
 

 
MULTIPLE SOLUTIONS UNDER QUASI-EXPONENTIAL 

DISCOUNTING 
 
 
 

Nicolas VIEILLE 
Jörgen W. WEIBULL 

 
 
 

 
March 2008  

 
 

Cahier n° 2008-26 
 

 

 

                              ECOLE POLYTECHNIQUE                      
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 

 

DEPARTEMENT D'ECONOMIE 
Route de Saclay 

91128 PALAISEAU CEDEX 
(33) 1 69333033 

http://www.enseignement.polytechnique.fr/economie/  
mailto:chantal.poujouly@polytechnique.edu 

 
 

ha
l-0

03
54

23
1,

 v
er

si
on

 1
 - 

19
 J

an
 2

00
9

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7310998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hal.archives-ouvertes.fr/hal-00354231/fr/
http://hal.archives-ouvertes.fr


 

 
MULTIPLE SOLUTIONS UNDER QUASI-EXPONENTIAL 

DISCOUNTING  
 

 
Nicolas VIEILLE1 

Jörgen W. WEIBULL2  

 
 

 
March  2008  

 
 

Cahier n° 2008-26 
 

 
Abstract: We consider a group or committee that faces a binary decision under uncertainty. Each 

member holds some private information. Members agree which decision should be taken in 
each state of nature, had this been known, but they may attach different values to the two 
types of mistake that may occur. Most voting rules have a plethora of uninformative 
equilibria, and informative voting may be incompatible with equilibrium. We analyze an 
anonymous randomized majority rule that has a unique equilibrium. This equilibrium is strict, 
votes are informative, and the equilibrium implements the optimal decision with probability 
one in the limit as the committee size goes to infinity. We show that this also holds for the 
usual majority rule under certain perturbations of the behavioral assumptions: (i) a slight 
preference for voting according to one’s conviction, and (ii) transparency and a slight 
preference for esteem. We also show that a slight probability for voting mistakes strengthens 
the incentive for informative voting. 
  

 
Key Words : time-consistency, hyperbolic discounting, stochastic dynamic programming, 

multiplicity, uniqueness. 
  

 
  
 
Classification JEL: C61, C73 and D91 

 
 
 

                                                           
1 HEC Paris, Department of Economics Ecole Polytechnique 
2 Stockholm School of Economics, Department of Economics Ecole Polytechnique 

ha
l-0

03
54

23
1,

 v
er

si
on

 1
 - 

19
 J

an
 2

00
9



1 Introduction

Much attention has recently been paid in the economics literature to dynamic optimization
problems with so-called hyperbolic or quasi-exponential time preferences. In such models, a
decision-maker chooses a feasible action in each period τ = 0, 1, 2, 3, .... The decision-maker
cannot pre-commit to future actions – she is free to re-optimize in every period. The decision-
maker attaches discount weights to future periods. She thus chooses a current action so as to
maximize the expected present value of the current and future instantaneous utilities, based on
anticipations of the actions she will later choose.
A distinctive feature of such models is that the preferences the decision-maker holds, while in

period τ , over future actions may differ from the preferences she will hold in period τ + 1 of the
same future actions. Therefore, the solutions to such models may exhibit dynamic inconsistency:
the actions that the decision-maker would choose in period τ if she were able to pre-commit differ
from those she will find optimal when she reaches those future periods. These models explain
certain behavioral regularities, such as under-saving and procrastination, see Strotz (1956), Pollak
(1968), Phelps and Pollak (1968), Peleg and Yaari (1973), Elster (1979), Goldman (1980), Asheim
(1997), Laibson (1997), Bernheim et al. (1999), Barro (1999), Laibson and Harris (2001) and
Krusell and Smith (2003a).1

