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Abstract. This paper is concerned with the compound Poisson risk model and two general-
ized models with still Poisson claim arrivals. One extension incorporates inhomogeneity in the
premium input and in the claim arrival process, while the other takes into account possible de-
pendence between the successive claim amounts. The problem under study for these risk models
is the evaluation of the probabilities of (non-)ruin over any horizon of finite length. The main
recent methods, exact or approximate, used to compute the ruin probabilities are reviewed and
discussed in a unified way. Special attention is then paid to an analysis of the qualitative impact
of dependence between claim amounts.
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1 Introduction

A central model in insurance risk theory is the compound Poisson model. Since the pio-

neering works of Lundberg and Cramér, it has been the object of a number of theoretical

studies and practical applications. Much on these questions can be found in the compre-

hensive books by Asmussen [2], Dickson [11], Gerber [14], Grandell [15], Kaas et al. [19],

Panjer and Willmot [25] and Rolski et al. [29].

In its classical version, the compound Poisson model is concerned with a large port-

folio of insurance policies, all independent and each with a small constant probability of

undergoing a claim. This situation is quite realistic for many situations and it explains (in

part) the great success of the model. In certain other cases, however, such assumptions

may be found too restrictive. Nevertheless, an advantage of the model is that additional

1

ha
l-0

02
01

37
7,

 v
er

si
on

 1
 - 

28
 D

ec
 2

00
7



economic factors can be incorporated while preserving the relative simplicity of its anal-

ysis. Our purpose in the present paper is to point out this merit of the model within the

framework of the evaluation of the (non-)ruin probabilities over any finite-time horizon.

Starting with the classical model, we present in Section 2 a review of the different

methods that are proposed in the literature to calculate or approximate the finite-horizon

ruin probabilities. Most of these methods are rather well-established; see, e.g., the books

referred to above and the papers by De Vylder and Goovaerts [8], Dickson and Waters

[12], Picard and Lefèvre [27], De Vylder [7], Rullière and Loisel [30] and Lefèvre and Loisel

[21]. Section 3 discusses a first extended model that takes into account non-constancy in

the premium input and non-stationarity in the claim arrival process. The results given

here are probably less standard and come mainly from recent works by Picard and Lefèvre

[27], Ignatov and Kaishev [16], Ignatov et al. [18], Lefèvre and Picard [22] and Lefèvre

[20]. Section 4 is concerned with a second generalization in which the successive claim

amounts are now allowed to be interdependent. This part is directly inspired by the works

of Ignatov and Kaishev [16], [17] and Ignatov et al. [18]. We will follow, however, a slightly

different and simpler approach that will enable us to derive an alternative expression,

with an underlying polynomial structure, for the non-ruin probabilities. In Section 5, the

qualitative impact of dependence is investigated to some extent. In particular, it is shown

that for certain heavy-tailed claim amounts, positive dependence can either increase or

decrease ruin probabilities when the initial surplus is large. Such a result is loosely related

to those obtained, e.g., by Wüthrich [34] and Albrecher et al. [1].

To close, let us mention that the analysis made here can be adapted to the compound

binomial risk model, a discrete-time analogue of the compound Poisson model.

2 Classical compound Poisson model

An insurance company has an initial surplus u ≥ 0 and receives premiums continuously

at a constant rate c > 0. Claims arise according to a homogeneous Poisson process

{N(t)} with mean λ per unit time, and, independently of this process, the successive

claim amounts {Xi} are non-negative independent and equidistributed random variables,

with common distribution function F (x). So, the aggregate claims constitute a compound

Poisson process {S(t)} where S(t) =
∑N(t)

i=1 Xi. The surplus at time t is then given by

U(t) = u+ ct− S(t), (2.1)

and ruin occurs as soon as the surplus becomes negative or null, i.e. at time T (u) =

inf{t > 0 : U(t) ≤ 0} (T (u) =∞ if ruin does not occur). Note that T (u) corresponds to

the first-crossing time of the process {S(t)} through the upper linear boundary y = u+ct.

2
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Let φ(u, t) be the probability of non-ruin until time t:

φ(u, t) = P [T (u) > t] = P [U(τ) = u+ cτ − S(τ) > 0 for 0 < τ ≤ t], (2.2)

and let ψ(u, t) = 1 − φ(u, t) be the probability of ruin before time t. As t → ∞, (2.2)

becomes the ultimate non-ruin probability φ(u) = P [T (u) =∞], the ultimate ruin prob-

ability being ψ(u) = 1− φ(u).

In the sequel, we assume that the claim amounts Xi are discrete random variables

with strictly positive integer values; let gn = P (X1 = n), n = 1, 2, . . . Continuous claims

might be considered as well but, in practice, claim amounts are usually discretized. For

clarity, the initial surplus u ≥ 0 is assumed to be an integer; extension to real values is

straightforward. Finally, operating a time scale change t ↪→ ct, we may set in (2.1) c = 1

and λ = λ/c.

