
 

       GREQAM 
   Groupement de Recherche en Economie 

Quantitative d'Aix-Marseille - UMR-CNRS 6579 
Ecole des Hautes Etudes en Sciences Sociales 

Universités d'Aix-Marseille II et III  

Document de Travail 
         n°2007-20

 
 

 
CONSISTENT DYNAMICE CHOICE AND 

NON-EXPECTED UTILITY PREFERENCES 
 
 
 
 

André LAPIED  
Pascal TOQUEBEUF       

 
  
 
 
 
 
 

October 2007 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
 
 
 

ha
ls

hs
-0

03
53

88
0,

 v
er

si
on

 1
 - 

16
 J

an
 2

00
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7310967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://halshs.archives-ouvertes.fr/halshs-00353880/fr/
http://hal.archives-ouvertes.fr


André Lapied, Pascal Toquebeuf 

 1 

1. Introduction 

 

NonExpected Utility (NEU) models of choice under uncertainty have generated 

a growing interest over the last decades among decision theorists. In situations of 

uncertainty (i.e. where probability distributions on the outcomes are not given), these 

models allow to describe Ellsberg-type preferences by taking into account attitude 

toward uncertainty. In this paper, we focus on two approaches, namely Choquet 

Expected Utility (CEU) model and Multiple Priors (MP) model. This raises an 

important theoretical issue: how could NEU models be used in multi-stage decision 

problems? To preserve rationality in such situations, several principles can be 

imposed.  

Sarin and Wakker (1998) show that under CEU, consequentialism, dynamic 

consistency and their sequential consistency property imply that deviations from 

Expected Utility (EU) are allowed in only one stage, the last one. Ghirardato (2002) 

shows that consequentialism and dynamic consistency together with standard 

assumptions imply that an EU representation exists in all stages. This paper first aims 

at explaining this paradox. We show that the only difference between these results is 

due to Ghirardato’s (2002) assumption that the Decision Maker (DM) does not care 

about the timing of the resolution of uncertainty (Kreps and Porteus (1978)). In other 

words, in his set-up, the DM satisfies a subjective version of reduction of compound 

lotteries (RCL) axiom (Ghirardato (2002, p. 86)) of Von-Neumann and Morgenstern. 

In settings of ‘objective uncertainty’, or risk, Karni and Schmeidler (1991) show that if 

consequentialism and RCL hold together, then the dynamic consistency property is 

equivalent to the independence axiom of choice under risk in one-stage decision 

problems. In an identical set-up, Volij (1994) shows that given dynamic consistency 

and any of the two other concepts (consequentialism and RCL), the third is equivalent 

to the independence axiom.  

Concerning MP model, Sarin and Wakker (1998) show that it can be applied to 

dynamic choice situations without restrictions. This result contrasts with the ‘folk 

theorem’ of decision theory, which enounces that consequentialism and dynamic 

consistency together imply Savage’s postulate P2 (Sure Thing Principle). This 
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constitutes a second paradox, because MP model weakens Sure Thing Principle (STP). 

We show that these dynamic choice principles impose the same restrictions on MP and 

CEU. 

 In section 2, we present set-up and axioms, and prove a version of the folk 

theorem. In section 3, we present our result for CEU model. Section 4 reports results 

for MP model. For simplicity, section 3 and 4 only consider dynamic decision 

problems with two stages, two first stage events and two second stage events. Section 

5 extends our results to cases with many stages and events. Section 6 discusses and 

concludes. 

 

 

2. Set-up, axioms and definitions 

 

S  is a finite state space. A state in S  is represented by s . Subsets of S  are called 

events. A S∀ ⊂ , the event \S A  is denoted cA . X  is an outcome space, i.e. a subset 

of ℝ , and we denote by { : }S f S X= →R  the set of acts, or random variables. In a 

dynamic setting, S  is endowed with the filtration { },t t T∈F , which represents the 

information structure. We assume that time is discrete and that {0,1,..., }T T=  is 

finite. { },t t T∈F  is given and fixed throughout. For each t  in T , Et  is a finite 

partition which contains all events that occur at time t . { },t t T∈F  can be rewritten as 

{ }E E0,..., T . We denote by tE  an event which occurs at time t . Hence tE  is an 

element of Et . We only consider sequential choice, that is dynamic choice in which 

outcomes are obtained at time T . A decision maker (DM) is characterized by a 

preference relation, S�  (or �), on S
R . � is defined ex-ante, i.e. when no information 

is given to the DM. �
tE
 compares acts conditionally to Et tE ∈ , i.e. if the DM is 

informed that only ts E∈  can obtain. ,t T∀ ∈  we write 
tE

f g=  if ts E∀ ∈ , 

( ) ( )f s g s= .  
tE

≻  and 
tE

∼  are defined in the usual way. The class of binary relations 
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�{ }
tE t T∈  can satisfy several axioms. We first require that each conditional preference 

be a weak order:  

Axiom 1 (Complete Weak Order). t T∀ ∈ , �
tE
 is a weak order, i.e. it is complete, 

transitive and reflexive on Sℝ .  

 

An important axiom of the EU model (Savage (1954)) is the Sure-Thing Principle.  

Axiom 2 (Sure-Thing Principle). ′ ′∀ ∈ Sf g f g R, , , , , , < ,t T tτ τ∀ ∈ , Et tE∀ ∈ ,  

( , , , ) ( ).c c
t t t tE E E EE E

f f g g f g f g f g f g
τ τ

′ ′ ′ ′ ′ ′= = = = ⇒ ⇔� �  

 

The next axiom states that each conditional preference is only dependent on the 

information received. We name this property “consequentialism” in reference to 

Machina (1989).  

Axiom 3 (Consequentialism). 1,..., 1t T∀ = − , t tE∀ ∈ E , R, ,Sf g∀ ∈  

( ) ( )
t tE Ef g f g= ⇒ ∼ . 

Such a definition can be found in Ghirardato (2002).  

 

The following axiom imposes some dynamic restrictions: 

Axiom 4 (Dynamic Consistency). R, Sf g∀ ∈ , , 0,..., 1t Tτ∀ = −  such that < tτ , 

t tE∀ ∈ E , 

( ) ( )c
tt E EE

f g f g f g
τ

= ⇒ ⇔� � . 

Roughly speaking, dynamic consistency property says that, given an information set, if 

the DM prefers f  to g  (or is indifferent between f  and g ), then he prefers f  to g  (or 

is indifferent between f  and g )  whatever new information obtains. 

  

A well known result of decision theory is that consequentialism and dynamic 

consistency together imply STP. This result is proved in Ghirardato (2002). For him, 

this belongs to the “folk wisdom” of decision theory. However, his result does not hold 
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true if the information structure is given and fixed. In this case, STP does not 

necessary holds in all stages of { , }t t T∈F . 