In these studies, the time horizon is usually infinite and the decision-maker in each period
is modelled as a distinct player in the sense of non-cooperative game theory. As a result, one
obtains a sequential game with countably infinitely many players who each acts only once, but
who all care not only about their instantaneous utility in their own period but also about the
instantaneous utilities in subsequent periods, discounted by the given discount function. In
some studies, notably Phelps and Pollak (1968), the decision-makers are successive generations
in a dynasty, “selves”.2 The solution concept most commonly used is that of subgame perfect
equilibrium. Each self (generation) then maximizes the conditionally expected future utility
stream, as evaluated from (and including) the current period and state, and given the strategies
of all future selves (generations).
A by-product of such modelling assumptions is that the solution may not be unique. This

has been shown in Asilis et al. (1991), Laibson (1994), Kocherlakota (1996), Asheim (1997),
and Krusell and Smith (2003a,b). We here provide simple, intuitive and robust examples with
multiple subgame-perfect equilibria, within a canonical framework with a small number of states
and simple random shocks. We also provide a sufficient condition for uniqueness of subgame-
perfect equilibria in the special case of a single state, that is, in infinitely repeated decision
problems.3 This condition is met by the quasi-hyperbolic discount functions suggested by Phelps

1For a discussion of empirical evidence, see Eisenhauer and Ventura (2006) and the references therein.
2Saez-Marti and Weibull (2005) identify conditions under which discounting of future utilitites is consistent

with pure altruism, that is, a concern for future selves’ or generations’ welfare, as defined in terms of their
preferences.

3Harris and Laibson (2004) analyze a continuous-time model and show that stochasticity and an assumption
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and Pollak (1968) and Laibson (1997). It is also met by the hyperbolic discount functions used
in the psychology literature (see Mazur (1981), Herrnstein (1987) and Ainslie (1992)), as well as
by decision-makers with limited foresight as modelled in Jehiel (2001).
Section 2 provides an open set of simple stochastic dynamic decision problems that admit

two stationary subgame-perfect equilibria with distinct payoffs. Section 2.2 discusses a savings-
consumption example of this variety. Section 3 gives an example of multiple subgame-perfect
equilibria in a repeated decision problem faced by a consumer and it also provides our uniqueness
result for repeated decision problems.

2 Multiplicity

2.1 A class of Markov-equilibrium examples

We here demonstrate the possibility of multiple and distinct solutions to a class of dynamic
decision problems with non-exponential discounting of the frequently used (β, δ)-variety. The
setup is as follows. Time is discrete, t = 0, 1, 2, ..., and there are two states, A and B, and two
actions, a and b. In each period t and state ωt ∈ Ω = {A,B} the current decision maker, player
t, must choose an action, xt ∈ X = {a, b}. The state-action pair (ωt, xt) determines both the
current payoff or utility, u(ωt, xt), and the transition probability p(· | ωt, xt) to the state ωt+1
in the next period. Each decision maker knows the current state and strives to maximize the
conditionally expected value of the sum of current and future payoffs,

u(ωt, xt) + β
X
k>t

δk−tu(ωk, xk), (1)

for β, δ ∈ (0, 1). As shown by Saez-Marti and Weibull (2005), this is equivalent to exponentially
decaying true altruism towards future decision makers.
Given β, δ ∈ (0, 1), such a decision problem is fully specified by eight numbers: four utilities

and four probabilities. Hence, we may think of these decision problems as points in R4× [0, 1]4.4
For each action x ∈ X, let px := p(B | A, x) and qx := p(A | B, x). In other words, px is the
probability of moving out of state A and qx the probability of moving out of state B. We will
focus on the full-dimensional class P of such decision problems in which A1—3 below hold:

A1 pb−pa ≥ qa−qb > 0: Action a is more likely to lead out of state B than action b, and action
b is even more likely to lead out of state A than action a,

A2 min {u (A, a) , u (A, b)} > max {u (B, a) , u (B, b)}: The lowest payoff in state A is higher
than the highest payoff in state B,

of "instantaneous gratification" together imply uniqueness.
4Obviously, the dimension may be reduced by observing that any positive affine transformation of the payoff

function u yields a strategically equivalent decision problem.
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A3 u(ω, b) > u(ω, a) ∀ω ∈ Ω: Action b gives higher instantaneous payoff than action a, in
both states.