Over any time period (τ, τ + t), the aggregate claim size S(t) has a discrete compound

Poisson distribution, with Poisson parameter λt and jump sizes Xi; let fn(t) = P [S(t) =

n], n = 0, 1, . . . Obviously, the following convolution relations hold: for all t1, t2 ≥ 0,

fn(t1 + t2) =
n∑
j=0

fn−j(t1) fj(t2), n = 0, 1, . . . (2.3)

The easiest way to compute these fn(t), however, is to have recourse to the well-known

Panjer recursion formula (see, e.g., Panjer and Willmot [25]); this yields

f0(t) = e−λt, and fn(t) = λt
n∑
j=1

j

n
gj fn−j(t), n = 1, 2, . . . (2.4)

Different methods are proposed in the literature for determining the probability φ(u, t).

(1) By discretizing the time scale

Under this procedure, the original continuous-time scale t ≥ 0 is replaced by a discrete-

time scale t = 0, 1, 2, . . . Then, φ(u, t) is approximated by

φa(u, t) = P [U(τ) = u+ τ − S(τ) > 0 for τ = 1, 2, . . . , t]. (2.5)

Intuitively, such an approximation should be good if the number of checking times for

ruin is taken large enough.

(i) De Vylder and Goovaerts [8] apply this procedure to obtain approximated ruin

probabilities ψa(u, t) = 1− φa(u, t). For uniformity, we consider here the φa(u, t). These

probabilities are calculated by examining the aggregate claim in the first time period

(0, 1). This yields the following recursion with respect to t:

φa(u, 0) = 1, and φa(u, t) =
u∑
j=0

fj(1) φa(u+ 1− j, t− 1), t = 1, 2, . . . (2.6)
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A neat truncation procedure is also possible to reduce the number of computations.

(ii) Dickson and Waters [12] propose a different method based again on the relation

(2.6). Write (2.6) for φa(u − 1, t) and isolate now the term j = 0 in the corresponding

right-hand side. This leads to the following recursion with respect to u:

φa(u, t) =

[
φa(u− 1, t+ 1)−

u−1∑
j=1

fj(1) φa(u− j, t)

]
/f0(1), u = 1, 2, . . . (2.7)

It then remains to evaluate φa(0, t), and this is done through formula (2.15) below.

(2) By recursive methods

Let us return to the original continuous-time scale t ≥ 0. Claims being discrete, the

process {S(t)} can reach or cross the straight line y = u+ t only at levels u+ 1, u+ 2, . . .,

so that the only possible meeting-times are 1, 2, . . . Thus, the probability φ(u, t) that there

is no such meeting until time t, can be expressed under the simplified form

φ(u, t) = P [S(τ) < u+ τ for τ = 1, . . . , btc, and S(t) < u+ btc+ 1], (2.8)

btc representing the integer part of t.

Clearly, the probability (2.8) can be expanded as

φ(u, t) =

u+btc∑
n=0

Pn(t), (2.9)

where Pn(t) ≡ Pn(u, t) denotes P [T (u) > t and S(t) = n], i.e.

Pn(t) = P [S(τ) < u+ τ for τ = 1, . . . , btc, and S(t) = n]. (2.10)

Note that Pn(t) = 0 for n ≥ u + btc + 1 (since ruin before time t is then certain). The

other Pn(t) can now be determined by recursion.

(i) Following Picard and Lefèvre [27], we observe that before time t, ruin is impossible

when S(t) = n ≤ u, while for the next values of n ≤ u+ btc, ruin will not occur if it does

not happen before time n− u. In other words, this yields recursion with respect to n:

Pn(t) =

 fn(t), for 0 ≤ n ≤ u,∑n−1
k=0 Pk(n− u) fn−k(t− n+ u), for u+ 1 ≤ n ≤ u+ btc. (2.11)

(ii) Rullière and Loisel [30] use a different argument and consider the times j =

0, . . . , btc. Similarly to (2.10), put

Pn(j) = P [S(τ) < u+ τ for τ = 1, . . . , j, and S(j) = n],

4
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for n = 0, . . . , u + j − 1. Examining the aggregate claim during the last time period

(j − 1, j), we see that Pn(j) are given by the following recursion with respect to j:

Pn(0) = δn,0, and Pn(j) =
n∑
k=0

Pk(j − 1) fn−k(1), j = 1, . . . , btc, (2.12)

for n = 0, . . . , u + j − 1. Then, considering the time period (btc, t), Pn(t) in (2.8) is

obtained by the evident formula

Pn(t) =
n∑
k=0

Pk(btc) fn−k(t− btc), n = 0, . . . , u+ btc. (2.13)

(3) Through explicit formulas

The reader is referred to Lefèvre and Loisel [21] for a unified presentation of closed-

form formulas. The cases u = 0 (no initial reserves) and u > 0 are discussed separately.

(i) When u = 0, ruin occurs if the process {S(t)} reaches or crosses the diagonal line

y = t. This first-crossing problem has applications in various contexts and is referred to

as a ballot problem. By a classical result (see, e.g., Takács [33]), the probability that S(τ)

reaches the level n at time t ≥ n without crossing the diagonal line y = τ is provided by

the nice formula

P [S(τ) < τ for 0 < τ ≤ t, and S(t) = n] =
t− n
t

fn(t), n = 0, . . . , btc. (2.14)

Therefore, the non-ruin probability φ(0, t) has the simple expression

φ(0, t) =
1

t

btc∑
n=0

(t− n) fn(t). (2.15)

(ii) When u > 0, one proceeds as in Seal [31] and considers the event [S(t) < u + t].