 

Proposition 2-1. Let { , }t t T∈F  be a filtration. Suppose that consequentialism holds 

on the complete weak order from � 1,..., 1{ }
tE t T= − , and that dynamic consistency holds 

between �E
τ

 and �
tE
 for all τ  and t  in T  such that < <t Tτ . Then the Sure-Thing 

Principle (STP) holds on 0,..., 2{ }
tE t T= −� .  

 

Proof. First consider a partition Et , with 1,..., 1t T= − , and an event Et tE ∈ . 

< tτ∀ , consider now a pair of acts f  and g  s.t. �Ef g
τ

 and , ( ) ( )c
ts E f s g s∀ ∈ = . 

From dynamic consistency, �Ef g
τ

 if and only if �
tE

f g . From consequentialism 

and transitivity, �
tE

f g  if and only if �
tE

f g′ ′ , where , ( ) ( ),ts E f s f s′∀ ∈ =  

( ) ( )g s g s′= , and , ( ) ( )c
ts E f s g s′ ′∀ ∈ = . By dynamic consistency, �

tE
f g′ ′  if and 

only if �Ef g
τ

′ ′ .                                                                                                           ■  

 

The class of preference relation �{ }
tE t T∈  on S

R  induces a relation on X , also 

denoted by �. Throughout the paper we assume the following hypothesis: 

 

Hypothesis 1. The relation � on X  is a weak order which satisfies continuity and 

strong monotonicity. Moreover, we avoid triviality: there are three distinguishable 

consequences in X .                                                                                                      ■  

 

If hypothesis 1 holds, then there exists a real-valued function :u X → R  which is 

continuous and strictly increasing, such that , , >x x X x x′ ′∀ ∈  if and only if 

( ) > ( )u x u x ′ .  

 

For simplicity, we assume that =S s s s s1 2 3 4{ , , , }  and {0,1,2}T =  henceforth. 

{ }, 0,1,2t t =F  is given and fixed throughout: =E s s1 2{ , }  and =cE s s3 4{ , }  are first 
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stage events such that at time 1t =  the DM is informed that only s E∈  or cs E∈  

can obtain. The elementary events 1 1,...,4{ }is =  occur in the second stage. In the 

following figure, f  is a two-stage lottery, i.e. a compound lottery which yields sub-

lotteries at the first stage. 

 

 

 

Following Sarin and Wakker (1998), we suppose that the DM uses folding back 

procedure to value a compound act.  

Axiom 5 (Folding back). 1 2 3 4, , , ,x x x x X∀ ∈  

1 4 1 2 3 4( ... ) ( ( , ), ( , ))cE E
W x x V V x x V x x= . 

  

Once consequentialism and dynamic consistency assumed, folding back can be used 

without more restrictions. , cE E
V V  are certainty equivalents of the sub-lotteries 

1 1 2 2(  on { },  on { })x s x s  and  3 3 4 4(  on { },  on { })x s x s . V  is the certainty equivalent of 

1 2 3 4( ( , ), ( , ))cE E
V x x V x x , and W  is used by the DM in the single stage evaluation 

1 4( ,..., )x x . We assume that such functions exist and are well defined. For each NEU 

form (CEU or MP), we will specify which axiomatization is used. Note that folding 

back procedure implies that the DM is indifferent between the two following figures.  

1x  

3x  

4x  

E  

cE  

2x  
f  

A two-stage lottery 
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In a dynamic setting, it seems natural to impose ‘Model consistency’. Let M  be a 

class of numerical representations, such that elements of M  have the same axiomatic 

basis. Model consistency implies the use of the same numerical representation in the 

first stage, in the second and in the single stage evaluation: , , , cE EW V V V  are elements 

of M .  

 

We now present a general definition of model consistency: 

Axiom 6 (Model consistency). Let M  be a class of decision criteria defined by the 

same axiomatic basis. 2 , , 0,..., 1, , , ,S
T t tt T t E E

τ τ
τ τ∀ ⊆ ∀ = − ≠ ∀ ∈ ∀ ∈F E E  

.
tE EW V V

τ

∈ ⇔ ∈ ⇔ ∈M M M  

 

Our Model consistency condition is slightly different from the sequential consistency 

property of Sarin and Wakker (1998). Sequential consistency implies that 

 ,
tE EV V W

τ

∈ ⇒ ∈M M . 

 

Now we can present the following results: 

 

Sarin and Wakker’s (1998) theorem. Let { , 0,1,2}t t =F  be a filtration. 

Suppose that hypothesis 1 holds and that M  is the family of CEU form. 

Then folding back and model consistency hold together if and only if there 

4x  

3x  

2x  

1x  1s  

4s  

4s  

cE  

E  

4x  

3x  

2x  

1x  

3s  

2s   

∼ 

1s  

Single stage and two stages lotteries are equivalent. 
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are a utility function :u X → ℝ  and a unique capacity [ ]: 2 0,1S
ν →  

necessary additive in the first stage of { , 0,1,2}t t =F . 

 

Thus the DM is free to use a non-additive capacity in the second stage. This 

result is consistent with our proposition 2-1. However, this appears in 

contradiction with the following theorem: 

 

Ghirardato’s (2002) theorem. 2SA∀ ∈ , the class of binary relations 

2
{ } SA A∈
�  satisfies Savage postulates (except Sure Thing Principle), 

consequentialism and dynamic consistency if and only if there are a utility 

function :u X → ℝ  and a unique additive measure [ ]: 2 0,1Sp →  s.t. all 

elements from M  are expected utility representations. 

 

Sarin and Wakker (1998) preserve the dynamic structure of the decision problem: the 

exact sequence of decisions and events is relevant to the DM, hence they do not 

assume reduction of compound lotteries (p. 93). On the other hand, Ghirardato (2002, 

p. 86) applies his axioms on 2S , and not only for a given and fixed filtration. He notes 

that this implies a subjective version of the reduction of compound lotteries axiom. 

  

Axiom 7 (Reduction of Compound Acts). , Sf g∀ ∈ R , 

, ( ) ( )s S f s g s f g∀ ∈ = ⇒ ∼ . 

This axiom is so called “neutrality assumption” or invariance. An important 

consequence of this assumption is that the DM is indifferent about the timing of the 

resolution of uncertainty.  
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We take up the figure 5 of Sarin and Wakker (1998), with 1 3{ , }E s s′ =  and 

2 4{ , }cE s s′ = . Under folding back, Reduction of Compound Acts implies that  

  1 4 1 3 2 4( ,..., ) ( ( , ), ( , ))cE E
W x x V V x x V x x′ ′= .  

 

Our purpose is to emphasize the implication of the RCA axiom. Given the filtration 

{ }, 0,1,2t t =F  and a family M  of CEU representations, we show that if RCA is 

assumed with folding back and model consistency, then all elements of M  have an 

expected utility form. 

An other theoretical paradox is linked with the use of the MP model in 

sequential choice situations. Sarin and Wakker (1998) show that MP model can be 

consistently used in dynamic choice without restriction. This result contrasts with the 

logic implication of the folk theorem, because MP model is obtained from EU model 

by weakening STP axiom (Gilboa and Schmeidler (1989), Casadesus-Masanell and al. 

