and

¯̄
tB − t¯̄ > δ, only firm A is within acceptable

distance. In that case he buys the good from firm A.
Case 3:

¯̄
tA − t¯̄ > δ and

¯̄
tB − t¯̄ ≤ δ, only firm B is within acceptable

distance. In that case he buys the good from firm B.
Case 4:

¯̄
tA − t¯̄ > δ and

¯̄
tB − t¯̄ > δ, both firms are beyond acceptable

distance. In that case, the consumer rather abstains and does not buy the
good.
Note that when δ → +∞, we are in the standard Hotelling’s situation:

consumers consume one unit of the good whatever the location of the firms are,
and buy from the closest firm.

4When a consumer is indifferent between buying and nor bying the good, we make the
assumption that he does buy it. This assumption plays no role in solving the game for the
set of consumers that might be in that case is of measure zero.
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The firms meet any demand they face. The objective of the firms is to sell
as many units of good as they can. Given the behavior of consumers described
above, payoff functions for the firms are easily derived; they are explicitly pre-
sented in the next section.

3 Firms’ payoff functions
Let us denote by GB

¡
t; tA

¢
the payoff obtained by firm B when choosing lo-

cation t, against location tA by firm A, and GA
¡
t; tB

¢
the payoff of firm A

when choosing location t, against location tB by firm B. We now derive a close
form expression for teh payoff function GB

¡
.; tA

¢
. The expression of the payoff

functions depends on whether the attraction zones of the two firms intersect or
not.
When the two attraction zones do not intersect, that is, when

¯̄
tA − t¯̄ > 2δ,

firm B attracts all consumers that are located in its attraction zone. These are
all consumers whose location belongs to the interval [t− δ, t+ δ]. In that case,
the payoff of firm B is F (t+ δ)− F (t− δ), where F is the cumulative function
of the normal distribution with mean zero and standard deviation σ.
When the attraction zones do intersect, that is, when

¯̄
tA − t¯̄ ≤ 2δ, con-

sumers who are located in the intersection will choose the firm which is closest
to their own location. The explicit expression for the payoff function GB

¡
t; tA

¢
depends on the relative position of tA and t: as long as t < tA, GB

¡
t; tA

¢
=

F ((12
¡
t+ tA

¢
))−F (t−δ); when t > tA, GB ¡t; tA¢ = F (t+δ)−F (( 12

¡
t+ tA

¢
));

when t = tA, the two firms share the consumers located in the interval
£
tB − δ, tB + δ

¤
and in that caseGB

¡
tA; tA

¢
= 1

2

£
F (tA + δ))− F (tA − δ)

¤
. Note thatGB

¡
t; tA

¢
as a function of t is continuous in tA − 2δ and tA+2δ, but that in general, it is
not continuous in tA. Lemma 1 and remark 1 below sum up the results so far.

Lemma 1
If t ≤ tA − 2δ, GB

¡
t; tA

¢
= F (t+ δ)− F (t− δ),

If tA − 2δ ≤ t < tA, GB
¡
t; tA

¢
= F ((12

¡
t+ tA

¢
))− F (t− δ),

If t = tA, GB
¡
t; tA

¢
= 1

2

£
F (tA + δ))− F (tA − δ)

¤
,

If tA < t ≤ tA + 2δ, GB
¡
t; tA

¢
= F (t+ δ)− F ((12

¡
t+ tA

¢
)),

If t ≥ tA + 2δ, GB
¡
t; tA

¢
= F (t+ δ)− F (t− δ).

As noted above, GB
¡
t; tA

¢
as a function of t is in general not continuous in

tA. Remark 1 tells more on this point.

Remark 1

GB
¡
t; tA

¢
as a function of t is not continuous in tA, except for tA = 0:

when tA < 0, lim
t→tA
t<tA

GB(t; tA) < GB(tA; tA) < lim
t→tA
t>tA

GB(t; tA),

4

ha
l-0

02
42

96
3,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



when tA = 0, lim
t→tA
t<tA

GB(t; tA) = GB(tA; tA) = lim
t→tA
t>tA

GB(t; tA) = 1/2 [F (δ)− F (−δ)],

when tA > 0, lim
t→tA
t<tA

GB(t; tA) > GB(tA; tA) > lim
t→tA
t>tA

GB(t; tA).

Indeed, when tA < 0, lim
t→tA
t<tA

GB(t; tA) = F (tA + δ)− F (tA)

andGB(tA; tA) = 1
2

£
F (tA + δ)− F (tA − δ)

¤
. Therefore lim

t→tA
t>tA

GB(t; tA)−GB(tA; tA) =

−1/2{£F (tA + δ)− F (tA)¤ − £F (tA)− F (tA − δ)
¤} which is strictly negative

when tA < 0. Similar arguments are used in the other cases.

