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Abstract

The dynamical systems approach to stochastic approximation is gen-
eralized to the case where the mean differential equation is replaced by
a differential inclusion. The limit set theorem of Benaim and Hirsch is
extended to this situation. Internally chain transitive sets and attrac-
tors are studied in detail for set-valued dynamical systems. Applications
to game theory are given, in particular to Blackwell’s approachability
theorem and the convergence of fictitious play.

1 Introduction

1.1 Presentation

A powerful method for analyzing stochastic approximations or recursive stochas-
tic algorithms is the so-called “ODE (Ordinary Differential Equation) method”
which allow to describe the limit behavior of the algorithm in terms of the
asymptotics of a certain ODE

dz
5 = (@)
obtained by suitable averaging.

This method was introduced by Ljung (1977) and extensively studied there-
after (see e.g the books by Kushner and Yin (1997) or Duflo (1996) for a com-
prehensive introduction and further references). However until recently most
works in this direction have assumed the simplest dynamics for F'. For example
that F' is linear or given by the gradient of a cost function. While this type of
assumption makes perfect sense in engineering applications (where algorithms
are often designed to minimize a cost function) there are several situations,
including models of learning or adaptive behavior in games, for which F' may
have more complicated dynamics.

In a series of papers Benaim (1996, 1999) and Benaim and Hirsch (1996b)
have demonstrated that the asymptotic behavior of stochastic approximation
processes can be described with great deal of generality beyond gradients and
other simple dynamics. One of the key results is that the limit sets of the
process are almost surely compact connected attractor free (or internally chain
transitive sets in the sense of Conley (1978)) for the deterministic flow induced
by F.

The purpose of this paper is to show that such a dynamical system approach
easily extends to the situation where the mean ODE is replaced by a differential
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inclusion. This is strongly motivated by certain problems arising in economics
and game theory. In particular, the results here allow to give a simple and
unified presentation to Blackwell’s approachability theorem, Smale’s results on
prisoner’s dilemma, as well as convergence of fictitious play in potential games.
Many others applications will be considered in a forthcoming paper, Benaim,
Hofbauer and Sorin (2003), the present one being mainly devoted to theoretical
issues.

The organization of the paper is as follows. Part 1 introduces the different
notions of solutions, perturbed solutions and stochastic approximations asso-
ciated to a differential inclusion. Part 2 is devoted to the presentation of two
classes of examples. Part 3 is a general study of the dynamical system defined
by a differential inclusion. The main result (Theorem 3.5) on the limit set of
a perturbed solution being internally chain transitive is stated . Then related
notions: invariant and attracting sets, attractors and Lyapounov functions are
analyzed. Part 4 countains the proof of the limit set Theorem. Finally Part
5 applies the previous results to two adaptive processes in Game Theory: ap-
proachability and fictitious play.

1.2 The differential inclusion

Let F' denote a set—valued function mapping each point x € R™ to a set F(z) C
R™. We suppose throughout that

Hypothesis 1.1 (Standing assumptions on F).
(i) F is a closed set-valued map. That is
Graph(F) ={(z,y) :y € F(z)}
is a closed subset of R™ x R™.
(ii) F(z) is a nonempty compact convex subset of R™ for all x € R™.
(iii) There exists ¢ > 0 such that for all z € R™

sup ||z < ¢(1 + ||z]])
2€F(z)

where || - || denotes any norm on R™.

Definition (I) A solution for the differential inclusion

dx

o €Fx) ()
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with initial point x € R™ is an absolutely continuous mapping x : R — R™

such that x(0) = z and
dx(t)
——= € F(x(t
0 € F(x(t)
for almost every ¢t € R.
Under the above assumptions, it is well-known (see Aubin and Celina (1984),
Ch. 4.2, or Clarke et al (1998), Ch. 4.1) that (/) admits (typically non-unique)

solutions through every initial point.

Remark 1.2 Suppose a differential inclusion is given on a compact convex set
C C R™, of the form F(x) = ®(x) — z, such that ®(z) C C for all z € C and
® satisfies (i) and (ii), with R™ replaced by C. Then we can extend it to a
differential inclusion defined on the whole space R™: For x € R™ let P(z) € C
denote the unique point in C' closest to z and define F(z) = ®(P(x)) —z. Then
F satisfies Hypothesis 1.1.

1.3 Perturbed solutions

The main object of this paper are paths which are obtained as certain (deter-
ministic or random) perturbations of solutions of (I).

Definition (II) A continuous function y : Ry = [0,00) — R™ will be called
a perturbed solution to (I) (we also say a perturbed solution to F') if it satisfies
the following set of conditions (I1):

(i) y is absolutely continuous,
. dy(t)
(ii) o

[0,00) — R with §(t) — 0 as t — co. Here F%(z) := {y € R™ : 3z :
|z — z|| <6,d(y, F(z)) < ¢} and d(y, C) = inf.cc ||y — ||

U(t) € FOO(y(t)) for almost every t > 0, for some function § :

(iii) t— U(¢) is a locally integrable function such that

lim sup ||/ (s)ds|| =0

t—=00 0<p<T

for all T > 0.

The purpose of this paper is to investigate the long term behavior of y and
to describe its limit set

=({y(s):s >t}

t>0

in terms of the dynamics induced by F.

4
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1.4 Stochastic approximations

As it will be shown here, a natural class of perturbed solutions to F' arise from
certain stochastic approximation processes.

Definition (IIT) A discrete time process {Z, }nen living in R™ is a solution
of (III) if it verifies a recursion of the form

Tny1 = Tn — Ynt1Uny1 € Vo1 F(7n) (I1I)
where the characteristics v and U satisfy

e {7Vn}n>1 is a sequence of nonnegative numbers such that
Z’yn =00, lim 7, =0.
n—0o0
n

e U, € R™ are (deterministic or random) perturbations.

To such a process is naturally associated a continuous time process as follows.
Definition (IV) Set

T():OandTn:Z’yi forn > 1,
i=1

and define the continuous time affine interpolated process w : Ry — R™ by

Tn — Ty
W(Ty +8) = 2 + 5" 5 €[0,701). (V)
Tn+1 — Tn

1.5 From interpolated process to perturbed solutions

The next result give sufficient conditions on the characteristics of the discrete
process ([II) for its interpolation (IV') to be a perturbed solution (II).