This event can occur in two ways: either there is no ruin before time t, or there exists a

last time j such that U(j) = u+ j − S(j) = 0, with j = 1, . . . , u+ btc. Hence,

P [S(t) < u+ t] = φ(u, t) +

btc∑
j=1

P [S(j) = u+ j] P [T (0) > t− j],

so that φ(u, t) is provided by

φ(u, t) =

u+btc∑
j=0

fj(t)−
u+btc∑
j=1

fu+j(j) φ(0, t− j), (2.16)

where φ(0, t− j) can be calculated from (2.15) above.

5
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(iii) For u ≥ 0, Picard and Lefèvre [27] propose a different approach of algebraic

essence (see also De Vylder [7]). Firstly, Panjer’s recursion (2.4) is considered for any real

value of t, positive or not. This provides quantities f̃n(t), n = 0, 1, . . ., that are defined

for all t ∈ (−∞,∞). When t ≥ 0, f̃n(t) reduces to fn(t) = P̃ [S(t) = n], but when t < 0,

f̃n(t) has no probabilistic interpretation (it can be negative, for example). Nevertheless,

an important point is that the convolution relations (2.3) still hold for all reals t1, t2.

Thanks to this property, one proves that an alternative explicit expression for φ(u, t) is

φ(u, t) =
u∑
j=0

fj(t) + f̃j(j − u)

u+btc∑
n=u+1

u+ t− n
u+ t− j

fn−j(u+ t− j)

 . (2.17)

When u = 0, (2.17) reduces to (2.15) above

(iv) An additional interest of these explicit formulas is to lead to simple expressions for

the ultimate (non-)ruin probabilities. Specifically, let µ = E(X1) be the expected claim

amount, and assume that µ < 1 to guarantee that non-ruin has a positive probability.

Passing to the limit t→∞ in (2.15), (2.16), (2.17) yields the following formulas:

φ(0) = P [T (0) =∞] = 1− µ; (2.18)

ψ(u) = P [T (u) <∞] = φ(0)
∞∑
j=1

fu+j(j); (2.19)

φ(u) = P [T (u) =∞] = φ(0)
u∑
j=0

f̃j(j − u). (2.20)

(2.19) is a formula of Pollaczeck-Khinchine type (see [2]) and (2.20) is similar to a formula

derived in [32]. In practice, the finite sum in (2.20) is easier to handle than the series in

(2.19).

Over finite horizon, the different methods for computing φ(u, t) have their own merits

and disadvantages, and none seems to be uniformly better. Numerical comparisons can

be found in Dickson [10] for the formulas (2.6), (2.7), (2.16), and in Rullière and Loisel

[30] for the formulas (2.9), (2.16), (2.17).

3 Inhomogeneous premium and claim arrivals

We start by incorporating non-constancy in the premium input only. Non-stationarity in

the claim process will be added later. Such extensions are discussed, e.g., in Picard and

Lefèvre [27], Ignatov and Kaishev [16], Ignatov et al. [18] and Lefèvre and Picard [22].

We close with a remark on the definition of ruin.

(1) With non-constant premium function

6
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Suppose that the premium rate is an arbitrary deterministic function of time, instead

of being constant. Then, the cumulated premium income, including the initial reserves,

can be represented by a function h(t) that is non-negative and non-decreasing, continuous

or not, with h(0) = u and h(t)→∞ as t→∞. The surplus at time t is given by

U(t) = h(t)− S(t), (3.1)

which reduces to (2.1) for the classical model where h(t) = u + ct. Ruin occurs at the

time T (h) when the reserves become negative or null. So, the probability of non-ruin until

time t, denoted by φ(h, t), is defined as

φ(h, t) = P [T (h) > t] = P [U(τ) = h(τ)− S(τ) > 0 for 0 < τ ≤ t], (3.2)

In the present situation, discretizing the time scale as in (2.5) is no longer an efficient

method to approximate φ(h, t). Explicit formulas as in (2.15), (2.16), (2.17) are not

available here. The recursive methods of [27] and [30], however, can be easily adapted.

Specifically, let h−1(∗) denote the right-continuous inverse of h, i.e. h−1(∗)(x) = inf{t :

h(t) > x} = sup{t : h(t) ≤ x}. Consider now the following instants:

vn = h−1(∗)(n), n = 0, 1, . . . , (3.3)

with thus v0 = . . . = vu−1 = 0. For the classical model, one has vn = (n − u)/c for

n = u, u + 1, . . . The instants (3.3) are the only ones to be considered: indeed, claims

being discrete, the process {S(t)} can reach or cross the upper boundary h(t) only at

the levels vu, vu+1, . . . Thus, denoting by bh(t)c the integer part of h(t), (3.2) can be

reexpressed under the simplified form

φ(h, t) = P{S(vu) < u, S(vu+1) < u+ 1, . . . , S(vbh(t)c) < bh(t)c,

and S(t) < bh(t)c+ 1}. (3.4)

As in (2.9), one now writes

φ(h, t) =

bh(t)c∑
n=0

Pn(t), (3.5)

where Pn(t) ≡ P h
n (t) denotes P [T (h) > t and S(t) = n], i.e.

Pn(t) = P{S(vu) < u, S(vu+1) < u+ 1, . . . , S(vbh(t)c) < bh(t)c, and S(t) = n}. (3.6)

(i) Following Picard and Lefèvre [27], we see here that when S(t) = n, ruin before

time t is only possible if bh(t)c ≥ n, i.e. if vn < t, and it will not occur provided it does

7
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not happen before time vn. This leads to the following recursion with respect to n:

Pn(t) =

 fn(t), for 0 ≤ n ≤ u− 1,∑n−1
k=0 Pk(vn) fn−k(t− vn), for n ≥ u| vn < t.