(2000)). We show that MP model can be consistently used in dynamic choice if and 

only if the set of priors is reduced to a singleton in the first stage of { }, 0,1,2t t =F  

( (.)V  is an expected utility form). Moreover, once RCA axiom is assumed, all 

elements of the family M  of multiple priors forms use a unique additive measure.  

 

 

 

 

 

∼ 

1x  

3x  

4x  

E  

cE  

2x  

The neutrality assumption 

1x  

3x  

E ′  

( )cE ′  

2x  

4x  
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3. Choquet Expected Utility  

 

An important class of NEU models is the CEU one. In this model, the beliefs are 

represented by a Choquet capacity, i.e. a set function [ ]: 2 0,1S
ν →  s.t. : 

( ) 1, ( ) 0Sν ν= ∅ =  and , 2 , ( ) ( )SA B B A A Bν ν∀ ∈ ⊆ ⇒ ≥ . 

Remark that if ν  is convex, then CEU model is reduced to MP model (Gilboa and 

Schmeidler (1989), Denneberg (1994)).  

The single stage evaluation W  is a Choquet Expected Utility representation if and 

only if 

1 4: ( ,..., ) ( ( )) ( )
S

W x x u x s d sν∫֏ .  

If model consistency holds with respect to a CEU form, then the conditional 

evaluations , cE E
V V  use the same utility :u X → ℝ  and the update from ν . 

1,..., ,t T∀ =  we denote by (. )tEν  the conditional set function for ν  given t tE ∈ E . 

Several rules can be used by the DM to update her capacities. In order to simplify 

notations, we only define these rules for { , 0,1,2}t t =F . 

 

Definition 1. Let ν  be a capacity on S . The Full Bayes Updating Rule of ν  

conditional on { , }cB E E∈  is given by : 

( )
, ( )

1 ( ) ( )c
B C

C B C B
B C C B

ν

ν

ν ν

∩
∀ ⊂ =

+ ∩ − ∪
.     (FUBU). 

 

Definition 2. Let ν  be a capacity on S . The Bayes update of ν  conditional on 

{ , }cB E E∈  is given by : 

( )
, ( )

( )

B C
B A C B

B

ν

ν

ν

∩
∀ ⊂ = .                                       (B) 

 

Definition 3. Let ν  be a capacity on S . The Dempster-Shafer update of ν  conditional 

on { , }cB E E∈  is given by : 
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(( ) ) ( )
, ( )

1 ( )

c c

c

B C B B
C B C B

B

ν ν

ν

ν

∩ ∪ −
∀ ⊂ =

−
.            (DS) 

 

If the DM maximizes CEU in all stages of the filtration, then we impose the following 

hypothesis:  

 

Hypothesis 2. 2 , 1,..., 1,S
T t tt T E∀ ⊆ ∀ = − ∀ ∈F E , we suppose that the DM possibly 

uses FUBU, DS or B to calculate (. )tEν .                                                                    ■  

 

We suppose that each form from M  is constructed with the axioms from Gilboa 

(1987), who gives an axiomatization of CEU with Savage acts. Therefore, all forms 

from M  satisfy Sure Thing Principle on comonotonic acts and other axioms from 

Gilboa (1987).  

 

Theorem 3-1. Let { , 0,1,2}t t =F  be a filtration. We suppose that hypothesis 1, 2, 

consequentialism, dynamic consistency and folding back hold. Then the following two 

statements are equivalent:  

 

(i) Model consistency holds with respect to M , the family of CEU forms, and 

reduction of compound acts (RCA) axiom holds. 

 

(ii) There exist a utility function :u X → R  and a unique additive measure 

[ ]: 2 0,1Sp →  such that { , }, , ,c
BB E E W V V∀ ∈  are expected utility forms, and 

BV  uses conditional probabilities [ ]2(. ) : 0,1p B →E  calculated with Bayes 

rule.  

 

Proof. The implication from (ii) to (i) is straightforward, because the expected utility 

representation verifies RCA. Moreover, it is clear that the statement (ii) implies 

folding back, consequentialism and dynamic consistency. Now we prove the 

implication from (i) to (ii).  
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If consequentialism holds on B� , for { , }cB E E∈ , and dynamic consistency holds 

between � and B� , then � verifies Sure Thing Principle (proposition 2-1). From 

Sarin and Wakker (1998) theorem 3-1, we can state the following equality: 

( ) ( ) ( )C D C Dν ν ν+ = ∪                                                          (E1) 

for either 1 2{ , }C s s⊆  and 3 4{ , }D s s⊆  or 3 4{ , }C s s⊆  and 1 2{ , }D s s⊆ . 

Consider now a filtration { , 0,1,2}t t′ =F  with first stage events 1 3{ , }E s s′ =  and 

2 4{ , }cE s s′ = . By RCA and folding back, we have  

1 4 1 3 2 4( ,..., ) ( ( , ), ( , ))cE E
W x x V V x x V x x′ ′= . 

It’s easy to see that consequentialism and dynamic consistency are satisfied and so 

STP axiom holds on �. By model consistency, , , , cE E
W V V V′ ′  are elements of M , i.e. 

they are all CEU forms. We have to show that 

( ) ( ) ( )H J H Jν ν ν+ = ∪                                                           (E2)  

for either 1 3{ , }H s s⊆  and 2 4{ , }J s s⊆  or 2 4{ , }H s s⊆  and 1 3{ , }J s s⊆ .          

Suppose that (E2) holds. Then, 

1 2 1 2({ }) ({ }) ({ } { })s s s sν ν ν+ = ∪  

and 

  3 4 3 4({ }) ({ }) ({ } { })s s s sν ν ν+ = ∪ . 

Moreover, ν  is additive on { , }cE E′ ′ . Adding up these equalities with (E1) gives 

4

1

({ }) 1i

i

sν
=

=∑ . This implies that the single-stage evaluation W  is an expected utility 

form which uses an additive measure p  on 1,...,4{ }i is =  and a utility u . Now we derive 

(E2) from our axioms. 

 

Case 1. 1{ }H s= , 2 4 2 4{ , }, { , } \J s s I s s J⊆ = . 