Proposition 1.3 Assume that

(i) Forall T >0

k-1
7}1_{20 sup{|| Z’YiHUiH” tk=n+1,....m(m+T)}=0
where
m(t) =sup{k >0 : t > 71} (1)
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(ii) sup, ||z.|| = M < o0,

then the interpolated process w is a perturbed solution of F.

Proof Let U,v: R, — R™ denote the continuous time processes defined by
U(rn 4+ 8) = Upy1, V(70 +5) = Yns1

forallneN, 0<s<v41-
Then, for t€[r,, Thi1):

w(t) € Tm + (t = m(6)[UE) + F(zme)]
hence
W(t) € U(t) + Flan).
Let us put 6(t) = ||w(t) — Zm(||- Then obviously
Flam) € FO(w(t))
In addition:

() < Ym@ 11 [[Um(ya [l + (1 + M)]

hence goes to 0, using hypothesis (i) of the statement of the Proposition. It
remains to check condition (iii) of (II) but one has

m(t+v)—1

t+v
II/ U(s)dsl| < YmwsilUnsall + 11 Y veniUel
t £=m(t)+1

+Ym(tro)+1 | Um(t4vy+1 |

and the result follows from condition (i). QED

1.6 Sufficient conditions

Let (2, F, P) be a probability space and {F,},>o a filtration of F (i.e., a non-
decreasing sequence of sub-o-algebras of F). We say that a stochastic process
{z,} given by (I1I) satisfies the Robbins-Monro or Martingale difference noise
(Kushner and Yin, 1997) condition if its characteristics satisfy:

(i) {7} is a deterministic sequence.
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(ii) {U,} is adapted to {F,}. That is, U,, is measurable with respect to F, for
each n > 0.

(iii) E(Uny1|Fp) = 0.

The next proposition is a classical estimate for stochastic approximation
processes. Note that F' does not appear. We refer the reader to (Benaim, 1999,
Propositions 4.2 and 4.4) for a proof and further references.

Proposition 1.4 Let {x,} given by (I1I) be a Robbins-Monro process. Suppose
that one of the following condition holds

(i) For some g > 2
sup E(||U,||Y) < o0

and
Sk < oo
n

or

(ii) There exists a positive number I' such that for all § € R™

E(exp((0, Uni1))|Fn) < exp(g||9||2)

and

Ze‘c/% < 00
n

for each ¢ > 0.
Then assumption (1) of Proposition 1.3 holds with probability 1.
Remark 1.5 Typical applications are:

(i) U, uniformly bounded in L? and 7, = 1/n,

1
log(n) )

(ii) U, uniformly bounded and 7, = o(



hal-00242990, version 1 - 6 Feb 2008

2 Examples

2.1 A multistage decision making model

Let A and B be measurable spaces respectively called the action space and the
states of nature, E C R™ a convex compact set called the outcomes space and
H : A x B — F a measurable function called the outcome function.

At discrete times n = 1,2... a decision maker (DM) chooses an action a,
from A and observes an outcome H(a,,b,). We suppose that

(i) The sequence {an, by, }n>0 is a random process defined on some probability
space (€2, F, P) and adapted to some filtration {F,}. Here F, has to be
understood as the history of the process until time n.

(ii) Given the history F,, DM and nature act independently:
P((an+1, b'rH—I) € da X db‘fn) = P(an+1 € da‘FH)P(bn_HL € db‘fn)
for any measurable sets da C A and db C B.

(iii) DM only keeps track on the cumulative average of the past outcomes:

1n
= - H iabi: 2
= 3 H ) @)

and his decisions are based on this average. That is
P(ant1 € dalF,) = Qy, (da)

where @);(.) is a probability measure over A for each z € E, and z € F —
Q:(da) € [0, 1] is measurable for each measurable set da C A. The family
Q = {Qs}secr is called a strategy for DM.

This latter assumption can be justified by considerations of limited memory
and bounded rationality. It is partially motivated by Smale’s approach to the
prisoner’s dilemma (Smale, 1980) (see also Benaim and Hirsch, 1996), Black-
well’s approachability theory (Blackwell, 1956; Sorin 2002), as well as fictitious
play (Brown, 1951; Robinson, 1951) and stochastic fictitious play (Benaim and
Hirsch, 1999; Fudenberg and Levine, 1998; Hofbauer and Sandholm, 2002) in
game theory (see the examples below).
For each z € FE let

C(z) =1 H(a,b)Q.(da)v(db) : v € P(B)}

AxB
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where P(B) denotes the set of probability measures over B. Then clearly
E(H (an+1,bn11)|Fn) € C(zn) C 6(:6)

where C' denote the smallest closed set-valued extension of C' with convex val-
ues. More precisely, the graph of C is the intersection of all closed subsets
G C E x E for which the fiber G, = {y € E : (x,y) € G} is convex and
contains C(z).

For z € R™ let P(x) denote the unique point in E closest to x. Extend C
as in Remark 1.2 to a set-valued map on R™ by setting

C(z) = C(P(z)).
Then the map - R
F(z)=—-2+4+C(P(z)) = —z+ C(x) (3)

clearly satisfies Hypothesis 1.1 and {z,} verifies the recursion

1
In+1 — Tp = n—H(_xn + H(an—Hu bn—l—l))

which can be rewritten as (111)

Tpy1 — Ty € 7n+1[F(xn) + Un+1]

with ~, = % and Uy, = H(apy1,bn41) fA (@, bp41)Qy, (da). Hence, the
conditions of Proposition 1.4 are satisfied and one deduces

Proposition 2.1 The affine continuous time interpolated process (IV') of the
process {x,} given by (2) is almost surely a perturbed solution of F defined by

(3).

Example 2.2 (Blackwell’s approachability theory). A set A C E is said ap-
proachable if there exists a strategy () such that z, — A almost surely. Black-
well (1956) give conditions ensuring approachability. We will show in section
5.1 how Blackwell’s results can be partially derived from our main results and
generalized (Corollary 5.2) in certain directions.

2.2 Learning in Games

The preceeding formalism is well suited to analyze certain models of learning
in games.



hal-00242990, version 1 - 6 Feb 2008

Consider the situation where m players are playing a game over and over.
Let A" (for i € I = {1,...,m}) be a finite set representing the actions (pure
strategies) available to player 7; and let X be the finite dimensional simplex of
probabilities over A° (the set of mixed strategies for player i.). For i € I we
let A~* and X respectively denote the actions and mixed strategies available
to the opponents of 7. The payoff function to player i is given by a function
U': A" x A" — R. As usual we extend U’ to a function (still denoted U*) on
X x X7, by multi-linearity.