4 Description of the best responses
Given the symmetry between firms, we only need to characterize the best re-
sponses for firm B. Let us denote by BRB(t) the set of best responses of firm
B against location t by firm A.
Note first that it is sufficient to describe the best responses against t ≤ 0,

since best responses against t ≥ 0 can then be very easily derived. Indeed,
given the symmetry of the distribution of consumers’ locations, for any t ≥ 0,
x ∈ BRB(t) if and only if −x ∈ BRB(−t).
Proposition 1 characterizes the set of best responses against any value of

t ≤ 0. Three cases are to be considered.

Proposition 1

Case 1. If δ2/σ2 ≤ 1
4 ln(2),

if t ≤ −2δ, BRB (t) = {0}
if −2δ ≤ t < 0, BRB (t) = {t+ 2δ}
if t = 0, BRB(t) = {2δ,−2δ}

Case 2. If 14 ln(2) < δ2/σ2 < 2 ln(2),
if t ≤ −2δ, BRB (t) = {0}
if −2δ ≤ t ≤ −a, BRB (t) = {t+ 2δ}
if −a ≤ t < 0, BRB(t) = {t2(t)}
if t = 0, BRB(t) = {t2(0),−t2(0)}

Case 3. If δ2/σ2 ≥ 2 ln(2),
if t ≤ −2δ, BRB (t) = {0}
if −2δ ≤ t ≤ −a, BRB (t) = {t+ 2δ}
if −a ≤ t < −b, BRB(t) = {t2(t)}
if −b ≤ t < 0, BRB(t) = ∅5
if t = 0, BRB(t) = {0}

5Firm B would like to play t+ ε, ε > 0 as small as possible
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where

a =
4δ2 − σ2 ln(2)

2δ
, (1)

b =
δ2 − 2σ2 ln(2)

2δ
, (2)

and t2 : R→ R

t 7→ t2(t) =
1

3

µ
t− 4δ + 2

q
(t− δ)

2
+ 6σ2 ln(2)

¶
. (3)

The proof of proposition 1 is provided in the appendix in sub-section 7.1.
Before commenting on the results stated in proposition 1, remark 2 describes
some of the properties of the function t2.

Remark 2. Properties of the function t2

Elementary calculus shows that the function t2 satisfies the properties summed
up in the table below6:
t −∞ δ −p2σ2 ln(2) +∞
t2(t) & −

³
δ −p2σ2 ln(2)´ %

t02(t) −2/3 % 0 % +2/3
t002(t) +
Besides, t2(−a) = −a+ 2δ, t2(−b) = −b.

Therefore the monotonicity of t2 on the interval [−a, 0] depends on the rel-
ative positions of δ −p2σ2 ln(2), a, and 0, and thus on the ratio δ2/σ2.
Case 2a. When 1/4 ln(2) < δ2/σ2 ≤ 1/2 ln(2), t2 is increasing on [−a, 0] .

Case 2b.When 1/2 ln(2) ≤ δ2/σ2 < 2 ln(2), t2 is decreasing onh
−a, δ −p2σ2 ln(2)i and increasing on hδ −p2σ2 ln(2), 0i.
Case 3.When δ2/σ2 ≥ 2 ln(2), t2 is decreasing on [−a, 0] .

Note also that in all cases ∀t ∈ ]−a, 0] , t2(t) < t + 2δ (indeed, t2(−a) =
−a+2δ and for t ∈ [−a, 0] , t02(t) < 1). Besides, in cases 2a and 2b, ∀t ∈ [−a, 0] ,
t2(t) > 0.

Comments on Proposition 1.

6For t ∈ R, t02(t) = 1/3

µ
1 +

2(t−δ)√
(t−δ)2+6σ2 ln(2)

¶
and t002 (t) =

4σ2 ln(2)³
(tA−δ)2+6σ2 ln(2)

´3/2 > 0.

Note also that δ2/σ2 ≤ 1/2 ln(2)⇐⇒ δ −p2σ2 ln(2) ≤ −a; and
δ2/σ2 ≥ 2 ln(2)⇐⇒ δ −p2σ2 ln(2) ≥ 0.

6
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Case 1. These are situations where the width of the attraction zone (δ)
is small compared to the standard deviation of the distribution of consumers
location (σ).
In that case, firm B always avoids direct confrontation with firm A : the two

attraction zones do not intersect. We will use the term of ”maximal differentia-
tion” to describe such situations, where positions of teh firm are at distance 2δ
one from the other.
If firm A is far away enough from the center (t ≤ −2δ), then firm’s B best

response is to locate at the modal central position, where it gets the maximal
possible payoff.
If firm A chooses a location within 2δ of the central location, the best firm

B can do is still to avoid direct confrontation and not to intersect its attraction
zone ; in that case, firm B chooses t +2δ, which is, among all location such that
the two attraction zones do not intersect, that which is closest to the central
location.