We denote by ,I Jx x  the outcomes on ,I J . We suppose the followings rank-ordering 

on X . 1 3J Ix x x x≥ ≥ ≥  and 1 3J Ix x x x′ ′≥ ≥ ≥  : 

1 3 1 3( , , , ) ( , , , )J I J Ix x x x x x x x′ ′∼                     (E3) 
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Note that the utility :u X → R  keeps the rank-ordering because it’s strictly 

increasing. We replace Jx  by Jx ′  which is s.t. 1 3J Ix x x x′≥ ≥ ≥  and 

1 3J Ix x x x′ ′ ′≥ ≥ ≥ . By STP and by folding back, (E3) holds if and only if:  

   1 3 1 3( , , , ) ( , , , )J I J Ix x x x x x x x′ ′ ′ ′∼                                            (E4) 

In the left outcomes, the decision weight associated to 1( )u x  is affected if Jx  is 

replaced by Jx ′ . But in the right outcomes, the decision weight of 1{ }s  is not affected 

in the CEU form. This implies that 

   1 1({ }) ( ) ({ } )s J s Jν ν ν+ = ∪ .                                           (E5) 

 

Case 2. 1 3 2 4 2 4{ , } , { , }, { , } \H s s E J s s I s s J′= = ⊆ = .  

Now we suppose ̂Jx  which is such that 1 3Ĵ Ix x x x≥ ≥ ≥  and 1 3 Ĵ Ix x x x′ ′≥ ≥ ≥ . 

By STP and folding back, (E4) holds if and only if 

1 3 1 3ˆ ˆ( , , , ) ( , , , )J I J Ix x x x x x x x′ ′∼                                             (E6) 

In the CEU form, the decision weight of 3{ }s  must be affected in the right outcomes 

However, in the left outcomes the decision weight of 3{ }s  is not modified. Together 

with the equality (E5), the indifferences (E4) and (E6) implies that  

1 3 1 3({ , }) ( ) ({ , } )s s J s s Jν ν ν+ = ∪ . 

 

Case 3. 3{ }H s= , 2 4 2 4{ , }, { , } \J s s I s s J⊆ = . 

This case is similar to case 1. 

 

Case 4. 1 3 2 4{ , }, { , }.J s s H s s⊆ ⊆  This case is straightforward. 

 

(E2) has now been proved. (E1) and (E2) imply that { , , ,( ) }c cA E E E E′ ′∀ ∈ , the first 

stage evaluation V  uses a unique additive measure [ ]: { , } 0,1cp A A →  and ,s s S′∀ ∈ , 

the single stage evaluation uses the same measure : { } ({ })p s p s֏ .  
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Now we show that the DM must use Bayes rule to update her beliefs. By hypothesis 2, 

the DM is free to use FUBU, DS, or Bayes to update her capacities. However, the 

equalities (E1) and (E2) imply that: 

 

FUBU is reduced to Bayes rule: 

({ } )
({ } )

1 ({ } ) ({ } )

({ }) ({ })
.

1 ({ }) ({ }) ( ) ( )

c

c

s B
s B p s B

s s

p s p s

p s p s p B p B

ν

ν ν

∩
∈ ⇒ =

+ ∩ Β − ∪ Β

= =
+ − −

 

 

DS is reduced to Bayes rule:  

  

(({ } ) ) ( )
({ } )

1 ( )

({ }) ( ) ( ) ({ })
.

1 ( ) ( )

c c

c

c c

c

s B B B
s B p s B

B

p s p B p B p s

p B p B

ν ν

ν

∩ ∪ −
∈ ⇒ =

−

+ −
= =

−

. 

 

If the DM uses Bayes rule to update her capacities, then  

  
({ })

({ } ) 1
( )s B s B

p s
s B

p B
ν

∈ ∈

= =∑ ∑   

and 

  
({ })

({ } ) 1
( )c c

c

c
s B s B

p s
s B

p B
ν

∈ ∈

= =∑ ∑ . 

It implies that { , },cB E E∀ ∈  the conditional capacities ({ } ), ({ } )
c

s B s Bν ν  are 

additive. Moreover, the capacity is additive on { , 0,1,2}t t′ =F , hence p  is well 

defined on 2S . To conclude the demonstration, it is sufficient to remark that model 

consistency implies that , , , cE E
W V V V  use the same utility :u X → R , s.t. they are all 

expected utility representations.                                                                                    ■  
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4. Multiple Priors 

 

In this section, we suppose that the DM considers a set { } additive on 2Sπ π=C  of 

priors, and maximizes minimal expected utility. C  is assumed compact and convex. 

Maxmin Expected utility over Savage acts has been axiomatized by Casadesus-

Masanell and al. (2000). Model consistency with respect to a multiple priors form 

means that all forms from M  use elements of C  and satisfy axioms from Casadesus-

Masanell and al. (2000). We define the MP representation:  

 

Definition 4. : SW →ℝ ℝ  is a multiple priors representation if and only if 

( )
4

1 4
1

: ( ,..., ) min ( ) ( ) . ( )j
i i

iS

W x x u x s d s u x
π

π π

∈ =

= ∑∫֏
C

, 

where 1 4arg min ( ,..., )j W x xπ =  and 
4

1

1j
i

i

π

=

=∑ . 

 

The DM is pessimistic and uses the probability measure which minimizes expected 

utility. Note that the measure which minimizes expected utility overweights the 

minimal utility. In other words, the value of the expected utility of an act f  is rank-

dependent: 1 4arg min ( ,..., )j W x xπ =  is valid only for a given rank-ordering.  

 

If 1 2 3 4x x x x≥ ≥ ≥ , then (.)V  is a multiple priors representation if 

( )1 2 3 4 1 2 3 4( , ), ( , ) ( ) ( , ) ( ) ( , ),c c
j j c

E EE E
V V x x V x x E V x x E V x xπ π= +  

hence such that ( )1 2 3 4arg min ( , ), ( , )c
j

E E
V V x x V x xπ = . If u  is strictly increasing on 

X , then 1 2 3 4( , ) ( , )cE E
V x x V x x>  and so min ( )j E

π

π π

∈
=

C

. 

If 1 2 3 4x x x x≥ ≥ ≥ , then the conditional valuations are:  

1 2 1 1 1 2

3 4 3 3 3 4

( , ) min ({ } ) ( ) (1 min ({ } )) ( ),

( , ) min ({ } ) ( ) (1 min ({ } ) ( ).c

E

c c

E

V x x s E u x s E u x

V x x s E u x s E u x

π π

π π

π π

π π

∈ ∈

∈ ∈

= + −

= + −
C C

C C
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Proposition 4-1. Let { , 0,1,2}t t =F  be a filtration. If hypothesis 1 holds and if all 

elements of M  maximize minimal expected utility by using a non-unique prior, then 

model consistency and folding back cannot be simultaneously satisfied.  

 

Proof. Given a rank-ordering 1 4...x x≥ ≥  on X , we assume a measure aπ  which 

minimizes expected utility of 1 2( , )EV x x , a measure bπ  which minimizes expected 

utility of 3 4( , )cE
V x x , and a measure cπ  which minimizes expected utility of (.)V . 

Note that ( ) min ( )c E E
π

π π

∈
=

C

 because 1 2 3 4( , ) ( , )cE E
V x x V x x≥ . Folding back holds if 

and only if (.)W  uses a measure π′  s.t.   