(3.7)

(ii) Arguing as in Rullière and Loisel [30], define, for j = 0, . . . , bh(t)c − u,

Pn(j) = P{S(vu) < u, S(vu+1) < u+ 1, . . . , S(vu+j) < u+ j, and S(vu+j) = n}.

We first compute these Pn(j) by recursion with respect to j:

Pn(0) = fn(vu), and Pn(j) =
n∑
k=0

Pk(j − 1) fn−k(vu+j − vu+j−1), (3.8)

for n = 0, . . . , u+ j − 1. Then, Pn(t) in (3.5) is computed by

Pn(t) =
n∑
k=0

Pk(bh(t)c − u) fn−k(t− vbh(t)c), n = 0, . . . , bh(t)c. (3.9)

(iii) Picard and Lefèvre [27] propose a simplified algorithm by pointing out that the

expression of the Pn(t) has a remarkable polynomial structure, apart an exponential factor

(see also, e.g., Ignatov and Kaishev [16] and Lefèvre [20]). From (3.7), they prove that

Pn(t) = e−λtĀn(t | v0, . . . , vn), n = 0, 1, . . . , (3.10)

where Ān(t | v0, . . . , vn) ≡ Ān(t), n = 0, 1, . . ., is a sequence of generalized Appell polyno-

mials (also called Sheffer polynomials) of degree n in t with Ā0(t) = 1. A short theory

about these polynomials can be found, e.g., in Niederhausen [24] and Picard and Lefèvre

[26]. We summarize below the elements of direct relevance to our context.

Let en(t), n = 0, 1, . . ., be a sequence of polynomials of degree n in t that are of

convolution type, i.e. such that for all reals t1, t2,

en(t1 + t2) =
n∑
j=0

en−j(t1) ej(t2), n = 0, 1, . . . (3.11)

From (2.3), (2.4), we see that in our case, the en(t) defined by

en(t) = e−λtfn(t), n = 0, 1, . . . , (3.12)

form such a family of polynomials (for all t, positive or not).

Now, for a generalized Appell family, each polynomial Ān(t) admits an expansion of

the form

Ān(t) =
n∑
k=0

Āk(0) en−k(t), n = 0, 1, . . . (3.13)

8
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Note that formula (3.13) can be viewed as a Taylor type expansion of Ān(t) with respect

to the ek(t). The key point in (3.13) is that the coefficients Āk(0) do not depend on the

degree n considered (this property characterizes the family).

It then remains to specify the coefficients Āk(0). These can be fixed by imposing the

border conditions given in (3.7). By that way, we get Ān(t) = en(t) for 0 ≤ n ≤ u − 1

and Ān(vn) = 0 for n ≥ u, hence the recursion with respect to n:

Ā0(0) = 1, and Ān(0) =

 0, for 1 ≤ n ≤ u− 1,

−
∑n−1

k=0 Āk(0) en−k(vn), for n ≥ u.
(3.14)

By (3.13), (3.14), the computation of Ān(t) ≡ Ān(t | v0, . . . , vn) is then especially easy

and fast, and Pn(t) is immediate from (3.10).

(2) With non-stationary claim process

Suppose that in addition to an arbitrary premium input, claims are ruled by a non-

stationary compound Poisson process. So, claims arise according to a Poisson process

with non-homogeneous rate λ(t) at time t ≥ 0, and the corresponding claim amounts

{Xi(t)} are independent and positive integer-valued random variables that have now non-

stationary distributions, instead of being equidistributed. Let gn(t), n = 1, 2, . . ., denote

the claim amount distribution for a claim that occurs at time t ≥ 0.

Over any time period (τ, τ + t), the aggregate claim size S(τ, τ + t) has a non-

homogeneous discrete compound Poisson distribution; let fn(τ, τ + t) = P [S(τ, τ + t) =

n], n = 0, 1, . . . Standard convolution relations give, for all t1, t2 ≥ 0,

fn(τ, τ + t1 + t2) =
n∑
j=0

fn−j(τ, τ + t1) fj(τ + t1, τ + t1 + t2), n = 0, 1, . . . (3.15)

Moreover, one finds that

fn(τ, τ + t) = e−Λ(τ,τ+t)

i1+2i2+...+nin=n∑
i1,...,in≥0

[Λ1(τ, τ + t)]i1 . . . [Λn(τ, τ + t)]in

i1! . . . ın!
, n = 0, 1, . . .

(3.16)

where

Λ(τ, τ + t) =

∫ τ+t

τ

λ(s)ds, and Λn(τ, τ + t) =

∫ τ+t

τ

gn(s) λ(s)ds, n = 1, 2, . . .

Formula (3.16) will enable us to compute these fn(τ, τ + t) (a Panjer-type recursion does

not seem to be possible here).

Now, the probability φ(h, t) can still be evaluated using formula (3.4), and it thus

remains to calculate the Pn(t). This can be done by any of the methods (i), (ii) and (iii)

9
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above. For instance, the recursion (3.7) becomes here

Pn(t) =

 fn(0, t), for 0 ≤ n ≤ u− 1,∑n−1
k=0 Pk(vn) fn−k(vn, t), for n ≥ u| vn < t.