Example 2.3 (Fictitious and stochastic fictitious play). Consider the game
from the viewpoint of player 7 so that the decision maker is player ¢ and “na-
ture” is given by the other players. In fictitious or stochastic fictitious play
the outcome space is the space X* x X% of mixed strategies and the outcome
function is the “identity” function H : A’ x A~* — X’ x X ' mapping every
profile of actions a to the corresponding profile of mixed strategy d,.
Let
BR'(z™") = Argmax U*(a’,27") C A’
ate At

be the set of best actions that ¢ can play in response to z7°.

Both classical fictitious play (Brown, 1951, Robinson 1951) and stochastic
fictitious play (Benaim and Hirsch 1999, Fudenberg and Levine 1998, Hofbauer
and Sandholm 2002) assume that the strategy of player 7, Q" = {Q.}, can be
written as

Qy(a’) = ¢'(a’,27)
where ¢¢ : A® x X~% — [0,1] is such that
Fictitious Play Assumption :

or
Stochastic Fictitious Play Assumption : ¢’ is smooth in 2~

Z (a7 >1-96

at€ BRi(z~ %)

“ and

for some 0 < § << 1.
In this framework, if a, denotes the profile of actions at stage ¢, one has

1 n
Ip = — a
n nE =1 l

10
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and
1

n——l—l(anﬂ — Zyp)

Tp4+1 — Tp =

Thus for each 2

i i B—Ri -\ i

xn—l—l Ty € n -4+ 1( (xn ) xn)

where B—Rz(x’z) C X% is the convex hull of BR!(z~¢) for the standard fictitious
play; and BR'(z) = Y cai 4'(a’, 2 %), for the stochastic fictitious play.

Thus the set—valued map F' defined in (3) is given as
Fi(z) = —x +B—Ri(:1:_i) x X

Observe that if a subset J C I of players plays a fictitious (or stochastic
fictitious) play strategy, then F* has to be replaced by

F(z) =) Fi(2).

icJ

In particular, if all players play a fictitious play strategy, the differential inclu-
sion induced by F is the best response differential inclusion (Gilboa and Matsui
(1991), Hofbauer (1995), Hofbauer and Sorin (2002)); while if all play a stochas-
tic fictitious play, F' is a smooth best response vector field (Benaim and Hirsch
(1999), Fudenberg and Levine (1998), Hofbauer and Sandholm (2002)).

Example 2.4 (Smale approach to prisoner’s dilemma). We still consider the
game from the viewpoint of player 7 so that DM is player ¢ and nature the other
players, but we take for H the payoff vectors function:

H:A'x A S F,

a— U(a) = (U(a),...,U™(a));

where E C R™ is the convex hull of the payoff vectors {U(a)}.

This setting fits exactly with Smale’s approach to prisoner’s Dilemma (Smale,
1980) later revisited by Benaim and Hirsch (1996a). Details will be given in
section 5.2 where Smale’s approach will be reinterpreted in the framework of
approachability.

11
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3 Set valued dynamical systems

3.1 Properties of the trajectories of (/)

Let C°(R,R™) denote the space of continuous paths {z : R — R™} equipped
with the topology of uniform convergence on compact intervals. This is a com-
plete metric space for the distance D defined by

D(x,z) = Q—kmln(||x—z||[_k7k],1),
k=1

where ||.||(—kx stands for the supremum norm on C°([—k, k], R™).

Given a set M C R™ we let Sy C C°(R,R™) denote the set of all solutions
to (I) with initial conditions x € M (Sym = U,cpS:) and Saym C Su the
subset consisting of solutions x that remain in M (i.e., x(R) C M).

Lemma 3.1 Assume M compact. Then Sy is a nonempty compact set and
Su, s a compact (possibly empty) set.

Proof The first assertion follows from Aubin and Cellina (1984), section 2.2,
Thm. 1, p. 104. The second easily follows from the first one. QED

3.2 Set-valued dynamical system induced by (/).

The differential inclusion (/) induces a set-valued dynamical system {®;}icr
defined by

®,(z) = {x(t) : xis a solution to () with x(0) = z}.
The family ® = {®;}+cr enjoys the following properties:
(a) @o(z) = {z},
(b) @4(Ps(z)) = Pyys(x) for all t,s > 0,
(c) y € ®(z) =z € D_y(y) for all z,y € R™, t € R.
(d) (z,t) — P.(z) is a closed set-valued map with compact values.

Properties (a), (b), (¢) are immediate to verify and property (d) easily follows
from Lemma 3.1.
For subsets 7' C R and A C R™ we will denote

or(4) = [ 2u=)

teT €A

12
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Invariant sets

A set A C R™ is said to be:

strongly—invariant (for @) if A = ®,(A) for all t € R;

quasi—invariant if A C ®4(A) for all t € R;

semi-invariant if ®,(A) C Afor allt € R.

invariant (for F) if for all z € A there exists a solution x to (I) with x(0) =z
and such that x(R) C A.

We call a set A strongly positive invariant if ¢;(A) C A for all t > 0.

At first glance (at least for the one used to ordinary differential equations)
the good notion might seem to be the one defined by strong invariance. However
this notion is too strong for differential inclusions as shown by the simple exam-
ple below (Example 3.2), and the main notions that will be really needed here
are invariance and strong positive invariance. We have included the definition
of quasi-invariance mainly because some of our later results may be related to a
paper by Bronstein and Kopanskii (1988) making use of this notion!. Observe
however, that by Lemma 3.3 below, quasi-invariance coincides with invariance
for compact sets.

Example 3.2 (a) Let F be the set—valued map defined on R by F(z) =
—sgn(z) if z # 0 and F(0) = [—1,1]. Then ®,({0}) = {0} for ¢t > 0 and
®,({0}) = [t, —t] for t < 0. Hence {0} is invariant and strongly positively in-
variant but is not strongly invariant.

(b) Let now F(x) = z for x < 0, F(z) = 1 for x > 0 and F(0) = [0,1]. Then
®,({0}) = {0} for t < 0 and ®4({0}) = [0,¢] for ¢ > 0. Hence {0} is invariant
but not strongly positively invariant.