In other words, state A is the “good” state and B the “bad” state, and action a may be
described as “virtuous” and action b as “hedonic.”
Consider the decision problem P ∗ ∈ P defined by the table of instantaneous payoff values

A B
a 1 0
b 1 + βδ βδ

(2)

and transition probabilities pa = qb = 0 and pb = qa = 1; that is, action a leads to A for sure and
action b leads to B for sure, irrespective of the current state.5

For each action x ∈ X, let σx denote the strategy profile that always plays x, irrespective of
past play. Irrespective of the initial state, the profile σa yields a higher payoff than the profile
σb:

A B
σa 1 + β δ

1−δ β δ
1−δ

σb 1 + βδ + β2 δ2

1−δ βδ
¡
1 + β δ

1−δ
¢ (3)

Despite the fact that they yield distinct payoffs, each of these two strategy profiles constitutes a
subgame perfect equilibrium (SPE) in P ∗. To see this, consider an arbitrary time period t and
first assume that player t expects a to be played in all future periods, irrespective of the current
action. If player t would play b instead of a, the effect would be two-fold. On the one hand,
this would increase the instantaneous payoff by βδ. On the other hand, the state in the next
period, t+ 1, would then be B rather than A, so the instantaneous payoff in that period would
become one unit lower. Since player t attaches the discount factor βδ to next period, these two
effects cancel out. Hence σa is an SPE. Likewise, if player t would expect b to be played in all
future periods, irrespective of his current action, then playing a rather than b would decrease his
instantaneous payoff by βδ and increase the next instantaneous payoff by 1. Again player t is
indifferent, so also σb is an SPE.
This multiplicity is non-generic, however, in the sense that the payoffs are such that each

player is indifferent between the two actions, a and b. One may thus wonder whether there are
decision problems P near P ∗ in which the players are not indifferent between the two actions,
while still both σa and σb are SPE. We proceed to answer this question in the affirmative and
will show that the claim is robust in the sense that it holds for an open set of decision problems
close to P ∗. Formally:

Proposition 2.1 Any neighborhood of P ∗ (in R4 × [0, 1]4) contains an open set of decision
problems P ∈ P in which σa and σb are subgame perfect equilibria, yield different payoffs, and in
which no player is indifferent between actions a and b.

5This decision problem is similar in character to that in Example 3 in Asheim (1997), but simpler.
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We prove this claim in two steps. First, by identifying necessary and sufficient conditions
on a decision problem P ∈ P for σa and σb to be subgame perfect. Second, we perturb slightly
the instantaneous payoffs and transition probabilities in P ∗ in such a way that the new decision
problem still belongs to P, σa and σb remain subgame perfect with distinct payoffs, but each
player now has a strict preference for action x in the profile σx, for x = a, b.
Let P be a decision problem with instantaneous utility function u and transition probabilities

p and q satisfying A1—3.

Lemma 2.2 The strategy profile σa is a SPE in P if and only if

u(A, a)− u(B, a)

1− (1− pa − qa)δ
≥ 1

βδ
max

½
u(A, b)− u(A, a)

pb − pa
,
u(B, b)− u(B, a)

qa − qb

¾
. (4)

The strategy profile σb is a SPE in P if and only if

u(A, b)− u(B, b)

1− (1− pb − qb)δ
≤ 1

βδ
min

½
u(A, b)− u(A, a)

pb − pa
,
u(B, b)− u(B, a)

qa − qb

¾
. (5)

(See appendix for a proof.) Note that denominators on the right hand sides are positive by
A1 and that all payoff differences are positive by A2 and A3. Moreover, it is easily verified that
(4) and (5) hold with equality for P ∗.
We now take the second step by way of constructing a family of decision problems near P ∗.