(3.17)

(3) On the definition of ruin

An alternative definition for ruin is when the reserves become strictly negative, instead

of becoming non-positive. So, the non-ruin probability (3.2) is replaced by

φ(h, t) = P [T (h) > t] = P [U(τ) = h(τ)− S(τ) ≥ 0 for 0 < τ ≤ t]. (3.18)

If h is a continuous function, both definitions (3.2) and (3.18) are equivalent.

Let h−1 be the left-continuous inverse of h, i.e. h−1(x) = inf{t : h(t) ≥ x}, and

consider the instants

wn = h−1(n), n = 0, 1, . . . , (3.19)

where thus w0 = . . . = wu = 0. Then, (3.18) can be rewritten as

φ(h, t) = P{S(wu) ≤ u, S(wu+1) ≤ u+ 1, . . . , S(wbh(t)c) ≤ bh(t)c,

and S(t) ≤ bh(t)c+ 1}. (3.20)

Clearly, φ(h, t) can be computed again from formula (3.4), and any of the methods

above will allow us to calculate the Pn(t), after suitable adjustment. For instance, the

recursion (3.7) is replaced here by

Pn(t) =

 fn(t), for 0 ≤ n ≤ u,∑n
k=0 Pk(wn) fn−k(t− wn), for n ≥ u+ 1| wn ≤ t.

(3.21)

4 Interdependent claim amounts

The extended model with interdependent claims is investigated (and applied) in Ignatov

and Kaishev [16] and Ignatov et al. [18] (see also Ignatov and Kaishev [17] for contin-

uous claims). Using a slightly different approach, we are going to derive an alternative

expression, of similar form, for the non-ruin probability φ(h, t).

As in Section 3, the premium input is represented by an arbitrary function of time

h(t). The successive claim amounts {Xi} are still strictly positive integer-valued random

variables that are independent of the Poisson process {N(t)}, but they are no longer as-

sumed to be i.i.d. Specifically, each vector (X1, . . . , Xj), j ≥ 1, has now a joint probability

distribution with interdependent components.
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Let Sj = X1 + . . .+Xj, j ≥ 1, be the partial sums of claim amounts, and denote their

joint probability by hs1,...,sj
= P (S1 = s1, . . . , Sj = sj), for 1 ≤ s1 < s2 < . . . < sj. We

suppose hereafter that these distributions are known or, at least, can be estimated.

First step. It is clear that φ(h, t) can be expanded through (3.5). Claim amounts be-

ing interdependent, however, the process {S(t)} is no longer a compound Poisson process.

This will make the evaluation of φ(h, t) more lengthy, although not really complicated.

To start, let us condition in (3.5) with respect to the number N(t) of claims during

the period (0, t]; this gives

φ(h, t) = e−λt
bh(t)c∑
n=0

n∑
j=0

(λt)j

j!
Pn(t|j), (4.1)

where Pn(t|j) is the conditional probability

Pn(t|j) = P [T (h) > t and S(t) = n | N(t) = j], j = 0, . . . , n. (4.2)

By (4.2), we see that Pn(t|0) = δn,0, and when j ≥ 1,

Pn(t|j) = P (Sj = n), 0 ≤ n ≤ u− 1. (4.3)

For the next values n ≥ u with vn < t, we condition in (4.2) with respect to the amounts

of the j claims occurring during (0, t], and with the additional constraint S(t) = Sj = n;

this yields

Pn(t|j) =
∑

1≤s1<s2<...<sj=n

hs1,...,sj
Qj(t|s1, . . . , sj), j = 1, . . . , n, (4.4)

where Qj(t|s1, . . . , sj) is the conditional probability (independent of n)

Qj(t|s1, . . . , sj) = P [T (h) > t | N(t) = j;S1 = s1, . . . , Sj = sj]. (4.5)

To evaluate (4.5), let us introduce the following instants, in a similar way to (3.3):

vsj
= h−1(∗)(sj), j = 1, 2, . . . (4.6)

Denote by T1, T2, . . . the successive jump times of the Poisson process {N(t)}. We then

observe that Qj(t|s1, . . . , sj) can be equivalently represented as

Qj(t|s1, . . . , sj) = P [T1 > vs1 , . . . , Tj > vsj
| N(t) = j], j = 1, 2, . . . (4.7)

It is well-known that given that a Poisson process has j jumps during (0, t), the vector of

jump times (T1, . . . , Tj) is distributed as the vector of order statistics for an i.i.d. sample
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of j uniform (0, t) random variables. Thus, writing (U1:j, . . . , Uj:j) for the order statistics

of j independent uniform (0, 1) r.v., we obtain the following result:

Qj(t|s1, . . . , sj) = P
(
U1:j >

vs1
t
, . . . , Uj:j >

vsj

t

)
. (4.8)

By combining (4.1), (4.3) and (4.4), we then get

φ(h, t) = e−λt

{
δu,0 +

u−1∑
n=0

n∑
j=0

P (Sj = n)
(λt)j

j!

+

bh(t)c∑
n=u

n∑
j=1

λj E
[
I(Sj = n) Aj(t|vS1 , . . . , vSj

)
] , (4.9)

where I is an indicator and the expectation is taken with respect to S1, . . . , Sj, i.e.