Case 2. These are intermediate situations as to the width of the attrac-
tion zone compared to the standard deviation of the distribution of consumers
location.
In that case, firm B avoids direct confrontation with firm A only when firm

A is far enough from the central location (t ≤ a).
When firm A is within distance a of the central location it becomes most

profitable to seek direct confrontation, and have the two attraction zones par-
tially intersect.7

In all these situations, the best response for firm B is always to choose a
location such that the two firms are on opposite sides, relative to the central
position.

Case 3. These are situations where the width of the attraction zone is large
compared to the standard deviation of the distribution of consumers location.
As in case 2, firm B avoids direct confrontation with firm A only when firm

A is far enough from the central location (t ≤ −a).
When firm A chooses some intermediate location (−a ≤ t ≤ −b), it becomes

most profitable to seek partial confrontation, and have the two attraction zones
partially intersect. In that case, since the function t2 is decreasing on the
interval [−a,−b] (see remark 2), firm B moves to the left hand side as firm A
moves to the right towards the central position. Confrontation gets fiercer as
firm A moves towards the central location.
If firm A is close enough to the center (has a location within b of the central

location but still different from the center), there is no best response for firm
B. Ideally, firm B would like to seek almost complete confrontation, that is to
stick to firm A, but slightly on the right hand side. Ideally, firm B would like
to choose position t+ ε, with ε > 0 as small as possible.

7 Indeed, in that case, firm B chooses t2(t) < t+2δ (see Remark 2) in response to firm A’s
choice of location t.
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When firm A chooses the central location, the best firm B can do is to select
this central location as well, facing in that case complete confrontation, in the
sense that the attraction zones of the two firms exactly coincide.
Note that when δ goes to infinity, we find here the standard properties of

the Hotelling model. Indeed, in that case both a and b go to infinity and the
best response against t = 0 is zero . If t < 0, there is no best response: firm B
would like to stick to firm A, but slightly on the right hand side. Ideally, firm
B would like to choose a position t+ ε, with ε > 0 as small as possible.

5 Characterization of Nash equilibria
Theorem 1 characterizes all Nash equilibria in which both firms play pure strate-
gies.

Theorem 1

This games always has (at least) one equilibrium in pure strategies.
The shape of the set of Nash equilibria depends on the value of the ratio

δ2/σ2. Let us denote by N
¡
δ2/σ2

¢
the set of Nash equilibria, depending on the

ratio δ2/σ2.

Case 1. If δ2/σ2 ≤ 1
4 ln(2),

(tA, tB) is a Nash equilibrium if and only if:
either tA ∈ [−2δ, 0] and tB = tA + 2δ,
or tA ∈ [0,+2δ] and tB = tA − 2δ.

Case 2a. If 14 ln(2) < δ2/σ2 ≤ 1
2 ln(2),

(tA, tB) is a Nash equilibrium if and only if:
either tA ∈ [−2δ + a,−a] and tB = tA + 2δ,
or tA ∈ [+a,+2δ − a] and tB = tA − 2δ,
where

a =
4δ2 − σ2 ln(2)

2δ
∈ ]0, δ] .

Case 2b. If 12 ln(2) ≤ δ2/σ2 < 2 ln(2),
(tA, tB) is a Nash equilibrium if and only if:

either tA = −
³p

2σ2 ln(2)− δ
´
and tB = −tA,

or tA =
p
2σ2 ln(2)− δ and tB = −tA, where.p2σ2 ln(2)− δ ∈ [0, δ[

Case 3. If δ2/σ2 ≥ 2 ln(2),
(tA, tB) = (0, 0) is the unique Nash equilibrium.

Comments on Theorem 1.

8
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Case 1. There is a continuum of Nash equilibria. In all these equilibria, the
firms are located on opposite sides from the central position, always at distance
2δ one from the other, meaning that the attraction zones do not intersect. These
may be called situations of ”maximal differentiation”. The two firms generally
get different payoffs, the firm closer to the central modal position attracting
more consumers than its competitor. The only symmetric situations are the
situations in which one firm chooses location t = −δ and the other firm location
t = +δ.
Note that in that case, the “minimal differentiation principle” does not hold.

The situation in which the two firms propose the median location (tA = tB = 0)
is not an equilibrium. When one firm proposes t = 0, the best that the other firm
can do is to move either to the left or to the right of its competitor, far enough so
that the two attraction zones do not intersect. The mass of consumers located
at the modal central position is not sufficient to trigger direct confrontation.

Case 2a. Equilibria in that case are a subset of equilibria in case 1. In
all equilibria, the two firms are still at distance 2δ one from the other, and on
opposite sides from the central position. The difference with case 1 is that no
firm can be within distance a of the central location.
As in case 1, payoffs of the two firms are generally different, the only sym-

metric situations are the situations in which one firm proposes t = −δ and the
other firm offers t = +δ.
The “minimal differentiation principle” still does not hold in that case.

Case 2b. There is a unique Nash equilibrium, in which the two firms
engage in “intermediate differentiation”. The differentiation is intermediate in
the sense that firms do not converge to the same position, while at the same
time having there attraction zones intersect: some consumers, in particular the
median consumer, are located within acceptable distance of the two firms. In
that situation, both firms get exactly the same payoff.