For ε, λ ≥ 0, let Pε,λ be those decision decision problems in P in which

pb + qb = 1 and pa + qa = 1− ε (6)

u(A, a)− u(B, a) = 1 (7)

and
u(A, b)− u(A, a)

pb − pa
=

u(B, b)− u(B, a)

qa − qb
= λ. (8)

Observe that P ∗ ∈ Pε∗,λ∗ for (ε∗, λ∗) := (0, βδ) and that any neighborhood of (ε∗, λ∗) contains
points (ε, λ) ∈ R2+ satisfying

1

1− εβδ
<

λ

βδ
<

1

1− εδ
. (9)

It is easily verified that the two conditions in the lemma, (4) and (5), hold with strict inequality
for any P ∈ Pε,λ satisfying (9) (see appendix for a proof). Since the correspondence (ε, λ) 7→ Pε,λ

is lower hemi-continuous, any neighborhood O of P ∗ satisfies O ∩ Pε,λ 6= ∅ for all (ε, λ) close
enough to (ε∗, λ∗). Therefore, the neighborhood O of P ∗ contains at least one decision problem
P ∈ P that satisfy both (4) and (5) with strict inequality. By continuity, this still holds in a
neighborhood of P . Finally, since σa and σb induce different payoffs in P ∗, they also induce
different payoffs in any decision problem close enough to P ∗. This proves the proposition.

5
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2.2 A savings/addiction example

Consider a decision-maker, with given β, δ ∈ (0, 1), facing a decision problem P 0 ∈ P defined by
the table of instantaneous utilities

A B
a 1 0
b x1 x0

(10)

for 0 < x0 < 1 < x1 and transition probabilities pa = qb = 0 and pb = qa = 1; that is,
action a leads to A for sure and action b leads to B for sure, irrespective of the current state.
Action a could, for example, be for a consumer to “consume prudently” and action b could be to
“squander,” with state A representing “being solvent” and state B “being broke.” Alternatively,
action a could be to abstain from smoking and action b to smoke, with state A representing good
health and state B less good health.
As before, let σb denote the strategy profile that always plays b, irrespective of past play –

the permanent smoker. Let σ0a denote the strategy profile that takes action a if action b was
never taken before and otherwise takes action b. In other words, under strategy profile σ0a the
decision-maker believes that once taken, action b will always be taken, “If I take one cigarette,
then I will become a permanent smoker.” We note that these two strategy profiles agree on the
set of histories in which action b was taken in some earlier period. The payoffs to the two profiles,
starting from each of the two states, are

A B

σ0a 1 + βδ
1−δ

βδ
1−δ

σb x1 +
βδ
1−δx0

¡
1 + βδ

1−δ
¢
x0

(11)

Suppose that

x1 <
1− δ + βδ

1− δ
− βδ

1− δ
x0 (12)

and

x0 <
βδ

1− δ + βδ
(13)

Then σ0a earns more than σb in each state. Arguing in the same way as in decision problem P ∗

above, it is easily verified that strategy profile σb is subgame perfect if and only if the following
condition holds:

1− βδx0
1− βδ

≤ x1 ≤
1 + βδ

βδ
x0 (14)

We note that the lower bound on x1 is indeed lower than the upper bound if and only if
βδ < x0. Moreover, the upper bound then exceeds unity. Hence, σb is then subgame perfect in
an open set of decision problems P 0. This set is illustrated in the diagram below, for β = 0.7

6
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and δ = 0.8. This is the area above the downward-sloping straight line (the lower bound on x1)
and below the upward-sloping straight line (the upper bound on x1).