E
[
I(Sj = n) Aj(t|vS1 , . . . , vSj

)
]

=
∑

1≤s1<s2<...<sj=n

hs1,...,sj
Aj(t|vs1 , . . . , vsj

),

and using the notation

Aj(t|vs1 , . . . , vsj
) =

tj

j!
Qj(t|s1, . . . , sj), j = 1, 2, . . . (4.10)

Second step. (i) The quantities Aj(t) ≡ Aj(t|vs1 , . . . , vsj
) remain to be evaluated

on the basis of (4.8). One can find in the literature several algorithms for calculating

the joint right (or left) tail distributions of the order statistics (U1:j, . . . , Uj:j) (see, e.g.,

Denuit et al. [6] and the references therein). In particular, a standard result states that

for 0 ≤ u1 ≤ . . . ≤ uj ≤ t ≤ 1, the probabilities aj = P (U1:j > u1, . . . , Uj:j > uj),

j = 1, 2, . . ., satisfy the recurrence relations

a0 = 1, and aj = −
j−1∑
k=0

(
j

k

)
(uk − 1)j−k ak, j = 1, 2, . . . (4.11)

By (4.8), (4.10), we then deduce for the Aj(t) the following recursion with respect to j:

A0(t) = 1, and Aj(t) = −
j−1∑
k=0

(vsk
− t)j−k

(j − k)!
Ak(t), j = 1, 2, . . . (4.12)

(ii) In fact, the right tail distributions of (U1:j, . . . , Uj:j) rely on a simple underlying

polynomial structure. More precisely, it can be shown that for 0 ≤ u1 ≤ . . . ≤ uj ≤ t ≤ 1,

P (U1:j > u1, . . . , Uj:j > uj, and Uj:j < t) = j! Aj(t | u1, . . . , uj), j = 1, 2, . . . , (4.13)

where Aj(t | u1, . . . , uj) ≡ Aj(t), j = 0, 1, . . ., is a sequence of classical Appell polynomials

of degree j in t with A0(t) = 1 (see, e.g., Picard and Lefèvre [26], Denuit et al. [6] and
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Lefèvre [20]). By comparison to the previous generalized Appell polynomials Āj(t), they

correspond to the special case where the convolution type polynomials introduced in

(3.11) are the monomials ej(t) = tj/j!. Returning to the Qj(t), (4.8) and (4.13) imply

that Qj(t|s1, . . . , sj) = Aj(1|vs1/t, . . . , vsj
/t). From (4.10), we then deduce the remarkable

identity

Aj(t|vs1 , . . . , vsj
) = Aj(t|vs1 , . . . , vsj

), j = 0, 1, . . . (4.14)

So, the Aj(t) can be now determined by adapting the formulas (3.13) and (3.14) to the

simple Appell case. This gives

Aj(t) =
n∑
k=0

Ak(0)
tj−k

(j − k)!
, j = 0, 1, . . . , (4.15)

where the coefficients Ak(0) do not depend on the degree j (this is the Appell property)

and are provided by the recursion with respect to j:

A0(0) = 1, and Aj(0) = −
j−1∑
k=0

Ak(0)
vj−kj

(j − k)!
, j = 1, 2, . . . (4.16)

Remarks. Ignatov and Kaishev [16] present an analogous, but slightly different,

expression for φ(h, t). The difference comes from the starting conditional argument used:

they condition the event [T (h) > t] with respect to the claim amounts, while we do it

with the event [T (h) > t and S(t) = n]. As here, these authors also point out an Appell

polynomial structure in their formula (the above coefficients Ak(0) are there given under

a determinantal form).

Note that the approach followed here may be applied too if the claim amounts {Xi}
form an i.i.d. sequence as considered before. For this special case, however, the compu-

tational methods reduce to the simpler ones that are described in Section 3, (1).

If u = 0 and the premium rate is 1, the formula (2.14) given in Section 2, (3) is known

to hold also when the claim amounts {Xi} are exchangeable r.v.’s (Takács [33]). This

can be checked from the previous analysis and using the nice identity (4.17) indicated

below. Specifically, let us return to the right tail distribution (4.13) and, instead of the

non-decreasing sequence of reals {u1, . . . , uj}, consider now a sequence of r.v. {U1, . . . , Uj}
with non-negative exchangeable increments. One can then prove that conditionally on

the event (Uj ≤ t) where 0 ≤ t ≤ 1,

P (U1:j > U1, . . . , Uj:j > Uj, and Uj:j < t | Uj ≤ t) = tj−1 (t− Uj), j = 1, 2, . . . (4.17)
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5 Impact of dependence between claim amounts

It is often believed that positive dependence between risks increases the probability of

ruin over any given time horizon. This seems to be natural, for example, if the different

claims are subjected to some exterior environment. Conclusions in that direction are

indeed pointed out in, e.g., Cossette and Marceau [5], Frostig [13] and Picard et al. [28].