, ({ }) ( ) ({ } )c as E s E s Eπ π π′∀ ∈ = ×  

, ({ }) ( ) ({ } )
cc c c bs E s E s Eπ π π′∀ ∈ = ×  

hence 

1 1 1min ( ) ({ } )c aE s E
π

π π π π

∈
′= = ×

C

. 

It implies that  

1
1min ({ } )

( )c
s E

Eπ

π

π

π∈

′
=

C

. 

But in the Multiple Priors form, we have ( ) min ( )c E E
π

π π

∈
=

C

. This last equality 

implies a contradiction.                                                                    ■  

 

This result leads us to establish the following theorem:  

 

Theorem 4-2. Let { , 0,1,2}t t =F  be a filtration. We suppose that hypothesis 1-1 

holds, and that consequentialism, dynamic consistency and folding back hold. Then 

the following two statements are equivalent: 

 

(i)    Model Consistency holds with respect to M , the family of multiple priors 

forms, such that , , , cE E
W V V V  are elements of M . 
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(ii) There exist a utility :u X → R  and a unique additive measure 

[ ]1: 0,1π →F  such that � can be represented by an expected utility form  

1 4 1 2 3 4: ( ,..., ) ( ) ( , ) ( ) ( , )c
c

E E
V x x E V x x E V x xπ π+֏ ,  

where , cE E
V V  uses minimal conditional probabilities calculated with Bayes 

rule.  

 

Proof. The implication from (ii) to (i) is straightforward, because it’s easy to see that 

, , , cE E
W V V V  are multiple priors forms. Moreover, it is clear that the statement (ii) 

implies folding back, consequentialism and dynamic consistency. We concentrate our 

attention on the implication from (i) to (ii). (.)V  is reduced to an expected utility form 

if  

{ , },max ( ) min ( )cB E E B B
π π

π π

∈ ∈
∀ ∈ =

C C

                                     (E1) 

If (E1) holds, then π  is unique on 1F . The statement (ii) follows from (E1) and from 

the model consistency property. Now we prove (E1).  

 

Case 1. 3 4 3 4, { , }, { , } \ .B E D s s D s s D′= ⊆ ⊂  

First consider the followings rank-ordering on X : 1 2D D
x x x x′≤ ≤ ≤  and 

2 1 D D
x x x x ′′ ′≤ ≤ ≤ , where Dx  is the outcome associated to event D  and 

D
x ′  is the 

outcome associated to D ′ . The utility :u X → ℝ  keeps this rank-ordering because it 

is strictly increasing. We also suppose the following indifference: 

1 2 1 2( , , , ) ( , , , )D DD D
f x x x x x x x x g′ ′′ ′= =∼                                 (E2) 

We note i
π  the measure which minimizes 1 2( ( , ), ( , ))cE DE D

V V x x V x x ′ . By folding 

back, we have 

1 2 1 2( ) ( ) ( ( , ), ( , )) ( ( , ), ( , ))c cE D E DE ED D
W f W g V V x x V x x V V x x V x x′ ′′ ′= ⇔ = . 

By dynamic consistency,  

1 2 1 2( , ) ( , )E EV x x V x x′ ′= , 

hence  

1 2 1 2arg min ( ( , ), ( , )) arg min ( ( , ), ( , ))c c
i i

E D E DE ED D
V V x x V x x V V x x V x xπ π′ ′′ ′= ⇔ = . 
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If :u X → ℝ  is continuous and strictly increasing, then 

   ( )2 1 1 2( , ) ( , )cD E DED D
x x x x V x x V x x′ ′′ ′ ′ ′≤ ≤ ≤ ⇒ ≤ . 

In the Multiple Priors form, this implies that  

( ) max ( )i E E
π

π π

∈
=

C

 

and 

   ( ) min ( )i c cE E
π

π π

∈
=

C

. 

By STP (consequentialism and dynamic consistency), (E2) holds if and only if  

1 2 1 2( , , , ) ( , , , )D DD D
f x x x x x x x x g′ ′′ ′ ′ ′ ′ ′ ′ ′= =∼                              (E3)  

where ,D D
x x ′′ ′  are such that 1 2D D

x x x x′′ ′≤ ≤ ≤  and 2 1D D
x x x x′′ ′ ′ ′≤ ≤ ≤ . f  and f ′  

give the same rank-ordering on X . It implies that the single stage evaluation (.)W  

and the conditional evaluations (.), (.)cE E
V V  use the same probability from (E2) to 

(E3). Then folding back and model consistency implies  

   1 2arg min ( ( , ), ( , ))c
i

E DE D
V V x x V x xπ ′′ ′= , 

s.t. all elements of M  use the same probabilities to value f  and f ′ . Again, if 

:u X → ℝ  is continuous and strictly increasing, then  

   ( )2 1 1 2( , ) ( , )cD E DED D
x x x x V x x V x x′ ′′ ′ ′ ′ ′ ′ ′ ′≤ ≤ ≤ ⇒ ≥ . 

In the Multiple Priors form, this implies that  

( ) min ( )i E E
π

π π

∈
=

C

 

and 

   ( ) max ( )i c cE E
π

π π

∈
=

C

. 

Therefore, 

   max ( ) min ( )E E
π π

π π

∈ ∈
=

C C

. 

 

Case 2. 1 2 1 2, { , }, { , } \ .cB E D s s D s s D′= ⊆ ⊂  This case is straightforward. 
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We have shown that { , },max ( ) min ( )cB E E B B
π π

π π

∈ ∈
∀ ∈ =

C C

. Therefore π  is unique on 

1F  and the first stage evaluation (.)V  uses a unique additive measure π . The minimal 

probabilities used by , cE E
V V  are calculated with Bayes rule : 

min ({ })
,min ({ } )

( )

s
s E s E

E

π

π

π

π

π

∈

∈
∀ ∈ = C

C

 

min ({ })
,min ({ } )

( )

cc

c

s
s E s E

E

π

π

π

π

π

∈

∈
∀ ∈ = C

C

. 

Under folding back, it implies that , , cE E
W V V  can used a non-unique prior. Moreover, 

, , , cE E
W V V V  use the same utility :u X → ℝ  and V  is an expected utility form.     ■  

 

Corollary 4-3. Let { , 0,1,2}t t =F  be a filtration. We suppose that folding back and 

Model Consistency hold with respect to a family M  of Multiple Priors forms. Then 

the DM must maximize expected utility in the first stage but she’s free to use a non-

unique prior in the second stage.  

 

Proof. It is sufficient to remark that the contradiction of proposition 3-1 is now 

removed. Then probabilities used by the single stage evaluation are obtained by 

multiplying probability used by the first stage evaluation (.)V  with probabilities used 

by EV  and cE
V . Therefore, folding back and model consistency are simultaneously 

satisfied if and only if V  uses a unique additive measure but , , cE E
W V V  use a non-

unique prior.                                                                                                                  ■  

 

Similarly to CEU model (Sarin and Wakker (1998, corollary 3-3)) , MP model can be 

used in situations where first stage events involve no ambiguity but second stage 

events may involve ambiguity.  