(Figure 1 here)

The strategy profile σ0a is subgame perfect if it does not pay to deviate from it in any of the
two states (i) if action b was never taken before, and (ii) if action b was taken before. As noted
above, the incentive condition in (ii) is met if and only if σb is subgame perfect, that is, if and
only if condition (14) is met. So it only remains to check the incentive condition in (i), which
amounts to the following two inequalities:

1 +
βδ

1− δ
≥ x1 +

βδ

1− δ
x0 (15)

and
βδ

1− δ
≥ x0 +

βδ

1− δ
x0. (16)

We note that (15) follows from (12) and (16) from (13). Hence, if conditions (12), (13) and (14)
are met, then not only do the two strategy profiles σ0a and σb yield distinct payoffs, but they are
also both subgame perfect. In the numerical example above, conditions (12) and (13) are met by
all points (x0, x1) to the left of the two dashed lines. For example, all points near (0.7, 1.7) meet
all these conditions. Since payoffs are continuous in the transition probabilities, all of the above
qualitative conclusions hold for all transition probabilities in a neighborhood of pa = qb = 0 and
pb = qa = 1.

2.3 A generalized savings/addiction example

The reader may feel some concern that the above analysis may depend on specific features of
the two-state case. In order to relieve this concern, we here briefly sketch a generalization of
the preceding example. Let the state space Ω now consist of K + 1 states Ω = {0, 1, . . . ,K}.
For simplicity, suppose that there are only two actions, a and b. As before, the action a can be
interpreted as “prudent”and the action b as “imprudent”. When in state k, action a leads for
sure to state k+1, while action b leads for sure to state k− 1.6 Action a (resp. b) yields a payoff
of yk (resp. of xk) when taken in state k. Suppose that:

• Both sequences (xk) and (yk) are non-decreasing: the higher the state, the higher the
instantaneous utility from both a and b.

6With the boundary conditions that when a (resp. b) is played in state K (resp. 0), the state does not change.
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• The marginal utility gain from switching from a to b, xk − yk is positive and decreasing
with k.

We will prove that, for every K and β < 1, and for δ close enough to one, there is an open set
of such values for xk and yk for which both strategy profiles σ0a and σb defined above in the special
case of two states) are subgame-perfect equilibria of the corresponding decision problem.7 We
first state necessary and sufficient conditions under which both profiles are subgame perfect, and
then proceed to deduce transparent sufficient conditions under which both profiles are subgame
perfect for all δ close enough to 1. We finally argue that these conditions are met on a open of
values of the parameters.
Let us fix xk, yk (k ∈ Ω), and denote by P the corresponding decision problem. The strategy

profile σ0a is a SPE of P if for each k, the overall utility of the decision-maker when playing b in
state k, and then sticking to σ0a does not exceed the overall utility when playing a in state k, and
then sticking to σ0a.
When 0 < k < K, the former utility is equal to

xk + β

½
δxk−1 + · · ·+ δk−1x1 +

δk

1− δ
x0

¾
(17)

while the latter is8

yk + β

½
δyk+1 + · · ·+ δK−k−1yK−1 +

δK−k

1− δ
yK

¾
. (18)

If moreover the inequality is strict for each k, the profile σ0a remains a SPE in all decision
problems in a neighborhood of P.
Observe that, as δ → 1, all these incentive conditions boil down to

yK > x0. (19)

Similarly, the strategy profile σb is a SPE of the decision problem P if for each k, the overall
utility obtained when playing a in state k, and then sticking to σb does not exceed the overall
utility when playing b in state k, and then sticking to σb.
When 0 < k < K, the former utility is equal to

yk + β

½
δxk+1 + δ2xk + · · ·+ δk+1x1 +

δk+2

1− δ
x0

¾
(20)

7In addition, since all incentive inequalities will be strict and by continuity, both σ0a and σb remain SPE if
transitions are also perturbed.