Case 3. There is a unique Nash equilibrium, at which both firms converge
to the central modal position. In that case, we find the “minimal differentiation
principle” to hold.

The proof of Theorem 1 is given in the appendix in sub-section 7.2.

6 Conclusion
In this paper, I study Hotelling’s spatial competition between two firms, with
a slight generalization of Hotelling’s assumptions. Rather than assuming that
consumers are ready to buy one unit of the good, whatever the location of the
firms are, I assume that there is an upper limit (possibly infinite) to the distance
a consumer is ready to cover to buy the good.
What may seem an innocuous change in the assumptions dramatically alters

the results. It is shown that Hotelling’s ”minimal differentiation principle” does
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not hold in general in that case, firms engaging in intermediate or complete
differentiation. Other papers in the literature have already demonstrated that
firms’ differentiation was to be expected — be it maximal or intermediate — see
for example d’Aspremont et al. (1979) or Economides (1986). In these papers,
product differentiation is the result of two opposite forces: a direct demand
effect that drives the firms to locate near the center where the demand is and
an indirect strategic effect that drives the firms to differentiate in order to soften
price competition.
In the present paper, another motive for differentiation is put forward, which

is also a direct demand effect, created by the assumption that a consumer may
choose not to buy if the two firms are too far away from his location. Indeed,
suppose that a firm has chosen the modal position. If its opponent also selects
this central position, they will share exactly the same attraction zone and thus
each will attract one half of the consumers who are located within acceptable
distance of the central position. When the market is covered whatever the
locations of the firms (Hotellin’s assumption), each firm then attracts exactly
one half of the consumers, and may only reduce its market share by moving
either to the left or to the right. This is no more the case when consumers may
choose not to buy the good. The latter firm may fare better in that case by
avoiding complete competition, and prefer moving somewhat to the left or the
right. In doing so, it will move away from the modal position — thus move away
from the location where the concentration of consumers is the highest — but on
the other hand, it will avoid splitting in two the number of potential consumers.
This latter ”split the pie in two” effect may be strong enough to counterbalance
the force that drives the firm to the central location, where the demand is.
As noticed in the introduction, the intuition suggests that Hotelling’s con-

vergence result will hold, provided that the distance a consumer is ready to
cover to buy the good is large enough (δ large) or that consumers are suffi-
ciently numerous around the center (the standard deviation σ of the assumed
centered normal distribution of consumers is small). Theorem 1 provides a pre-
cise quantification for these conditions: The situation where both firms choose
the central location is an equilibrium if and only if δ2/σ2 ≥ 2 ln(2). Note thatp
2 ln(2) is approximately equal to 1.18. This shows that, for the minimal dif-

ferentiation principle to hold, the total length of a firm’s attraction zone (2δ)
has to be approximately at least as large as 2.35 time the standard deviation
of the distribution of ideal location. This figure is quite high. By instance,
when δ/σ =

p
2 ln(2), the attraction zone of a firm located at the center covers

over 75% of the population. Theorem 1 also provides conditions for a ”maximal
differentiation principle” to hold — that is for situations where the two firms do
not compete for the same consumers. At equilibrium the attraction zones do
not intersect if and only if δ2/σ2 ≤ 1

2 ln(2). When δ/σ =
p
1/2 ln(2)8, the at-

traction zone of a firm located at the center covers about 45% of the population.
When a unique firm located at the central location covers between 45 and 75%
of the market, at equilibrium firms engage in intermediate differentiation, the

8
p
1/2 ln(2) is approximately equal to 0.59.
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attraction zones of the two firms only partially intersecting.

7 Appendix

7.1 Proof of Proposition 1

Since the distribution of consumers is symmetric, we can restrict our attention
to studying the best response against any t ≤ 0. The proof of proposition 1
builds on the following three lemmas. Lemma 2 describes the best response of
firm B against any t by firm A such that t ≤ −2δ. Lemma 3 describes the best
response of firm B against any t by firm A such that −2δ < t < 0 and lemma 4
describes the best response of firm B when firm A chooses location t = 0.

Lemma 1. Best responses against t ≤ −2δ
If t ≤ −2δ, BRB(t) = {0}.

Lemma 2. Best responses against t, for −2δ < t < 0.
Three cases are to be considered:

• If δ2/σ2 ≤ 1
4 ln(2), BR

B(t) = {t+ 2δ},
• If 14 ln(2) < δ2/σ2 < 2 ln(2),

If t ≤ −a, BRB(t) = {t+ 2δ},
If t ≥ −a, BRB(t) = {t2(t)},

where a is defined in (1) and t2(.) is defined in (3).

• If δ2/σ2 ≥ 2 ln(2),

If t ≤ −a, BRB(t) = {t+ 2δ},
If −a ≤ t < −b, BRB(t) = {t2(t)}, with t2(t) < t+ 2δ if t > −a,
If t ≥ −b, BRB(t) = ∅. Firm B would like to play t + ε, ε > 0 as small as

possible,

where b is defined in (2).