 

Example 4-4. Suppose that the utility u  is the identity function. We also suppose a 

convex set [ ]1 2 1 2{ (1 ) ,  additive on 2 , 0,1}S
απ α π π π α= + − ∈C  of priors, where 
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1 1

2 2

1
( ) ( )

2

( ) 0.6, ( ) 0.4.

c

c

E E

E E

π π

π π

= =

= =
 

1 1 2(. ), (. ), (. )
c

E E Eπ π π  and 2(. )
c
Eπ  are conditional probabilities calculated with 

Bayes rule: 

1 1 1 1
1 2 3 4({ } ) 0.8; ({ } ) 0.2; ({ } ) 0.2; ({ } ) 0.8;

c c
s E s E s E s Eπ π π π= = = =  

2 2 2 2
1 2 3 4({ } ) 0.6; ({ } ) 0.4; ({ } ) 0.6; ({ } ) 0.4.

c c
s E s E s E s Eπ π π π= = = =  

If , cE E
V V  are multiple priors forms, then the value of (1,2, 3, 4) with the first stage 

evaluation V  is given by 

( ) 2 2

4 4

1 min ( ) min ({ } ) 2 (1 min ({ } )) 1

min ( ) min ({ } )) 4 (1 min ({ } )) 3 ,

c

c cc

E s E s E

E s E s E

π π π

π π π

π π π

π π π

∈ ∈ ∈

∈ ∈ ∈

 − × + − ×  
 + × + − ×  

C C C

C C C

 

because (1,2) < (3, 4)cE E
V V . Then, 

( (1,2), (3, 4)) 0.6 (0.8 1 0.2 2) 0.4 (0.6 3 0.4 4) 2, 08cE E
V V V = × × + × + × × + × = . 

Note that (.)EV  uses the conditional measure 1(. )Eπ  but (.)cE
V  uses the conditional 

measures 2(. )
c
Eπ .  

If the single stage evaluation W  is also a multiple priors form, then 

(1,2, 3, 4) 0.36 1 0.24 2 0.24 3 0.16 4 2,2W = × + × + × + × =  

This implies that folding back does not hold for 1 2
π π≠  on { , }cE E , because we have 

2
1 4arg min ( ,..., )W x xπ = . By theorem 2, if folding back and model consistency hold 

together, then 1 2
π π=  on { , }cE E . We suppose that (.)V  uses probabilities 

1 1 2 2( ) ( ) ( ) ( )c cE E E Eπ π π π= = = . The value of (1,2, 3, 4) with the first stage 

evaluation V  is given by 

1 1
(0.8 1 0.2 2) (0.6 3 0.4 4) 2, 3

2 2
× × + × + × × + × = . 

Again, (.)EV  uses the conditional measure 1(. )Eπ  but (.)cE
V  uses the conditional 

measures 2(. )
c
Eπ . 
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We can easily see that folding back holds, because if the single stage evaluation (.)W  

is also a multiple priors  representation, then 

  (1,2, 3, 4) 0.4 1 0.1 2 0.3 3 0.2 4 2, 3W = × + × + × + × = . 

Note that (.)W  uses the measure 2π  on 1 2{ , }s s  and the measure 1π  on 3 4{ , }s s , s.t. 

2 2 1 1
1 4( , , , ) arg min ( ,..., )W x xπ π π π =  under MP.                                                       ■  

 

Moreover, MP is reduced to an expected utility form in all stages of { , 0,1,2}t t =F  if 

and only if RCA axiom holds.  

 

Theorem 4-5. Let { , 0,1,2}t t =F  be a filtration. We suppose that hypothesis 1 holds. 

We also assume consequentialism, dynamic consistency and folding back. Then the 

following two statements are equivalent:  

 

(i) Model consistency holds with respect to M , the family of MP forms, and 

reduction of compound acts holds. 

 

(ii) There exist a utility function :u X → R  and a unique additive measure 

[ ]: 2 0,1S
π →  such that { , },cB E E∀ ∈  , , BW V V  are expected utility forms, 

and BV  use conditional probabilities [ ]2(. ) : 0,1Bπ →E  calculated with Bayes 

rule.  

 

Proof. The implication from (ii) to (i) is straightforward, because the expected utility 

representation verify RCA. Now we prove the implication from (i) to (ii).  

We assume that 1 4...x x≥ ≥ . Note that the utility :u X → ℝ  keeps this rank-

ordering because it is strictly increasing. We note j
π  the probability which minimizes 

the single stage evaluation (.)W  s.t. 1 4arg min ( ,..., )j W x xπ = . If folding back and 

model consistency hold, we know from our theorem 4-1 that V  is an expected utility 

form which uses a unique additive measure [ ]: { , } 0,1cE Eπ → . Now we assume a 
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filtration { , 0,1,2}t t′ =F  with first stage events 1 3{ , }E s s′ =  and 2 4{ , }cE s s′ = . By 

RCA and by folding back, we have  

1 4 1 3 2 4( ,..., ) ( ( , ), ( , ))cE E
W x x V V x x V x x′ ′= . 

If model consistency holds, then , cE E
V V′ ′  are multiple priors forms and we can shown 

(similarly to the proof of the theorem 4-2) that V  is an expected utility form which 

uses a unique additive measure [ ]: { , } 0,1cE Eπ ′ ′ →  and a utility :u X → ℝ . Then,  

1 4 1 3 2 4 1 2 3 4( ,..., ) ( ( , ), ( , )) ( ( , ), ( , ))cc E EE E
W x x V V x x V x x V V x x V x x′ ′= =   

1 1 2 2 3 3 4 4

1 1 1 2

3 3 3 4

1 1 1 3

( ) ( ) ( ) ( )

( )min ({ } ) ( ) ( )(1 min ({ } )) ( )

( )min ({ } ) ( ) ( )(1 min ({ } )) ( )

( )min ({ } ) ( ) ( )(1 min ({ } )) ( )

j j j j

c cc c

u x u x u x u x

E s E u x E s E u x

E s E u x E s E u x

E s E u x E s E u x

π π

π π

π π

π π π π

π π π π

π π π π

π π π π

∈ ∈

∈ ∈

∈ ∈

⇔ + + +

= + −

+ + −

′ ′′ ′= + −

C C

C C

C C

2 2 2 4(( ) )min ({ } ) ( ) (( ) )(1 min ({ } )) ( )
c cc cE s E u x E s E u x

π π

π π π π

∈ ∈
′ ′′ ′+ + −

C C

 

If this last equality holds 1 2 3 4, , ,x x x x X∀ ∈  s.t. 1 4...x x≥ ≥ , then  , , , cE E
W V V V   and 

, cE E
V V′ ′  use the same probability jπ ∈ C . Moreover, they use the same utility 

:u X → ℝ . j
π  is unique on 2S  if and only if  

  

C

C

{ , , , }, min ({ }) ( )

or

{ , , , }, max ({ }) ( )   

c c

s A

c c

s A

s A E E E E s A

s A E E E E s A

π

π

π π

π π

∈
∈

∈
∈

′ ′∀ ∈ ∈ = ′ ′∀ ∈ ∈ = 

∑

∑
                   (E1) 

If (E1) holds, then  

, min ({ }) max ({ }) , , , ({ }) ({ })i j i js A s s s S s s
π π

π π π π π π

∈ ∈
∀ ∈ = ⇒ ∀ ∈ ∀ ∈ =

C C

C . 