8We omit the corresponding formulas for k = 0 and k = K, as these are quite similar, with obvious and minor
adjustments.
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while the latter utility is9

xk + β

½
δxk−1 + δ2xk−2 + · · ·+ δk−1x1 +

δk

1− δ
x0

¾
. (21)

Again, if the corresponding inequality is strict for each k, the strategy profile σb remains a SPE
in some neighborhood of the decision problem P.
When subtracting (21) from (20), the necessary and sufficient condition for k 6= 0, K boils

down to
(yk − xk) + β

©
δ (xk+1 − xk−1) + · · · δk (x2 − x0) + δk+1 (x1 − x0)

ª
≤ 0. (22)

Letting now δ go to 1, it appears that (22) holds with strict inequality for all δ sufficiently close
to one, whenever

xk − yk > β {xk + xk+1 − 2x0} , for all 0 < k < K. (23)

It is readily checked that the corresponding conditions, for k = K and k = 0, boil down to

xK − yK > β {xK − x0} (24)

and
x0 − y0 > β {x1 − x0} (25)

respectively.
To summarize: both profiles σ0a and σa are subgame perfect for all δ sufficiently close to 1, if

all four inequalities (19), (23), (24) and (25) hold. It is straight-forward to verify that this set of
inequalities admits a solution if and only if β < 1.10

3 Uniqueness

Our proof of multiplicity hinges on the assumption that β < 1, since inequality (9) is violated
when β = 1. Indeed, when β = 1, each decision problem P ∈ P has a unique subgame perfect
equilibrium payoff, a fact that can be established by standard arguments for stochastic dynamic
programming under exponential discounting (see Vieille and Weibull, 2003). Another crucial
assumption behind the multiplicity result is that there are at least two distinct states. One
may thus ask about multiplicity/uniqueness of solutions when there is only one state, that is,
for infinitely repeated static decision problems. It turns out that uniqueness holds under fairly
general conditions, but not always.
In order to shed light on this issue, consider repeated decision problems of the following kind:

in each time period t = 0, 1, 2... a decision maker, player t, must choose an action xt from a set

9Again, the expressions are quite similar when k = 0 and k = K, and are omitted.
10As a simple solution, set yk = 0 for all k < K, yK = 1, x0 = 1−ε2, xk = 1 for all 0 < k < K, and xK = 1+ε,

where 0 < ε < (1− β)/β.

9
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X. This player receives the instantaneous payoff or utility u(xt). For the sake of brevity and
transparency, we focus on cases when maximization of the instantaneous utility has a unique
solution. Formally, X∗ = argmaxx∈X u (x) is a singleton set with unique element x∗. Each
player t strives to maximize the expected value of the discounted sum of payoffs

f(0)u (xt) +
∞X
k>t

f (k − t)u (xk) , (26)

where f : N → R is nonnegative, non-increasing and summable:
P∞

s=0 f(s) < +∞. A special
case of such discounting is evidently the quasi-exponential discounting analyzed in the preceding
section.
To always take the optimal action x∗ is clearly a SPE. The following example exhibit multi-

plicity of SPE outcomes in such repeated decision problems.11

Example: Consider a consumer with instantaneous Cobb-Douglas utility

u (xt1, xt2) = α1 lnxt1 + α2 lnxt2 (27)

from positive consumption xt = (xt1, xt2) in any period t, where α1, α2 > 0 and α1 + α2 = 1.
Let f be the consumer’s discount function, which we take to be nonnegative, non-increasing and
summable. Suppose that the consumer in each period faces the same prices p1 > 0 and p2 > 0
and receives the same fixed income y > 0, without any possibility of saving or transferring goods
from one period to another. This seemingly trivial decision problem seems to have a unique
solution, namely, to consume all income in each period according to xti = x∗i = αiy/pi. Indeed,
this is a subgame perfect strategy profile. However, there may exist others as well.
First, suppose that the consumer is indifferent between consuming now or in the next period:

f (1) = f(0) > 0. Let x̂ = (x̂1, x̂2) be an arbitrary positive consumption vector in the the
consumer’s budget set: p1x̂1+p2x̂2 ≤ y. We claim that the consumption sequence (x̂, x∗, x∗, · · · )
is consistent with subgame perfection. To see this, define a strategy profile σ = (σt)t∈N inductively
as follows. Strategy σ0 prescribes consumption x̂. For t > 0, the strategy σt prescribes xt = x∗

if consumption in period t − 1 was consistent with σt−1. If not, player t “punishes” player
t − 1 by choosing x̂. It is readily verified that σ constitutes a subgame perfect equilibrium
that implements (x̂, x∗, x∗, · · · ). The strategy profile is subgame perfect because a deviator’s
punishment, occurring in the subsequent period, is not discounted by the deviator, and so the
deviator’s potential utility gain never exceeds the subsequent utility loss.
Secondly, suppose that the consumer is a “classical” exponential discounter: f (t) = δt for

all t, where 1/2 < δ < 1. Let v∗ = u (x̂) / (1− δ), the present value of the optimal consumption
stream (x∗, x∗, · · · ). Let v̂ < v∗ be arbitrary. We claim that there exists a subgame perfect
equilibrium with present value v̂. Let λ = exp (v̂ − v∗), and let x̂∗0 = λx∗. Then 0 < λ < 1

11See Vieille and Weibull (2003) for a detailed analysis of both examples. The second example is close in spirit
to examples in Laibson (1994).
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and the consumption sequence (x̂0, x∗, x∗, · · · ) has present value v̂. Moreover, it is induced by a
strategy profile σ = (σt)t≥0 defined inductively as follows. Strategy σ0 prescribes consumption
x̂0. For t > 0, strategy σt prescribes consumption xt = x∗ if the consumption in period t− 1 is
consistent with σt−1. If not, player t “punishes” player t− 1 by consuming xt = x̂t, where

x̂t = λ2
t

x̂0 for t = 1, 2, ... (28)

In other words, as t increases x̂t is an ever shrinking fraction of x̂0. It is not difficult to verify
that σ is subgame perfect if δ > 1/2. To see this, consider any period t ≥ 0. If t > 0 and player
t deviates when she should play x∗, she can only loose. If she deviates when she should punish
her predecessor, then she can at most make the payoff gain

u (x∗)− u (x̂t) + δ [u (x̂t+1)− u (x∗)] = −2t+1 lnλ+ δ2t+2 lnλ (29)

an amount that is non-positive for all t ≥ 0 iff δ > 1/2.

This example shows that in order to restore uniqueness, one needs to assume a lower bound
on instantaneous payoffs (a familiar condition in dynamic programming). Moreover, the decision
maker should not be so patient that he or she is indifferent concerning postponement from the
current period to the next. The following result establishes that if the discount function is strictly
decreasing wherever it is positive, then uniqueness holds under the mentioned boundedness con-
dition:

Proposition 3.1 If infx∈X u (x) > −∞ and f (t) > f (t+ 1) for all t such that f (t) > 0, then
the unique pure subgame perfect equilibrium is to take the optimal action x = x∗ in each period.

See Appendix for a proof and a discussion of mixed SPEs. Note that the result applies to
any finite set X and quasi-exponentinal discounting of the (β, δ) variety studied in section 2.

4 Appendix

4.1 Proof of Lemma 2.2

We prove only the first claim, since the second one follows along similar lines. Denote by

W (ω) := Eω,σa

"
+∞X
t=0

δtu(ωt, at)

#
the expected, exponentially discounted payoff, induced by σa when starting from state ω.
Since W (ω) = u(ω, a) + δEp(·|ω,a)[W (·)] for ω = A,B, one has

W (A)−W (B) =
u(A, a)− u(B, a)

1− δ(1− pa − qa)
b, (30)
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which is the left-hand side of (4).
The profile σa is a SPE if and only if the decision maker, in period 0, (weakly) prefers to

play a rather than b in both states, when expecting the continuation payoff to be given by W (·).
More precisely,∀ω ∈ {A,B}:

u(ω, a) + βδEp(·|ω,a)[W (·)] ≥ u(ω, b) + βδEp(·|ω,b)[W (·)] (31)

Expanding and rewriting (31) for ω = A,B leads to the following equivalent condition:½
βδ(pa − pb) [W (B)−W (A)] ≥ u(A, b)− u(A, a)
βδ(qa − qb) [W (A)−W (B)] ≥ u(B, b)− u(B, a).