In this Section, we will firstly show that ruin probabilities can, not only increase, but

also diminish owing to the presence of positive dependence between claim amounts. Such

a decreasing effect is possible in a different model where each claim size depends on the

previous claim interval (as, e.g., in Albrecher and Boxma [?] and Boudreault et al. [3]),

since positive dependence here corresponds to a kind of mutualisation that will play a

protective role. On the other hand, the decreasing effect obtained through our model

comes rather from the claim size distribution itself as it is a consequence of the max-sum-

equivalence property for heavy-tailed distributions. Secondly, we will establish a result

stating that for certain heavy-tailed claim amount laws, positive dependence affects ruin

probabilities in a monotone way, increasing or decreasing, when the initial surplus is large

enough. For related questions on the asymptotic tail behaviour of sums of dependent

risks, the reader is referred, e.g., to Wüthrich [34] and Albrecher et al. [1].

(1) Possible effects of positive dependence

To illustrate possible effects of positive dependence, we consider two particular risk

models in which the successive claim amounts Xi, i ≥ 1, have the same distributions

but are interdependent in a comonotonic way. More precisely, for both models, we will

compare the ruin probability ψ(u, t) in the independent case, i.e. when the Xi are i.i.d.,

and in a comonotonic case when all the Xi = X1 almost surely, i.e. under an extremal

positive dependence.

(i) Let us assume that the successive claim amounts have a common biatomic distri-

bution given by

P (X1 = 1) = 0.99 and P (X1 = 1000) = 0.01. (5.1)

Note that this law can be considered as heavy-tailed. Take λ = c = 1, choose an horizon

of length t = 10 and let u = 990 be the initial surplus.

Intuitively, as the average number of claims up to t is equal to λt = 10, ruin will

occur when u = 990 if there arises (at least) one large claim (of size 1000) before time

t, or if there arise sufficiently many small claims (of size 1), this event being however of

small probability. In addition, the probability of getting at least one large claim is clearly

smaller higher in the comonotonic case than in the independent case. Thus, one expects

that the ruin probability before time t = 10 will be also smaller in the comonotonic case.

14

ha
l-0

02
01

37
7,

 v
er

si
on

 1
 - 

28
 D

ec
 2

00
7



Let us show this rigourously. By definition,

ψ(990, 10) = P [S(τ) ≤ 990 + τ for some τ ≤ 10].

From (5.1) and since P [N(10) ≥ 991] < 10−500 is negligible, we can approximate ψ(990, 10)

by a quantity ψa(990, 10) defined by

ψa(990, 10) =
990∑
j=1

P [N(10) = j and at least one these j claims is of size 1000]. (5.2)

In the comonotonic case, (5.2) yields the approximation ψcoma (990, 10) given by

ψcoma (990, 10) = P (X1 = 1000) P [1 ≤ N(10) ≤ 990],

while in the independent case, the corresponding approximation ψ⊥a (990, 10) is

ψ⊥a (990, 10) =
990∑
j=1

[
1− P (X1 = 1)j

]
P [N(10) = j].

We so see that

[ψ⊥a − ψcoma ](990, 10) > P [2 ≤ N(10) ≤ 990]
{[

1− P (X1 = 1)2
]
− P (X1 = 1000)

}
' 0.00227 >> 10−500 > P [N(10) ≥ 991].

Thus, as for the exact ruin probabilities ψ⊥ and ψcom, we get the inequality ψ⊥(990, 10) >

ψcom(990, 10).

(ii) Let us consider another situation where the common claim amount distribution is

still a biatomic law but given now by

P (X1 = 1) = 0.99 and P (X1 = 10) = 0.01. (5.3)

In comparison with (5.1), this law may be viewed as light-tailed. Take again λ = c = 1

and t = 10, and set here u = 100 as initial surplus.

This time, large claims (of size 10) will cause ruin before time t = 10 only if they

are also relatively numerous, which is more probable in the comonotonic case. So, one

expects intuitively that the comonotonic case could provide a higher ruin probability than

the independent case.

Let us establish this result. First, we observe that ruin is sure when there arise 11 large

claims before t = 10. Thus, the ruin probability for the comonotonic case, ψcom(100, 10),

satisfies

ψcom(100, 10) > P [N(10) ≥ 11] P (X1 = 10) ' 0.00417. (5.4)

15

ha
l-0

02
01

37
7,

 v
er

si
on

 1
 - 

28
 D

ec
 2

00
7



On the other hand, occurrence of ruin before t = 10 implies necessarily that the the total

claim amount at t is larger than u = 100. Using (5.3), we then have

ψ(100, 10) ≤ P [S(10) > 100] = 1−
100∑
j=0

P [N(10) = j, S(10) ≤ 100].

For 0 ≤ j ≤ 10, the event [N(10) = j, S(10) ≤ 100] is equivalent to [N(10) = j]. For

11 ≤ j ≤ 100, the event [N(10) = j, S(10) ≤ 100] means that the number of large claims,

k say, satisfies the relation 10k + (j − k) ≤ 100; so, in the independent case,

P [N(10) = j, S(10) ≤ 100] = P [N(10) = j]

b(100−j)/9c∑
k=0

(
j

k

)
[P (X1 = 10)]k [P (X1 = 1)]j−k.

Thus, the ruin probability for the i.i.d. model, ψ⊥(100, 10), satisfies

ψ⊥(100, 10) ≤ 1−
100∑
j=0

P [N(10) = j]b(100−j)/9c∑
k=0

(
j

k

)
[P (X1 = 10)]k P (X1 = 1)]j−k

 ' 10−14. (5.5)

Comparing (5.4) with (5.5) then gives the inequality ψ⊥(100, 10) < ψcom(100, 10).