Lemma 3. Best responses against t = 0

• If δ2 ≤ 1
4σ

2 ln(2), BRA(0) = {−2δ, 2δ}.
• If 14σ2 ln(2) < δ2 < 2σ2 ln(2), BRA(0) = {−t2(0), t2(0)}, where t2(.) is
defined in (3).

• If δ2 ≥ 2σ2 ln(2), BRA(0) = {0}.

11
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Proof of lemma 1.

The proof of lemma 1 is straightforward. When firm A chooses a location
tA such that tA ≤ −2δ, if firm B chooses the central modal position t = 0, the
two attraction zones do not intersect and firm B obtains the maximum possible
payoff: F (δ)− F (−δ). It is obviously the unique best response.

Proof of lemma 2.

Note first that when −2δ < tA < 0, any best response for firm B against
tA lies in

£
tA, tA + 2δ

¤
.

Indeed, it is straightforward to note that GB(t; tA) is strictly increasing in t
on
¤−∞, tA − 2δ¤ and strictly decreasing in t on £tA + 2δ,+∞£. Therefore any

best response necessarily lies in the interval
£
tA − 2δ, tA + 2δ¤.

Thus it remains to be shown that no best response lies in
£
tA − 2δ, tA£.

This is easily done by checking that if t ∈ £tA − 2δ, tA£, then GB(2tA− t; tA) >
GB(t; tA), where 2tA−t is the symmetric of t relative to tA and lies in ¤tA, tA + 2δ¤.
Informally, when selecting t in

£
tA − 2δ, tA£, firm B attracts all consumers lo-

cated in the interval
£
t− δ, 12

¡
t+ tA

¢¤
, whereas when selecting location 2tA− t,

it attracts all consumers located in the interval
h
3tA−t
2 , 2tA − t+ δ

i
. Both in-

tervals have the same “length” (12
¡
tA − t¢+ δ) but the latter is “closer” to the

modal position9, thus contains more consumers.

This preliminary remark allows us to restrict our attention to to the interval£
tA, tA + 2δ

¤
. By remark 1, we also know that, since tA < 0, t = tA is not a

best response for firm B against location tA by firm A. So if firm B has a best
response against tA, it necessarily lies in the interval

¤
tA, tA + 2δ

¤
and it is the

value of t that maximizes GB on this interval.
For t ∈ ¤tA, tA + 2δ¤, GB(t; tA) = F (t+ δ)− F ( 12(t+ tA)) and
for t ∈ ¤tA, tA + 2δ£, ∂GB(t; tA)/∂t = f(t+ δ) − 1

2f(
1
2(t+ t

A)), where f is the

density function: f(t) = 1
σ
√
2π
e−

1
2
t2

σ2 .

Some elementary algebra show that the derivative of GB with respect to t is
non negative if and only if 3t2 + 2(4δ − tA)t+ (4δ2 − (tA)2 − 8σ2 ln(2)) ≤ 0⇔
t1
¡
tA
¢ ≤ t ≤ t2 ¡tA¢,

where t1
¡
tA
¢
= 1

3

µ
tA − 4δ − 2

q
(tA − δ)

2
+ 6σ2 ln(2)

¶
9Meaning that the distance between the middle of the interval and location zero

is smaller. Indeed, the “middle” of the former interval is 1
2

£
(t− δ) + 1

2

¡
t+ tA

¢¤
=

1
4

£
tA + 3t− 2δ¤, whereas the “middle” of the latter interval is 1

2

h³
3tA−t
2

´
+
¡
2tA − t+ δ

¢i
=

1
4

£
7tA − 3t+ 2δ¤. We want to show that

¯̄
1
4

£
7tA − 3t+ 2δ¤¯̄ < ¯̄

1
4

£
tA + 3t− 2δ¤¯̄. Now, it

is straightforward to see that 1
4

£
tA + 3t− 2δ¤ < 0 and 1

4

£
tA + 3t− 2δ¤ < 1

4

£
7tA − 3t+ 2δ¤.

So if 1
4

£
7tA − 3t+ 2δ¤ < 0, this inequality necessarily holds. If 1

4

£
7tA − 3t+ 2δ¤ > 0, one

can check that 1
4

£
7tA − 3t+ 2δ¤ < −1

4

£
tA + 3t− 2δ¤⇔ tA < 0.
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and t2
¡
tA
¢
= 1

3

µ
tA − 4δ + 2

q
(tA − δ)

2
+ 6σ2 ln(2)

¶
.

Remember we restrict our search for best responses to the interval
¤
tA, tA + 2δ

¤
.