(32)

The claim then follows by use of (30). For σb, similar inequalities are obtained, and (5) follows
by finally taking the negative of both sides of the resulting inequality.

4.2 Derivation of (9)

Observe first that (4) reduces to

βδ > λ ((1− δ) + δ (pa + qa)) . (33)

Secondly, we note that the right-hand side of (5) equals −λ/βδ, and that

u(B, b)− u(A, b) = u(B, b)− u(B, a) + u(B, a)− u(A, a) + u(A, a)− u(A, b)

= λ ((pa + qa)− 1− (pb + qb)) .

Algebraic manipulations show that (5) thus reduces to

βδ < λ [(1− δ) + δ ((1− β) (pb + qb) + β (pa + qa))] . (34)

Since pb + qb > pa + qa, conditions (33) and (34) define a non-empty, open interval of λ-values.
In the special case when pb+ qb = 1, and pa+ qa = 1−ε, these conditions are together equivalent
to (9).

4.3 Proof of Proposition 2.1

In the absence of any measurable structure on X, and any regularity on u, behavior strategies
involving randomization are not even defined. To allow for such strategies, we assume that X
is a measurable set and that u : X → R is measurable. Moreover, without loss of generality,
we assume that u (x∗) = 0. Let m be the infimum (overall) payoff to player 0, taken over all
subgame perfect equilibria. We need to prove that m = 0. Let πt(σ) be the overall payoff to

player t when strategy profile σ is played. We normalize the discount factors so that
+∞X
t=0

f (t) = 1.

12

ha
l-0

03
54

23
1,

 v
er

si
on

 1
 - 

19
 J

an
 2

00
9



Step 1 : Let ε > 0 be given (conditions on ε will be imposed below). Choose a subgame perfect
equilibrium σ with π0(σ) < m+ ε. Let σ0 be the strategy profile induced by σ from period t = 1
on, after player t = 0 has chosen x∗ in period 0.
By the equilibrium condition, choosing x∗ in period 0 does not increase 0’s overall payoff:

+∞X
t=0

f (t+ 1)Eσ0 [u(xt)] ≤ π0(σ) < m+ ε. (35)

Since σ0 is a subgame perfect equilibrium, one has

π0(σ
0) =

+∞X
t=0

f (t)Eσ0 [u(xt)] ≥ m.

Hence,
+∞X
t=0

(f (t)− f (t+ 1))Eσ0 [u(xt+1)] > −ε. (36)

Step 2 : We proceed to prove, by way of contradiction, that m = 0. Suppose m < 0, and let
μ = infX u < 0. Then x = m/μ ∈ (0, 1]. Define

T0 = inf

(
T :

+∞X
t=T

f (t) <
x

3

)
. (37)

Observe that f (t) > 0 for each t < T0, and hence f (t)− f (t+ 1) > 0 for each t < T0. We also
note that T0 is finite since

P
t f (t) < +∞.

Step 3 : Let ε in Step 1 be such that ε < (f (t) − f (t+ 1)) |m| /3 for all t < T0. In particular,
ε < |m| /3. By (36), this implies Eσ0 [u(xt+1)] > m/3, for each t < T0. Therefore,

+∞X
t=0

f (t+ 1)Eσ0 [u(xt)] >
1

3
m

T0−1X
t=0

f (t+ 1) + μ
+∞X
t=T0

f (t+ 1) >
2

3
m

a contradiction to (35). Thus, m = 0.
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