Together with the unicity of π  on 1 1( )′∪F F , this implies that there exists a unique 

additive measure π  on 2S . Now we prove (E1). 

 

Case 1. A E= . 

We have 1 3( ) j jEπ π π′ = +  and 1 2( ) j jEπ π π= + . 

Remark that  
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1 1 1( )min ({ } ) ( )min ({ } )j E s E E s E
π π

π π π π π

∈ ∈
′ ′= =

C C

 

and that  

  2 1 2( )(1 min ({ } )) ( ) min (({ } ))
cj cE s E E s E

π π

π π π π π

∈ ∈
′′= − =

C C

. 

Moreover, 

1 1

2 2

min ({ }) ( )min ({ } )

min ({ }) ( ) min ({ } ).
cc

s E s E

s E s E

π π

π π

π π π

π π π

∈ ∈

∈ ∈

=

′′=

C C

C C

 

This implies that 

1 1

1 2

1 2

( )min ({ } ) ( )(1 min ({ } ))

( )min ({ } ) (( ) )min ({ } )

( ) min ({ }) min ({ })                                (E2)

cc

E s E E s E

E s E E s E

E s s

π π

π π

π π

π π π π

π π π π

π π π

∈ ∈

∈ ∈

∈ ∈

+ −

′ ′′ ′= +

⇔ = +

C C

C C

C C

 

We have proved (E1) for A E=  s.t. , , , ({ }) ({ })i j i js E s sπ π π π∀ ∈ ∀ ∈ =C  and 

therefore π  is unique on E . 

 

Case 2. cA E= . 

We have 1 3( ) j jEπ π π′ = +  and 3 4( )c j jEπ π π= + .  

Remark that  

3 3 1( )min ({ } ) ( )(1 min ({ } ))
cj cE s E E s E

π π

π π π π π

∈ ∈
′′= = −

C C

 

and that 

  4 3 2( )(1 min ({ } )) ( )(1 min ({ } ))
c cj c cE s E E s E

π π

π π π π π

∈ ∈
′′= − = −

C C

. 

Moreover, 

3 1

4 2

max ({ }) ( )(1 min ({ } )),

max ({ }) ( )(1 min ({ } )).
cc

s E s E

s E s E

π π

π π

π π π

π π π

∈ ∈

∈ ∈

′′= −

′′= −

C C

C C

 

This implies that 
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3 3

1 2

3 4

( )min ({ } ) ( )(1 min ({ } ))

( )(1 min ({ } )) ( )(1 min ({ } ))

( ) max ({ }) max ({ })                                (E3)

c cc c

cc

c

E s E E s E

E s E E s E

E s s

π π

π π

π π

π π π π

π π π π

π π π

∈ ∈

∈ ∈

∈ ∈

+ −

′ ′′ ′= − + −

⇔ = +

C C

C C

C C

 

Therefore, , , , ({ }) ({ })c i j i js E s sπ π π π∀ ∈ ∀ ∈ =C  and so π  is unique on cE . 

 

Case 3. A E ′=  and ( )cA E ′= . 

This case is similar to cases 1 and 2, so we can shown that  

   1 3( ) min ({ }) min ({ })E s s
π π

π π π

∈ ∈
′ = +

C C

                                        (E4) 

and that  

2 4(( ) ) max ({ }) max ({ })cE s s
π π

π π π

∈ ∈
′ = +

C C

.                                 (E5) 

(E2) and (E3) imply that , cE E
V V  use a unique additive measure updating from π ∈ C . 

(E4) and (E5) imply that , cE E
V V′ ′  use a unique additive measure updating from 

π ∈ C . Therefore, W  uses a unique additive measure π . All elements of M  are 

expected utility forms which use an unique additive measure π  and an utility 

:u X → ℝ .                                                                                                                   ■  

 

 

5. Arbitrary finite numbers of events and stages 

 

Now we consider the general case where S  contains any finite number 4S ≥  of 

states, and T  contains any finite number 2T ≥  of stages. 
11

1 1 1{ ,..., }
TN

T T TE E
−

− − −=E  is 

the finite partition which contains 1TN −  events at time 1T − . We note 
1TE

f
−

 the 

restriction of an act f  to the elements of event 1TE − .  

Therefore, folding back can be rewritten as  

( )1 1
1 11 1 11

( ) (...( ( ))...),..., (...( ( ))...)i i j jNT T T TE E E EE E
W f V V V f V V f

− − − −
=                  (I) 

where 1
1 1 1 1{ }T T Ti card E E E− − −∈ ∈ ⊂E  and 

1

1 1 1 1{ }N
T T Tj card E E E− − −∈ ∈ ⊂E . 
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Theorem 5-1. Let F E E0{ ,..., }T T=  be a filtration with 2T ≥ . Suppose that 

hypothesis 1 holds. 1,..., 1, ,t tt T E∀ = − ∀ ∈ E  we assume that consequentialism holds 

on 1,..., 1{ }
tE t T= −�  and that  dynamic consistency holds between � and 1,..., 1{ }

tE t T= −� . 

If folding back and model consistency hold with respect to a family M , then, 

(i) If M  is the Multiple Priors family, then 0,..., 2,Tτ∀ = −  ,E
τ τ

∀ ∈ E  EV
τ

 

is an EU form which uses a unique additive measure [ ]1: 0,1Tπ − →F , and 

1 1T TE − −∀ ∈ E , 
1

,
TE

W V
−

 are all multiple priors forms which use a non-

unique prior, and, 
1

, ,
TE EW V V

τ −
 use the same utility :u X → ℝ .  

(ii)  If M  is the Choquet Expected Utility family and if hypothesis 2 and  RCA 

axiom hold, then 0,..., 1,t T∀ = −  ,t tE∀ ∈ E  ,
tE

W V  are all expected utility 

forms which use a unique  additive measure [ ]: 2 0,1Sp →  and the same 

utility :u X → ℝ . 

(iii)  If M  is the Multiple Priors family and if RCA axiom holds, then 

0,..., 1,t T∀ = −  ,t tE∀ ∈ E  ,
tE

W V   are all expected utility forms which use 

a unique  additive measure [ ]: 2 0,1S
π →  and the same utility :u X → ℝ . 

 

Proof. Throughout the proof, we assume folding back as depicted in (I). We first prove 

part (i).  