Lemma 3.3 FEvery invariant set is quasi—invariant. FEvery compact quasi—
mvariant set s tnvariant.

Proof Suppose A is invariant. Let € A and x a solution to (I) with x(0) = z
and x(R) C A. For allt € R we have x € ®;(x(—t)). Hence A is quasi-invariant.

Conversely suppose A is quasi—invariant and compact. Choose x € A and fix
N € N. Then for every p € N there exists, by quasi-invariance and by glueing
pieces of solutions together, a solution x, 5y to (I) such that x, y(0) = = and
for all g € {—27,...,27}, x, (%) € A. By Lemma 3.1, the sequence {x, x }pen
is relatively compact in C°([—N, N],R™). Let xx be a limit point of this se-
quence. Then for each dyadic point t = 4% where ¢ € {—27,..., 2P}, xn(t) € A.

nvariant sets in Bronstein and Kopanskii (1988) coincide with what we define here as
strongly invariant sets.

13
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Continuity of x implies xy([—N, N]) C A. Now let x be a limit point of the se-
quence {xy}yen in C°(R,R™). Then x(R) C A and x is solution to (I). QED

Remark 3.4 A invariant together with strong positive invariance
implies ¢;(A) = A for ¢ > 0.

3.3 Chain-recurrence and the limit set theorem

Given a set A C R™ and z,y € A we write x <4 y if for every ¢ > 0 and
T > 0 there exists an integer n € N, solutions x1,...x, to () and real numbers
ty,ts,...,t, greater than 7T such that

(a) xi([0,%]) C 4,
(b) ||xi(t;)) —xi+1(0)|| < e foralli=1,...,n—1,
(c) [Ix1(0) =[] <& and [|x,(tn) — yl| < e

The sequence (X1, ...X,) is called an (¢,7) chain (in A from z to y) for F.

Definition A set A C R™ is said internally chain transitive provided A is
compact and z <4 y for all z,y € A.

Lemma 3.5 An internally chain transitive set is invariant.

Proof Let A be such a set and z € A. Let (xy,...x,) be an (¢,7T) chain
from z to x. Set y.r(t) = x1(t) for 0 < ¢t < T and z.7(t) = x,(t, +¢), for
—T <t < 0. By Lemma 3.1 we can extract from (y1/p1)pen and (z1/p7)pen
some subsequences converging respectively to yr and z; where y and zy are
solutions to to (I),yr(0) = z = z1(0),y7([0,7]) C A and z¢([—7,0]) C A. The
map wr(t) = yr(t) for ¢ > 0 and wp(t) = zp(t) for ¢ < 0 is then a solution
to (I) with initial condition = and such that wr([—7,7]) C A. By Lemma 3.1
again we extract from (wr)r>o a subsequence converging to a solution w whose
range lies in A and with initial condition xz. QED

This notion of recurrence due to Conley (1978) for classical dynamical systems is
well suited to the description of the asymptotic behavior of a perturbed solution
to (I) as shown by the following theorem.

14
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Theorem 3.6 Lety be a bounded perturbed solution to (I). Then, the limit set
of ¥,

Liy) =[{y(s) : s > t}

>0

15 internally chain transitive.

This theorem is the set-valued version of the limit set theorem proved by Benaim
(1996) for stochastic approximation and Benaim and Hirsch (1996b) for asymp-
totic pseudo trajectories of a flow. We will deduce it from the more general
results of section 4.

3.4 Limit sets

The set
we(z) == ﬂ Dpt, 00) (7)

>0

is the w-limit set of a point z € R™. Note that we(z) contains the limit sets
L(x) of all solutions x with x(0) = x but is in general larger than the union of
these.

In contrast to the limit set of a solution, the w—limit set of a point need not be
internally chain transitive.

Example 3.7 Let F be the set—valued map defined on R by F(z) =1 — x for
x> 0and F(0) =[0,1] and F(z) = —z for z < 0. Then for every solution x, one
has lim;_,o, x(t) = 0 or 1. But wg(0) = [0, 1] is not internally chain transitive.

More generally one defines

we(Y) = ﬂ W

>0

Definition A set Y is forward precompact if ®p)(Y) is compact for some
t > 0.

Lemma 3.8 (i) we(Y) is the set of points p € R™ such that
p= lim y,(t,)

for some sequence {y,} of solutions to (I) with initial conditions y,(0) €
Y and some sequence {t,} € R with t,, — oc.
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(ii) we(Y) is a closed invariant (possibly empty) set. If Y is forward precom-
pact, then we(Y) is nonempty and compact.

Proof (i) is easily seen from the definition.

(17) Let p = limy, 00 Yu(tn) € wa(Y). Set z,(s) = yn(tn + s) for all s € R.
By Lemma 3.1 we may extract from (z,),>o a subsequence converging to some
solution z with z(0) = p and z(s) = limy,, 00 Y, (tn, +5) € we(Y"). This proves
invariance. The rest is clear. QED

Note that the limit set we(Y') is in general not strongly positively invariant
(e.g., in Example 3.7 for z < 0, we(z) = {0}.)

3.5 Attracting sets and attractors

For applications it is useful to characterize L(y) in terms of attractors for .
Given a closed invariant set L, the induced set valued dynamical system ®' is
the family of (set—valued) mappings ®* = {®} },cg defined on L by

®F () = {x(t) : x is a solution to (I) with x(0) = z and x(R) C L}.

Note that L is strongly invariant for ®~.

Definition A compact set A C L is called an attracting set for ®* provided
there is a neighborhood U of A in L (i.e for the induced topology) with the
property that: for every € > 0 there exists . > 0 such that

o (U) € N°(4)

for all t > t.. Or, equivalently, @[Lts’oo)
e—neighborhood of A.

If additionally A is invariant, then A is called an attractor.

The set U is called a fundamental neighborhood of A for ®%. If A # L and A # ()
then A is called a proper attracting set (or proper attractor) for ®.

(U) € N¢(A). Here N¢(A) stands for the

Example 3.9 Let F be the set-valued map from Example 3.2 (a), i.e., defined
on R by F(z) = —sgn(z) if z # 0 and F(0) = [—1, 1]. Then {0} is an attractor
and every compact set A C R with 0 € A is an attracting set.