Let us first determine the relative position of t1
¡
tA
¢
, t2

¡
tA
¢
, relative to tA and

tA + 2δ. One can easily check that t1
¡
tA
¢
< tA. Besides, some elementary

algebra show that t2
¡
tA
¢ ≤ tA ⇔ tA ≥ −b, and t2

¡
tA
¢ ≤ tA + 2δ ⇔ tA ≥ −a,

where a and b are respectively defined in (1) and (2). Note that b < a.

To sum up the results so far:

• if tA ≤ −a, t1(tA) < tA < tA + 2δ ≤ t2(tA) and thus GB(t; tA) is strictly
increasing in t on

¤
tA, tA + 2δ

¤
. In that case, GB reaches its maximum in

t on the interval
¤
tA, tA + 2δ

¤
in t = tA + 2δ.

• if −a ≤ tA < −b, t1(tA) < tA ≤ t2(tA) ≤ tA + 2δ and thus GB(t; tA) is
increasing in t on

¤
tA, t2(t

A)
¤
and decreasing on

£
t2(t

A), tA + 2δ
£
. In that

case, GB reaches its maximum in t on the interval
¤
tA, tA + 2δ

¤
in t =

t2(t
A). (Note that t2(tA) = tA + 2δ for tA = −a).

• if tA ≥ −b, t1(tA) < t2(tA) ≤ tA < tA+2δ and thus GB(t; tA) is decreasing
in t on

¤
tA, tA + 2δ

¤
. In that case, GB has no well defined maximum in t

on the interval
¤
tA, tA + 2δ

¤
.

Now, remember we focus on the case tA ∈ ]−2δ, 0[. Therefore we now need to
determine the positions of −a, −b, relative to −2δ and 0. One can easily check
that both −a and −b are strictly greater than −2δ, with −a < −b. Besides,
b ≥ 0⇔ δ2/σ2 ≥ 2 ln(2) and a ≥ 0⇔ δ2/σ2 ≥ 1

4 ln(2).

Collecting all these results, one can conclude that:

• If δ2/σ2 ≤ 1
4 ln(2), −2δ < 0 ≤ −a < −b. In that case, tA ≤ −a and

therefore, the best response against tA is tA + 2δ.

• If 1
4 ln(2) < δ2/σ2 < 2 ln(2), −2δ < −a < 0 < −b. In that case, if

tA ≤ −a, the best response against tA is tA + δ.; if tA ≥ −a, the best
response against tA is t2(tA). Note that t2

¡
tA
¢
< tA + 2δ if tA > −a.

• If δ2/σ2 ≥ 2 ln(2), −2δ < −a < −b ≤ 0. In that case, if tA ≤ −a, the
best response against tA is tA + δ. If −a ≤ tA < −b, the best response
against tA is t2(tA). Note that t2

¡
tA
¢
< tA + 2δ if −a < tA < −b. If

tA ≥ −b, GB(t; tA) is decreasing in t on ¤tA, tA + 2δ¤. But by remark 1,
when tA < 0, Lim

t→tA
t>tA

GB(t; tA) > GB(tA; tA).Thus firm B would like to play

tA+ ε, ε > 0 as small as possible and BRB(tA) is not well defined in that
case.
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This concludes the proof of lemma 2.

Proof of lemma 3.

Given the symmetry of the distribution of consumers’ locations, when firm
A chooses the location tA = 0, firm B attracts exactly the same number of
consumers by playing opposite policies t or −t: ∀t ∈R, GB (t; 0) = GB (−t; 0) .
We can therefore restrict our study of GB (t; 0) to the non-negative value of
t and look for the best response (best responses) on R+. Note first that the
pay-off function GA (t; 0) is decreasing in t on the interval [2δ,+∞[. Therefore
any best response lies in the interval [0, 2δ].

A straightforward adaptation of the proof of lemma 3 for tA = 0 allows to
get the following results for tA = 0:

• If δ2/σ2 ≤ 1
4 ln(2), G

B(t; 0) is increasing in t on [0, 2δ]. Therefore, the
best non-negative response against tA = 0 is +2δ.

• If 14 ln(2) < δ2/σ2 < 2 ln(2), the best non negative response against tA = 0
is t2(0) with t2 (0) < 2δ.

• If δ2/σ2 ≥ 2 ln(2), GB(t; 0) is continuous and decreasing in t on [0, 2δ].
Therefore the best non negative response against 0 is 0.

This completes the proof of lemma 3.

7.2 Proof of Theorem 1

Given the symmetry of the game, we can restrict our attention to studying the
existence of Nash equilibria where tA ≤ 0.

We now consider in turn the three cases distinguished in Proposition 1.

Case 1. δ2/σ2 ≤ 1
4 ln(2)

We explore in turn the existence and characterization of Nash equilibria
(tA, tB) where (a) tA ≤ −2δ, (b) −2δ < tA < 0, (c) tA = 0.

(a) Suppose that (tA, tB) is a Nash equilibrium where tA ≤ −2δ. Then
it must be the case by proposition 1 (case 1) that tB = 0. But now the best
response of firm A against 0 is either −2δ or +2δ. Therefore, (tA, tB) = (−2δ, 0)
is a Nash equilibrium, and it is the unique Nash equilibrium where tA ≤ −2δ.