In general, positive dependence does not have affect ruin probabilities in a monotonic

way. Nevertheless, the two examples above show that asymptotically as u → ∞, such a

property could be true for certain classes of interdependent claim amounts with heavy-

tailed distributions, as in example (i), or with light-tailed distributions, as in example

(ii).

(2) A monotonicity result for heavy-tailed laws

In this Section, we are going to prove that for certain heavy-tailed models, a stronger

positive dependence between claim amounts can either increase or decrease ruin probabil-

ities when the initial surplus is large enough. Various extensions of this result are possible

and will be presented in a forthcoming paper.

Let us assume that the successive claim amounts {Xi} are represented as follows:

Xi = Ii W0 + (1− Ii) Wi, i ≥ 1, (5.6)

where Ii, i ≥ 1, is a sequence of i.i.d. Bernoulli random variables with parameter p =

P (I1 = 1) ∈ [0, 1] and Wi, i ≥ 0, is a sequence of i.i.d. positive random variables with

Pareto distribution given by P (W0 > x) = x−α, x ≥ 1, where α > 0, these two sequences

being independent. Obviously, the Xi are positively dependent through the common

factor W0 and their interdependence becomes stronger when p increases.

16

ha
l-0

02
01

37
7,

 v
er

si
on

 1
 - 

28
 D

ec
 2

00
7



Denote S(t) ≡ Sp(t) and ψp(u, t) ≡ ψp(u, t). Our result states that if u is large enough,

then for any c, t > 0,

p1 < p2 implies ψp1(u, t) > ψp2(u, t) when α < 1, (5.7)

while the inverse inequality holds, i.e. ψp1(u, t) < ψp2(u, t), when α > 1.

Proof of (5.7). A key step of the proof is the max-sum-equivalence property (see, e.g.,

Cai and Tang [4]). Two random variables Y1, Y2 are said to satisfy that property if

P (Y1 + Y2 > x) ∼ P (Y1 > x) + P (Y2 > x).

In the independent case, this is equivalent to

P (Y1 + Y2 > x) ∼ P [max(Y1, Y2) > x].

For the model (5.6), the Wi, i ≥ 0, are i.i.d. and with regularly varying tail of

exponent α. So, for any j ≥ 1 and any pairwise distinct i1, . . . , ij ≥ 1,

P (Wi1 + . . .+Wij > x) ∼ P [max(Xi1 , . . . , Xij ) > x] = 1−
(
1− x−α

)j
,

whence

P (Wi1 + . . .+Wij > x) = P (W1 + . . .+Wj > x) ∼ jx−α. (5.8)

We also have, for any k > 0,

P (kW0 > x) = P (W0 > x/k) ∼ kαx−α. (5.9)

Using (5.8) and (5.9), we find that for any j ≥ 1 and 0 ≤ k ≤ j,

P [Sp(t) > x | N(t) = j, Ij1 = . . . = Ijj−k
= 0, Ijj−k+1

= . . . = Ijj = 1]

= P [(W1 + · · ·+Wk−j) + (kW0) > x] ∼ (k − j + jα)x−α; (5.10)

for j = 0, P [Sp(t) > x | N(t) = 0] = 0. By the independence assumptions made above,

we then deduce from (5.10) that

P [Sp(t) > x] ∼

{
∞∑
j=1

e−λt
(λt)j

j!

[
j∑

k=0

(
j

k

)
pk(1− p)j−k (j − k + kα)

]}
x−α.

This formula can be rewritten as

P [Sp(t) > x] ∼ {λt+ E [(Zp(t))α − Zp(t)]} x−α, (5.11)

where Zp(t) denotes a binomial random variable Bin[N(t), p].

17

ha
l-0

02
01

37
7,

 v
er

si
on

 1
 - 

28
 D

ec
 2

00
7



Note that for u large enough,

ψp(u, t) ∼ P [Sp(t) > u+ ct], for any c, t > 0, (5.12)

(∼ meaning that their ratio tends to 1 as u→∞). Indeed,

0 ≤ ψp(u, t)− P [Sp(t) > u+ ct]

ψp(u, t)
≤ ψp(u, t)− P [Sp(t) > u+ ct]

P [Sp(t) > u+ ct]

≤ P [Sp(t) > u]− P [Sp(t) > u+ ct]

P [Sp(t) > u+ ct]
→ 0 as u→∞ from 5.11.

Therefore, from (5.12) and (5.11), we obtain that for any c, t > 0,

ψp1(u, t)− ψp2(u, t) ∼ {E [(Zp1(t))α − Zp1(t)]− E [(Zp2(t))α − Zp2(t)]} x−α. (5.13)

The binomial law Bin[N(t), p] is known to be stochastically increasing in the parameter

p (see, e.g., Lefèvre and Utev [23]). Since the function f(x) = xα − x, x ∈ {0, 1, . . .}, is

decreasing (resp. increasing) when α < 1 (resp. α > 1), we then deduce the announced

implication (5.7). �
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[6] Denuit, M. , Lefèvre, C. and Picard, P. (2003). Polynomial structures in order statis-

tics distributions, Journal of Statistical Planning and Inference 113, 151-178.

18

ha
l-0

02
01

37
7,

 v
er

si
on

 1
 - 

28
 D

ec
 2

00
7



[7] De Vylder, F.E. (1999). Numerical finite-time ruin probabilities by the Picard-Lefèvre
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