Proposition 3.10 Let A be a non-empty compact subset of L and U a neigh-
borhood of A in L. Then

16
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(i) A is an attracting set for ®F with fundamental neighborhood U if and only
if U is forward precompact and wer(U) C A. In this case wer (U) is an
attractor.

(ii) A is an attractor for ® with fundamental neighborhood U if and only if U
is forward precompact and wer(U) = A.

Proof (i) If A is an attracting set for ®* with fundamental neighborhood U
then wer(U)C().5oN(A)CA. Conversely, for ¢ large enough V; = <I>[Lt,oo)(U)
defines a decreasing family of compact sets converging to wgr(U)CA . Hence
for any € > 0, there exists ¢, with V;, CN¢(A) and A is an attracting set. In
particular, wez (U) itself is an attracting set, invariant by Lemma 3.8 (ii).

(17) If A = wer(U) then A is an attractor by (i). Conversely, if A is an
attractor with fundamental neighborhood U then we(U) C A by (7). Let € A.
Since A is invariant there exists a solution y to (/) with y(0) = z and y(R) C A.
Set y,(t) =y(t —n). Then y,(n) = x proving that x € wer(U) (by Lemma 3.8,
(i)). QED

Proposition 3.11 An attractor is strongly positively invariant.
(Example 3.2 (a) provides an attractor that is not strongly invariant.)

Proof By invariance A C ®%(A) for all T > 0. Hence, given ¢ > 0
O (A) C 7, p(A) C B (U) C (I)[Lt+T,oo)(U)

for all T > 0. Thus ®L(A) C N¢(A), for all € > 0; hence ®L(A) C A for all
t>0. QED

Remark 3.12 In the family of attracting sets A with a given fundamental
neighborhood U, there exists a minimal one, which is in addition invariant,
strongly positively invariant and independent of the set U used to define the
family. It is also the largest positively quasi-invariant set included in U.

Any attractor A C L can be written as A = wer (U) for some U. Hence any
fundamental neighborhood uniquely determines the attractor A. This implies
as in Conley (1978) that ®L can have at most countably many attractors.

17
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3.6 Attractors and stability

Definition. A set A C L is asymptotically stable for ®F if it satisfies the
following three conditions.

(i) A is invariant.

(ii) A is Lyapunov stable, i.e., for every neighborhood U of A there exists a
neighborhood V' of A such that ® .y(V) C U.

(iii) A is attractive, i.e., there is a neighborhood U of A such that for every
z € U: we(z) C A.

Alternatively, instead of (iii) one could ask for the weaker requirement

(iii”) There is a neighborhood U of A such that for every solution x with
x(0) € U one has L(x) C A.

We show now the equivalence of attractor and asymptotic stability. The
proof of Corollary 3.18 below shows that it makes no difference whether one
uses (iii) or (iii’) in the definition of asymptotic stability.

We start with an upper bound for entry times.

Lemma 3.13 Let V be an open set and K compact such that for all solutions
x with x(0) € K there is t > 0 with x(t) € V. Then there erists T > 0 such
that for every solution x with x(0) € K there ist € [0,T] with x(t) € V.

Proof Suppose there is no such upper bound 7T for the entry times into V.
Then for each n € N there is x,, € K and a solution x,, such that x,(t) ¢ V
for 0 < t < n. Since K is compact we can assume that x, — x € K. And by
Lemma 3.1 a subsequence of x,, converges to a solution x with x(0) = z and
x(t) ¢ V forallt > 0. QED

Lemma 3.14 If a closed set A is Lyapunov stable then it is strongly positively
mvariant.

Proof A is the intersection of a family of strongly positively invariant neigh-
borhoods. QED

Lemma 3.15 If a compact set A satisfies (ii) and (iii’), it is attracting.

18
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Proof Let B be a compact neighborhood of A, included in the fundamental
neighborhood U and let W be a neighborhood of A. A being Lyapunov stable,
there exists an open neighborhood V' of A with <I>[L0700)(V) C W. For any x € B
and any solution x with x(0) = z, there exists ¢ > 0 with x(¢) € V. Applying
Lemma 3.13 implies ®%(B) C @y 1y(V) hence ®f;, (B) C W and A is attract-
ing. QED

Lemma 3.16 If a compact set A is attracting and strongly positively invariant
it s Lyapunov stable.

Proof Let A be attracting with fundamental neighborhood U, and V' be any
other (open) neighborhood of A. Then by definition there is 77 > 0 such that
CIJ[LT,OO)(U ) C V. A being strongly positively invariant qﬁ[LO,T] (A) C A. Uppersemi-
continuity gives an € > 0 such that qb[LO,T](NE(A)) C V and N¢(A) C U. Hence

®fy )(N(4)) C V which shows Lyapunov stability. QED

Corollary 3.17 Properties (ii) and (iii’) are equivalent to attracting and strong
positive invariance.

Corollary 3.18 A compact set A is an attractor if and only if it is asymptoti-
cally stable.

We conclude with a simple useful condition ensuring that an open set con-
tains an attractor.

Proposition 3.19 Let U be an open set with compact closure. Suppose that

& (U) € U for some T > 0. Then U is a fundamental neighborhood of an
attractor A.

Proof Since ® has a closed graph ®r(U) is compact. Therefore &7(U) C V C
V' C U for some open set V. By upper semi continuity of ®r (which follows
from property (d) of a set-valued dynamical system) there exists ¢ > 0 such

that ®,(U) C VforT—e <t <T+e. Let to =T(T+1)/e. For all t > t, write
t = kT +r with kéN and r < T. Hence t = k(T +r/k) with 0 < r/k < . Thus

(Dt(U) = (DT-H"/k: 0...0 ®T+1'/k:(U) cV.

Hence we(U) = (Visy, Pty (U) € V C U is an attractor with fundamental
neighborhood U. QED
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3.7 Chain transitivity and attractors

Proposition 3.20 Let L be internally chain-transitive. Then ®L has no proper
attracting set.

Proof Let ACL be an attracting set and U, ¢, as in the definition. Assume A#L
and choose € small enough so that N?(A)CU and there exists y € L\ N*(A).
Then, for T > t. and z€A, there is no (g,7) chain from z to y. In fact,
x1(0) € N*(A), hence x;(t;) € N°(A); by induction x;(t;) € N¢(A) so that
x;1+1(0) € N*(A) as well. A contradiction. QED

Remark 3.21 This later proposition can also be deduced from Theorem 1 in
Bronstein and Kopanskii (1988) combined with Lemma 3.1. Also the converse
is true.