(b) Suppose now that (tA, tB) is a Nash equilibrium where −2δ < tA < 0.
The best response of firm B against tA is tA + 2δ (see proposition 1 case 1).
Then it must be the case that tB = tA + 2δ, which lies in the interval ]0, 2δ[.
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Now the best response against any tB in this interval is tB−2δ. This shows that
all pairs (tA, tA + 2δ) where tA ∈ ]−2δ, 0[ are Nash equilibria, and that these
are the only Nash equilibria where A selects a location in the interval ]−2δ, 0[.

(c) Suppose now that there is a Nash equilibrium with tA = 0. The best
response of firm B against tA = 0 is is either 2δ or −2δ. Then it must be
the case that tB ∈ {−2δ, 2δ}. But the best response against tB ∈ {−2δ, 2δ}
is 0. This shows that the pairs (0,−2δ) and (0,+2δ) are both Nash equilibria,
and that these are the only Nash equilibria where A selects the central position
tA = 0.

Case 2: 1
4 ln(2) < δ2/σ2 < 2 ln(2)

We explore in turn the existence and characterization of Nash equilibria
(tA, tB) wherer (a) tA ≤ −2δ, (b) −2δ < tA ≤ −a, (c) −a < tA < 0, (d)
tA = 0.

(a) Suppose that (tA, tB) is a Nash equilibrium where tA ≤ −2δ. Then it
must be the case by proposition 1 that tB = 0. But now the best response of
firm A against 0 is either −t2(0) or t2(0). Since by remark 2, 0 < t2(0) < 2δ, this
is a contradiction with tA ≤ −2δ. Thus, there is no Nash (tA, tB) equilibrium
where tA ≤ −2δ.

(b) Suppose now that (tA, tB) is a Nash equilibrium where −2δ < tA ≤ −a.
The best response of firm B against tA is tA + 2δ. Then it must be the case
that tB = tA + 2δ, which lies in the interval ]0,−a+ 2δ].
If 0 < tA+2δ < a, by proposition 1, the best response of firm A against such a

location by firmB is−t2(−(tA+2δ)). Since 0 < tA+2δ < a,−a < −(tA+2δ) < 0
and t2(−(tA + 2δ)) < −tA (see remark 2). Therefore −t2(−(tA + 2δ)) > tA,
which contradicts the fact that (tA, tB) is a Nash equilibrium.
Now, if a ≤ tA + 2δ ≤ −a + 2δ, the only best response of firm A against

tA + 2δ is tA. Therefore (tA, tB) is a Nash equilibrium where −2δ < tA ≤ −a if
and only if tB = tA + 2δ and a− 2δ ≤ tA ≤ 0. The intersection of the intervals
[−2δ,−a] and [a− 2δ, 0] is empty when a > δ and is the interval [a− 2δ,−a]
when a ≤ δ.
The condition a ≤ δ also writes 2δ2 ≤ σ2 ln 2. Thus, if 2δ2 > σ2 ln 2, there

is no Nash equilibrium where −2δ < tA ≤ −a, and if 2δ2 ≤ σ2 ln 2, any (tA, tB)
where tB = tA + 2δ and a − 2δ ≤ tA ≤ −a are Nash equilibria, and these are
the only Nash equilibria where −2δ < tA ≤ −a.

(c) Suppose now that (tA, tB) is a Nash equilibrium where −a < tA < 0.
The unique best response of firm B against tA is t2(tA) ∈

¤
0, tA + 2δ

£ ⊂ ]0, 2δ[.
The best response against t2(tA) is −t2(−t2(tA)) if t2(tA) ≤ a and t2(tA) − 2δ
if t2(tA) ≥ a. Therefore (tA, tB) is a Nash equilibrium where −a < tA < 0 iff
either (tA = −t2(−t2(tA)) and t2(tA) ≤ a) or (tA = t2(tA)−2δ and t2(tA) ≥ a).
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Let us first show that there is no equilibrium of the latter kind. By remark
2, the function t2 satisfies the property that for t ∈ ]−a, 0[, t2(t) < t + 2δ.
Therefore there is no tA, −a < tA < 0, such that tA = t2(tA)− 2δ.
Let us now turn to the existence of equilibria of the former kind. (tA, tB) =

(tA, t2(t
A)) is an equilibrium of the former kind iff −a < tA < 0 , tA =

−t2(−t2(tA)) and t2(tA) ≤ a.
Let us consider the equation tA = −t2(−t2(tA)). Let us define the function

G : R→ R, G(t) = t2(−t2(t))+t. For all t ∈ [−a, 0] , G0(t) = t02(t)t02(−t2(t))−1.
By remark 2, for any t ∈ R, |t02(t)| < 1 and |t02(−t2(t))| < 1. This shows
that G0(t) > 0 and so G is strictly increasing on R and therefore there is
at most one value for which G is equal to zero. One can easily check that
G
³
δ −p2σ2 ln(2)´ = 0. Therefore, a necessary and sufficient condition for