(i) Note that the main argument of the proof of the theorem 2 is the Sure Thing-

Principle, which allows to replace any result on an event E
τ
, for = 0,..., 1Tτ − , by 

another result and so another utility. By proposition 1, STP holds on 0,..., 2{ }
tE t T= −� . 

By verify all cases, we can show that  0,..., 1,Tτ∀ = −  ,E
τ τ

∀ ∈ E   

1 1max ( ) min( )E E E E
τ τ τ τ

π π

π − −
∈ ∈

=
C C

. It implies that π  is unique on 1T−F  s.t. EV
τ

 uses an 

unique additive measure. The rest of the proof requires no adaptation and 

1 1,T TE − −∀ ∈ E  
1

,
TE

W V
−

 use a non-unique prior because we do not impose STP on 

1 1 1
{ }

T T TE E− − −∈E� . Therefore, 
1TE

V
−

 can use several conditional probabilities 

[ ]1(. ) : 0,1i
T TEπ − →E  s.t.  
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1

1 2

( )
, , ( )

( )

i
i i T

T T T T

T T

E
E E E

E E

π

π π

π
−

− −

∀ ∈ ∀ ∈ =E C . 

 Moreover, model consistency implies that 0,..., 2,Tτ∀ = −  ,E
τ τ

∀ ∈ E  

1 1,T TE − −∀ ∈ E  
1

, ,
TE EW V V

τ −
 use the same utility. Now we prove statement (ii). 

 

(ii) For the CEU family, STP (consequentialism and dynamic consistency) implies the 

additivity of ν  on , 0,..., 1T
τ
τ∀ = −F . Therefore,  

, , , ({ }) ({ }) ({ } { })cE s E s E s s s s
τ τ τ τ

ν ν ν′ ′ ′∀ ∈ ∀ ∈ ∀ ∈ + = ∪E . 

The main implication of RCA is that it does not modify the preference ordering on Sℝ  

whatever partition fixed at time Tτ ∈ . It implies that STP holds on 2T −  stages, 

whatever filtration faced to the DM. All elementary events from S  are separable. 

Therefore, by verify all cases, we can show that ,s s S′∀ ∈ , ν  is additive such that 

({ }) ({ }) ({ } { })s s s sν ν ν′ ′+ = ∪ . Similarly to the proof of theorem 1, FUBU and DS 

are reduced to Bayes rules such that 1

1 2

( )
1,..., , ( )

( )

E
T E E

E E

τ

τ τ

τ τ

ν

τ ν

ν
−

− −

∀ = = . 

Therefore, W  uses an additive measure p  and 
1 1

, ,...,
TE EV V V

−
 use conditional 

probabilities calculated with Bayes rule. It implies that 0,..., 1,t T∀ = −  ,t tE∀ ∈ E  

,
tE

W V  are all expected utility forms which use an additive measure [ ]: 2 0,1Sp →  and 

the same utility :u X → ℝ .  

 

(iii) Again the main implication of RCA is that it implies STP on 2T −  stages, 

whatever filtration faced to the DM. Therefore, 2 ,ST∀ ⊆F  π  is unique on 1T−F . All 

probabilities used by W  are obtained by probabilistic multiplication (Bayes’ rule). 

Therefore, given a rank-ordering on X , folding back implies that the same probability 

is used by all elements of M  on all filtrations. Extension of the proof of theorem 3 is 

straightforward, and we can shown that this probability is unique by verifying all 

cases. This implies that 0,..., 1,t T∀ = −  ,t tE∀ ∈ E  ,
tE

W V  are all expected utility 
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forms which use a unique additive measure [ ]: 2 0,1S
π →  and the same utility 

:u X → ℝ .                                                                                                                   ■  

 

 

6. Related literature and conclusion 

 

Since Sarin and Wakker (1998), dynamic consistency of NonExpected Utility 

preferences has been studied in several papers. These papers give an axiomatic 

understanding of the links between NEU preferences and dynamic choice. It is no 

surprise that given NEU preferences, all of them have to relax a specific dynamic 

choice principle to preserve the other. 

Regarding  the CEU model, there are several ways to preserve consistency in 

dynamic choice situations. One is to impose some restrictions on behavior under 

uncertainty. Assuming Model Consistency with respect to a convex capacity updated 

with Bayes rule, Dempster-Shafer rule or FUBU (consequentialism) in all stages of the 

filtration, Eichberger and al. (2005) show that dynamic consistency holds if and only if 

the capacity is additive over the final stage. Therefore, to preserve dynamic 

consistency, they assume aversion to ambiguity on 1T −  stages. Another way to 

preserve dynamic consistency is to relax consequentialism. Chateauneuf and al. (2001) 

relate conditioning and comonotony (or antimonotony) of information with the valued 

random variable. The DM minimizes the role of information (pessimism). She uses 

Bayes rule when information is comonotonic with the valued act and Dempster-Shafer 

rule when information is antimonotonic with it. As a consequence, counterfactuals 

outcomes do matter and hence consequentialism does not hold. This implies that 

dynamic consistency can be preserved when information is comonotone or 

antimonotone with the valued act. A third way to preserve dynamic consistency is to 

weaken model consistency. Nishimura and Ozaki (2003) preserve dynamic 

consistency of CEU preferences by weakening the axiom of comonotonic 

independence of Gilboa and Schmeidler (1989) from time 1 to time T  on a given 

filtration. Therefore, they relax model consistency.  
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Similarly, several papers have extensively studied MP in dynamic choice 

situations. Assuming consequentialism and reduction of compound acts, Sinischalchi 

(2006) weakens dynamic consistency and shows that this allows the existence of a MP 

representation in all stages of the filtration. This also permits to take into account 

Ellsberg-type preferences while preserving a form of dynamic consistency.  

It is also possible to preserve dynamic consistency of MP model by imposing some 

restrictions on the set of priors. Epstein and Schneider (2003) show that 

consequentialism, dynamic consistency and model consistency hold with respect to a 

MP representation if and only if the set of priors is rectangular. This assumption 

implies that the set of priors does not contain probability measures which do not 

ensure dynamic consistency of MP preferences. As a consequence, Ellsberg-type 

preferences cannot always be taken into account and Epstein and Schneider note that, 

in some settings, ambiguity may question dynamic consistency.  

 

Pursuing the works of Sarin and Wakker (1998), we have studied how decision 

criteria that take attitude toward uncertainty into account could be consistently used in 

sequential choice situations. Our result imply that NonExpected Utility models cannot 

simultaneously satisfy consequentialism, dynamic consistency and model consistency. 

To be more precise, these axioms impose some restrictions on the information 

structure, which must contain unambiguous events on 1T −  stages. Adding up the 

reduction of compound acts axiom implies that NonExpected Utility models collapse 

in Expected Utility in all stages of the filtration. The use of Multiple Priors and 

Choquet Expected Utility models in sequential choice situations involves the same 

restrictions. From a strictly technical point of view, this result is due to the fact that 

these models are based on a very similar axiomatic foundation.  
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