An attracting set (respectively attractor) for ® is an attracting set (respec-
tively attractor) for ®* with L = R™.

Lemma 3.22 Let A be an attracting set for ® and L a closed invariant set.
Assume ANL # 0. Then AN L is an attracting set for ®F.

Proof follows from the definitions. QED

If A is a set then
B(A) ={z € R": we(z) C A}

denote its basin of attraction.

Theorem 3.23 Let A be an attracting set for ® and L an internally chain
transitive set. Assume L N B(A) # 0. Then L C A.

Proof Suppose L N B(A) # (. Then there exists a solution x to (I) with
x(0) = x € B(A) and x(R) C L. Hence d(x(t), A) — 0 when t — oo proving
that L meets A. Proposition 3.20 and Lemma 3.22 imply that LCA. QED

A global attractor for ® is an attractor whose basin of attraction consists
of all R™. If a global attractor exists then it is unique and coincides with the
maximal compact invariant set of ®. The following corollary is an immediate
consequence of Theorem 3.23 or even easier of Lemma 3.5.

Corollary 3.24 Suppose ® has a global attractor A. Then every internally
chain transitive set lies in A.
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3.8 Lyapunov Functions

Proposition 3.25 Le_tA be a compact set, U C R™ be a bounded open neigh-
borhood of A and V : U — [0,00|. Let

(i) Forallt >0, ®,(U) C U, (i.e., U is strongly positively invariant)
(ii) V71(0) = A,
(iii) V is continuous and for allx € U\ A,y € ®(z) and t > 0, V(y) < V(x).

(iv) V is upper semi continuous and for all x € U\ A,y € ®y(x) and t > 0,
V(y) < V(z).

a) Under (1), (i1) and (iii), A is a Lyapunov stable attracting set and there
exists an attractor contained in A whose basin contains U, and with V~1([0,1))
as fundamental neighborhoods for small r > 0.

b) Under (i), (it) and (iv), there exists an attractor contained in A whose
basin contains U.

Proof For the proof of a), let r > 0 and U, = {xr € U : V(z) < r}. Then
{U,},>0 is a nested family of compact neighborhoods of A with ﬂ'r>0U7" = A.
Thus for r > 0 small enough, U, C U. Moreover @t(UT) C U, for t > 0 by our
hypotheses on U and V. Proposition 3.19 then implies the result.

For b), let A = we(U) which is closed and invariant (Lemma 3.7), hence
compact, since included in U. Let o = maxyec4 V (y) reached at z, since V is
scs. By invariance there exists x solution and ¢ > 0 with z = x(0) € A and
x(t) = z. This contradicts (7v) unless & = 0 and A C A. Thus U is a neighbor-
hood of A which is an attractor included in A. QED

Remark 3.26 One can show that to every attractor A there exists a function V'
such that Proposition 3.25 (iv) holds for A = A. Take V' (z) = max{d(y, A)g(t);y €
®y(x),t > 0}. where d > g(t) > ¢ > 0 is any continuous strictly increasing func-
tion.

Let A be any subset of R™. A continuous function V : R™ — R is called a
Lyapunov function for A if V(y) < V(z) for all z € R™ \ A,y € ®(x),t > 0;
and V(y) < V(z) forallz € A,y € ®;(x) and ¢t > 0. Note that for each solution
x, V is constant along its limit set L(x).

The following result is similar to Proposition 6.4 in Benaim (1999).
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Proposition 3.27 Suppose V is a Lyapunov function for A. Assume that V (A)
has empty interior. Then every internally chain transitive set L is contained in
A and V|L is constant.

Proof Let
v=inf{V(y) : yeL}.

Since L is compact and V' is continuous, v = V(x) for some point z€L. Since
L is invariant there exists a solution x with x(¢) € L and x(0) = z. Then
v = V(z) > V(x(t)) is impossible for ¢ > 0. Since x(t)€®P;(x), we conclude
TEA.

Thus v belongs to the range V(A). Since V(A) contains no interval there is
a sequence v, ¢V (A) decreasing to v. The sets L, = {z€L : V(z) < v,} sat-
isfy ®,(L,)CL, for t > 0. In fact either z€ ANL, and V(y) < V(z) < v, or
V(y) < V(z) < vy, for any ye®,(z), t > 0.

Thus using Proposition 3.19 and Proposition 3.20 one obtains L = [, L, =
{z€L : V(z) = v}. Thus V is constant on L. L being invariant this implies as
above LCA. QED

Corollary 3.28 Let V and A be as in Proposition 3.27. Suppose furthermore
that V is C™ and A is contained in the critical points set of V. Then every
internally chain transitive set lies in A and V'|L is constant.

Proof By Sard’s theorem (Hirsch, 1976, p. 69) V(A) has empty interior and
Proposition 3.27 applies. QED

4 The limit set Theorem

4.1 Asymptotic pseudo trajectories for set-valued dy-
namics

The translation flow ©: C°(R,R™)xR— C°(R, R™) is the flow defined by
O'(x)(s) = x(s + 1)

A continuous function z : Rt —R™ is an asymptotic pseudo trajectory (APT)
for @ if
lim D(©(2), Sy) =0 (4)

t—00
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(or lim;_,o, D(©*(2), S) = 0, where S = |J,cpm Sz denotes the set of all solutions

of (I).)

Alternatively, for all T’

lim inf su z(t+s) —x(s)||=0
fim - Gf OSngjﬂ (t+s) —x(s)]

In other words, for each fixed 7', the curve
[0, T]=R™ : s—z(t + s)

shadows some ® trajectory of the point z(¢) over the interval [0, 7] with arbi-
trary accuracy for sufficient large ¢t. Hence z has a forward trajectory under ©
attracted by S. As usual one extends z to R by letting z(t) = z(0) for ¢ < 0.

The next result is a natural extension of Theorem 7.2 in Benaim and Hirsch
(1996).

Theorem 4.1 (Characterization of APT)

Assume z is bounded. Then there is equivalence between

(i) z is an APT for ®.

(1) z is uniformly continuous and any limit point of {©%(z)} is in S.
In both cases the set {©%(z);t > 0} is relatively compact.

Proof By hypothesis, K = {z(t);t > 0} is compact.