(tA, tB) to be an equilibrium with −a < tA < 0 is that tA = δ −p2σ2 ln(2),
tB = t2(t

A) = −
³
δ −p2σ2 ln(2)´, and −a < δ −p2σ2 ln(2) < 0. One can

easily check that −a < δ −p2σ2 ln(2) ⇔ δ2/σ2 > 1/2 ln(2) and it is always
the case that δ − p2σ2 ln(2) < 0. Therefore there is no Nash equilibrium
where −a < tA < 0 when δ2/σ2 ≤ 1/2 ln(2) and there is a unique Nash
equilibrium where −a < tA < 0 when δ2/σ2 > 1/2 ln(2), that is (tA, tB) =³
δ −p2σ2 ln(2),−δ +p2σ2 ln(2)´ .
(d) Suppose now that (tA, tB) is a Nash equilibrium where tA = 0. The

best response of firm B against tA is either t2(0) ∈ [0, 2δ] or −t2(0). Then it
must be the case that tB ∈ {−t2(0), t2(0)}. By symmetry, (0, t2(0)) is a Nash
equilibrium if and only if (0,−t2(0) is a Nash equilibrium. One can therefore
study the former situation only. The best response against t2(0) ∈ ]0, 2δ[ can not
be the central location (see proposition 1), therefore there is no Nash equilibrium
with tA = 0 when δ2/σ2 < 2 ln(2).

Case 3: δ2/σ2 ≥ 2 ln(2)

Since 0 is a best response against location at 0 by the opponent firm, the
situation where both firms choose the central location is obviously a Nash equi-
librium.

It remains to be shown that this is the unique equilibrium in that case.
Note first that since 0 is the unique best response against location at 0 by the
opponent firm, (tA, tB) = (0, 0) is the only Nash equilibrium where tA = 0. We
will prove in turn that (a) there is no nash equilibrium in which tA ≤ −2δ, (b)
there is no Nash equilibrium in which −2δ < tA < −a, (c) there is no Nash
equilibrium in which −a ≤ tA < −b and (d) there is no Nash equilibrium in
which −b ≤ tA < 0.

(a) Suppose that (tA, tB) is a Nash equilibrium where tA ≤ −2δ. Then it
must be the case by proposition 1 that tB = 0. But now the best response of
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firm A against 0 is 0, which is a contradiction with tA ≤ −2δ.Thus there is no
Nash (tA, tB) equilibrium where tA ≤ −2δ.

(b) Suppose now that (tA, tB) is a Nash equilibrium where −2δ < tA < −a.
The best response of firm B against tA is tA + 2δ. Then it must be the case
that tB = tA+2δ, where which lies in the interval ]0, 2δ − a[ ⊂ ]0, a[ Since there
is no best response against any t ∈ ]0, b], a necessary condition for (tA, tA + 2δ)
to be an equilibrium with −2δ < tA < −a is that tA = −t2(−tA − 2δ). But
0 < tA+2δ < a implies by remark 2 that t2(−tA−2δ) < −tA, which contradicts
tA = −t2(−tA−2δ). This shows that there is no Nash equilibrium (tA, tB) where
−2δ < tA < −a.

(c) Suppose now that (tA, tB) is a Nash equilibrium where −a ≤ tA < −b.
The unique best response of firm B against tA is t2(tA). Then it must be the
case that tB = t2(t

A). By remark 2, t2 is strictly decreasing on the interval
[−a,−b], therefore t2(tA) ∈ ]t2(−b), t2(−a)] = ]−b,−a+ 2δ] ⊂ ]−b, a]. The
best response against t2(tA) ⊂ ]−b, a] is 0 if t2(tA) = 0, −t2(−t2(tA)) if b <
t2(t

A) ≤ a and is not defined otherwise. Therefore a necessary condition for
(tA, tB) to be a Nash equilibrium where −a ≤ tA < −b is that either tB = 0 or
−t2(−t2(tA)) = tA. Since the best response for firm A against tB = 0 is 0, there
is no equilibrium where −a ≤ tA < −b ≤ 0 and tB = 0. Let us now consider
the equation tA = −t2(−t2(tA)). We have shown above that this equation has
a unique solution on R: tA = δ − p2σ2 ln(2). But when δ2/σ2 ≥ 2 ln(2),
δ−p2σ2 ln(2) ≥ 0. Therefore there is no equilibrium where −a ≤ tA < −b ≤ 0
and tA = −t2(−t2(tA)). This shows that there is no Nash equilibrium where
−a ≤ tA < −b.

(d) Since there is no well defined best response for firm B against any
location in [−b, 0[ by firm A, there is no Nash equilibrium where −b ≤ tA < 0.
This completes the proof of theorem 1.
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