For any € > 0, there exists n > 0 such that ||z — z|| < /2, for any z€ K, any
2€®,(x), and any |s| < n using property (d) of the dynamical system.

z being an APT, there exists 7" such that ¢ > T implies

d(z(t + s),®s(z(t))) <e/2, V|s|<n

hence
|z(t+s) —z(t)]| <e

and z is uniformly continuous. Clearly any limit point belongs to S by the
condition (4) above.

Conversely, if z is uniformly continuous, then the family of functions {©%(z); ¢ >
0} is equicontinuous and hence (K being compact) relatively compact by As-
coli’s theorem. Since any limit point belongs to S, property (4) follows. QED
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4.2 Perturbed solutions are APT
Theorem 4.2 Any bounded solution'y of (II) is an APT of (I).

Proof Let us prove that y satisfies condition (ii) in the previous Theorem.
Set v(t) = y(t) — U(t) € F®")(y(t)). Then,

y(t+s)—y(t) = /05 v(t+ 7)dT + /:ﬂ U(r)dr. (5)

By assumption (iii) of (I7), the second integral goes to 0, as t — o0o. The
boundedness of y, y(R)CM, M compact (combined with the fact that F
has linear growth) implies boundedness of v and shows that y is uniformly
continuous. Thus the family ©%(y) is equicontinuous, hence relatively com-
pact. Let z = lim;,_,,, ©™(y) be a limit point. Set ¢ = ¢,, in (5) and define
Un(8) = v(t, + s). Then, using the assumption (iii) on U, the second term in
the right hand side of this equality goes to zero uniformly on compact intervals
when n — oo. Hence

z(s) — z(0) = lim v (7)dT.
n—0o0 0

Since (vy,) is uniformly bounded, it is bounded in L?[0, s] and by the Banach—
Alaoglu theorem, a subsequence of v, will converge weakly in L?[0, s] (or weak*
in L*[0, s]) to some function v with v(¢) € F(z(t)), for almost every ¢, since
vn(t) € FOt+tn) (y(t4t,)) for every t. Here we use (ii) and that F is upper semi
continuous with convex values. In fact by Mazur’s theorem a convex combi-
nation of {v,,,m > n} converge a.s. to v and lim,,_,0 Co(U, >, F*¢H) (y(t +
tn)))CF (2(t)). Hence z(s) —z(0) = [ v(r)dr, proving that z is a solution of
(I) and hence z € Sy . QED

4.3 APT are ICT

Theorem 4.3 Let z be a bounded APT of (I). Then L(z) is internally chain
transitive.

Proof The set {©%(z) : ¢ > 0}, is relatively compact, hence the w—limit set

of z for the flow ©
we(z) = [){0°(z) : s > t}.

>0

24



hal-00242990, version 1 - 6 Feb 2008

is internally chain transitive (by standard properties of w-limit sets of bounded
semiorbits, wg(z) is a nonempty, compact, internally chain transitive set invari-
ant under ©, see Conley (1978) ; a short proof is in Benaim (1999), Corollary
5.6). By property (4), we(z) C S, the set of all solutions of (I).

Let IT: (C°(R,R™),D) — (R™, || - ||) be the projection map defined by I1(z) =
z(0). One has [I(we(z)) = L(z). In fact if p = lim,,_,o 2(%,), let w be a limit
point of O (z). Then w € we(z) and II(w) = p.

It then easily follows that L(z) is nonempty compact and invariant under &
since wg(z)CS. Since II has Lipschitz constant 1, IT maps every (e, 7) chain for
© to an (¢,T) chain for ®. This proves that L(z) is internally chain transitive
for . QED

5 Applications

5.1 Approachability

An application of Proposition 3.25 is the following result which can be seen
as a continuous asymptotic deterministic version of Blackwell’s approachability
theorem (Blackwell, 1956). Note that one has no property on uniform speed of
convergence.

Given a compact set A € R™ and z € R™ we let I (z) = {y € A : d*(z,A) =
|z —ylI* ={z -y, —y)}.

Corollary 5.1 Let A C R™ be a compact set, ¥ > 0 and U = {x € R™ :
d(z,A) < r}. Suppose that for all x € U \ A there exists y € IIx(x) such that
the affine hyperplane orthogonal to [x,y] at y separates x from x + F(x). That
18

(z—y,z—y+v) <0 (6)

for allv € F(z). Then A contains an attractor for (I) with fundamental neigh-
borhood U.

Proof Set V(z) = d(x,A). To apply Proposition 3.25 it suffices to verify con-
dition (7i7) of Proposition 3.25. Condition (z) will follow and condition (7) is
clearly true.

Let x be a solution to (/) with initial condition z € U \ A. Set 7 = inf{t >
0: x(t) € A} < o0, g(t) = V(x(t)) and let I C [0,7] be the set of 0 <t < 7
such that ¢'(t) and %(#) exist and x(¢) € F(x(t)). Forallt € I and y € T15(x(%))

g(t+h) —g@) < [Ix(t+h) —yll = [Ix(#) =yl
= [[x(t) +x(@)h = yl| = [Ix(t) = yll + |hle(h)
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where limy_,ge(h) = 0. Hence

! 1 X
IS =g <O X0
1 .
=—g(t) + m(x(t) —y,x(t) — y + x(t))-

Thus, 2€F(z) and (6) imply ¢'(t) < —g(t) for all ¢ € I. Since g and x are
absolutely continuous, I has full measure in [0, 7[. Hence g(t) < e~'g(0) for
all t < 7. Therefore V(x(t)) < V(z) for all 0 < ¢ < 7, which shows ().
Finally V(x(¢)) < e7'V(x) shows that the sets V~1[0,7') (with 0 < 7' < r) are
fundamental neighborhoods of the attractor in A. QED

In particular, if any point of £ has a unique projection on A (for example A
convex) C = C and one recovers exactly Blackwell’s sufficient condition for
approachability.

Corollary 5.2 (Blackwell’s approachability theorem). Consider the decision
making process described in section 2.1, example 2.2. Let A C E be a compact
set. Assume that there exists a strategy Q such that for all z € E\ A there exists
y € la(z) such that the hyperplane orthogonal to [x,y] through y separates x
from C(z). Then A is approachable.

Proof Let L(z,) denote the limit set of {z,}. Theorem 3.6 with Proposition
2.1, Corollary 5.1 and Corollary 3.24 imply that L(z,) is almost surely con-
tained in A. QED

5.2 Smale’s approach to prisoner’s dilemma

We develop here example 2.4. Consider a 2 x 2 “Prisoner’s Dilemma game”.
Each player has two possible actions: Cooperate (play C) or Defect (play D). If
both cooperate, each receives «; If both defect each receives \; if one cooperates
and the other defects the cooperator receives 5 and the defector v. We suppose
that v > a > XA > [ as it is usual with a prisoner’s dilemma game. We
furthermore assume that

y—a<a-—pf

so that the outcome space E is the convex quadrilateral whose vertices are the
payoff vectors

CD = (3,7),CC = (a,a),DC = (v, 5),DD = (A, \).
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The outcome space FE

Let 6 be a nonnegative parameter. Adapting Smale (1980) and Benaim and
Hirsch (1996), a d—good strategy for player 1 is a strategy Q' = {QL} (as
defined in section 2.1) enjoying the following features:

QL(play C) =1if 2 > a2,
and
Ql(play C) = 0 if 2* < 2* — 6.

The following result reinterprets the results of Smale (1980) and Benaim and
Hirsch (1996) in the framework of approachability. It also provides some gen-
eralization (see the remark 5.4 below).

Theorem 5.3 (i) Suppose that player 1 plays a 6—good strategy. Then the set
A={z€E: 2*-6§<2' <2?}
18 approachable.

(ii) Suppose that both players play a d—good strategy and that at least one
of them is continuous (meaning that the corresponding function r —
Q' (play C) is continuous). Then

lim z, = CC

n—oo

almost surely.
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Proof (i). Let x € E\ A. If ' > z? then
C(z) = C(z) = [CC,CD]

and the line {u € R? : u! = u?} separates z from C(z). Similarly if 2! < 22 —§
then B
C(z) = C(x) = [DD,DC]

which is separated from z by the line {u € R? : u' = u*—§}. Assertion (7) then
follows from Corollary 5.2.

(7). If both play a —good strategy, then (i) and its analogue for player 2
implies that the diagonal

A={reE:z' =2}

is approachable. Thus L(z,) C A. Also (by Proposition 2.1, Theorem 3.6 and
Lemma 3.5) L(z,) is invariant under the differential inclusion induced by

F(z) = —z + C(x)

where C(z) = C'(z) N C?(z) and C*(x) is the convex set associated to Q° (the
strategy of player 7). Suppose that one player, say 1, plays a continuous strategy.
Then C(z) C Cl(z) = C*(z) and for all z € A, C'(z) = [CD, CC]. Now, there
is only one subset of A which is invariant under & € —z + [CD, CC]; this is the
point CC. This proves that L(z,) = CC. QED

Remark 5.4 (i) In contrast to Smale (1980) and Benaim and Hirsch (1996)
observe that assertion (i) makes no hypothesis on player 2’s behavior. In
particular it is unnecessary to assume that player 2 has a strategy of the
form defined by section 2.1.

(ii) The regularity assumptions (on strategies) are much weaker than in Benaim
and Hirsch (1996).

(iii) A 0—good strategy makes the diagonal A approachable. However if both
players play a 0—good strategy, then C(z) = FE for all x € A and we are
unable to predict the long term behavior of {z,} on A.

5.3 Fictitious Play in Potential Games

Here we generalize the result of Monderer and Shapley (1996). They prove
convergence of the classical discrete fictitious play process, as defined in Exam-
ple 2.3, for n-linear payoff functions. Harris (1998) studies the best response
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dynamics in this case, but does not derive convergence of fictitious play from
it. Our limit set theorem provides the right tool for doing this, even in the
following, more general setting.

Let X;,7 = 1,...n be compact convex subsets of Euclidean spaces and
U:X; x+xX, = R be a C! function which is concave in each variable.
U is interpreted as the common payoff function for the n players. We write
T = (2;,2_;) and define BR;(2_;) := Argmax, . U(z) the set of maximizers.
Then z — BR(z) = (BRy(2_1),... BR,(2_,)) is u.s.c. (by Berge’s (1966) Max-
imum Theorem, since U is continuous) with nonempty compact convex values.
Consider the best response dynamics

x € BR(x) — x. (7)

Its constant solutions x(¢) = % are precisely the Nash equilibria & € BR(%),
ie., U(z) > Uz, z—;) for all i and x; € X;. Along a solution x(¢) of (7), let
u(t) = U(x(t)). Then for almost all ¢ > 0,

i) = > SO ®)

Vv

Z [U(i(t) + xi(t), x4(t)) = U(x(2))] 9)

= Z [max Uy, x—(t)) —U(x(t))| > 0. (10)
Py yi€X;

where from (8) to (9) we use the concavity of U in z;, and (10) follows from (7)

and the definition of BR;. Since the function ¢ — wu(?) is locally Lipschitz, this

shows that it is weakly increasing. It is constant in a time interval 7', if and

only if x;(t) € BR;(x_;(t)) for all t € T and i = 1,...n, i.e., iff x(¢) is a Nash

equilibrium for ¢ € T' (but x(¢) may move in a component of NE with constant

U).

Theorem 5.5 The limit set of every solution of (7) is a connected set of NE,
along which U is constant. If furthermore the set U(NFE) contains no interval
in R then the limit set of every fictitious play path is a connected set of NE
along which U is constant.

Proof The first statement follows from above. The second statement follows
from Theorem 3.6 together with Propositon 3.27 with V = —U and A the set
of NE.
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Remark 5.6 The assumption that the set U(/NE) contains no interval in R
follows via Corollary 3.28 if U is smooth enough (e.g., in the n-linear case) and
if each X; has at most countably many faces, by applying Sard’s lemma in the
interior of each face.

Example 5.7 2 x 2 coordination game. The global attractor of (7) consists of
three equilibria and two line segments connecting them. The internally chain
transitive sets are the three equilibria. Hence every fictitious play process con-
verges to one of these equilibria.

The case of (continuous concave-convex) two—person zero-sum games was
treated in Hofbauer and Sorin (2002) where it is shown that the global attractor
of (7) equals the set of equilibria. In this case the full strength of Theorem 3.6
and the notion of chain transitivity are not needed, the invariance of the limit
set, of a fictitious play path implies that it is contained in the global attractor,
compare Corollary 3.24.
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