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Abstract

In this work, we present advanced Monte Carlo techniques applied to the pricing of

barrier options and other related exotic contracts. It covers in particular the Brown-

ian bridge approaches, the barrier shifting techniques (BAST) and their extensions

as well. We leverage the link between discrete and continuous monitoring to de-

sign efficient schemes, which can be applied to the Black-Scholes model but also

to stochastic volatility or Merton’s jump models. This is supported by theoretical

results and numerical experiments.

Introduction

In this paper, we review and extend advanced techniques for the valuation of

barrier options (initially introduced by Merton [22]) and other financial con-

tracts, whose activation depends on whether an underlying asset has reached

or not a specified level (the barrier). From the Monte Carlo point of view,

these types of payoff are difficult to simulate because they are strongly path

dependent and they are discontinuous with respect to the path of the moni-

tored process. The option prototype is the Down and Out Call (DOC), which

is a European Call with strike K and expiration date T , but it is paid if and

only if the asset X has not reached the lower level D before expiration. This
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is a knock out option, whose payoff can be written as follows:

ΨT = 1∀t<T : Xt>D(XT − K)+.

On the other hand, a knock in option comes into effect only when the barrier

is reached. However, a knock out option plus a knock in option with same

parameters readily gives a vanilla option; thus, by absence of arbitrage, one

needs to focus on only one type and this will the knock out in what follows. We

mention that all these options are also known as trigger options. Additionally,

a rebate can be paid at the trigger when the option ceases to exist (in the case

of a knock out option).

The type of barrier options can be widened with many respects. First, it can be

designed for several assets simultaneously, with barriers on each asset. Double

barriers (lower and upper) or time dependent barriers are complementary

choices. Also, there may be a discrete time monitoring instead of a continuous

one: for instance, the option is not knocked out if the asset remains above the

barrier, daily at a fixing hour. Moreover as shown hereafter, it is quite fruitful

to connect the discrete and continuous monitoring.

At this level of description, the knowledge of the stochastic model does not

matter. It could be given by the solution of a Brownian stochastic differential

equations (SDE in short), and it could include jumps as well. It could be

related to Forex markets, where these options are of the most popular types,

but related assets can be traded on Equity or Fixed Income markets as well.

Usually they are over-the-counter contracts. Within the structured products,

it is also quite common to meet barrier type options.

The problem to simulate such payoff ΨT is that one has to compare the value

of the asset and of the barrier at any time before expiration date T , to decide

whether the option is knocked out or not, whereas one is able to simulate

the path only at a fixed number N of times (the monitoring dates) (ti)1≤i≤N .

If the monitoring frequency is high, one expects that the payoffs ΨT and

ΨN
T = 1∀ti<T : Xti>D(XT −K)+ are close from each other. This may be false for

some simulation scenarii but true when one takes the expectation, which is the

criterion of interest for valuation. However, the monitoring bias EΨN
T − EΨT

shrinks to 0 quite slowly (as N−1/2, see the references hereafter) and besides

this, it is positive because we may not detect that a trigger has occurred

between two successive dates. The bad consequence is to systematically over-

estimate the price (here, we omit the discount factor when referring to the

price).
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To overcome this difficulty, there are two numerical strategies.

• Either to discretize the state space of the asset X (or its logarithm). Then,

simulate the successive hitting times of this space grid is a smart way (see

Rogers and Stapleton [25]) to well control the behavior of the path, and

thus to reduce the simulation bias. Actually to be optimal, one should choose

carefully the grid so that the barrier lies in the grid. This is closely related to

binomial or multinomial tree methods. We refer to Boyle and Lau [4], Boyle

and Tian [5], Cheuk and Vorst [9], Derman et al. [11], Ritchken [24], Rogers

and Stapleton [25], Rubinstein and Reiner [26]. This approach becomes

difficult to design, especially for several dependant assets and when jumps

may occur.

• Or to take into account that the option may be knocked out between mon-

itoring times. One possibility is to simulate the trigger event conditionally

on the known values of X. This is known as Brownian bridge techniques and

this dates back to Baldi [2]. This and related refinements will be discussed

in Section 1. Another possibility consists in shifting the trigger in order to

compensate the overestimation. This idea, initially put in a financial frame-

work by Broadie et al. [6] for a single asset in the Black-Scholes model, can

be extended in many ways (multi assets, local volatility, time dependant

barrier, jumps...). Actually it turns out to be quite flexible. It is discussed

in Section 2.

Section 3 brings together several financial examples, where we illustrate how

the previous methods perform. We do not present results related to the com-

putations of Greeks: see for instance Gobet [15] and the references therein.

1 Brownian bridge techniques

1.1 A toy example

Before coming into advanced techniques designed for sophisticated models,

we begin with the simplest financial example of Black-Scholes model with

constant coefficients, used to price a Down and Out Call option. Thus, under

the risk-neutral probability the dynamics of the underlying asset X is given

by

dXt

Xt
= µdt + σdWt
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where W is a standard Wiener process. Here σ is the volatility, µ is the drift

under the risk-neutral probability (generally equal to the interest rate minus

the continuous dividend rate if X is an equity, or to the difference of interest

rates of both economies if X is an exchange rate). To simplify even more,

consider that the discount factor equals 1 (zero interest rate). Then, the fair

price is given by the expectation

E(1∀t<T : Xt>D(XT − K)+),

that we may evaluate by Monte Carlo methods. Of course, in this toy example,

one has a closed formula for this price (see Rubinstein and Reiner [26] and

Equation (27) below), which is useful for numerics to check the validity of a

procedure.

Without the simulation of the trigger. For the simulation, we may

proceed as follows.

• firstly, simulate XT by 1

XT
d
= x0 exp((µ − 1

2
σ2)T + σ

√
TZ)

where Z is Gaussian variable with zero mean and unit variance.

• secondly, compute (analytically) the conditional trigger probability

p(x, y, T, D, |σ|) = P(∃t < T : Xt ≤ D|X0 = x, XT = y) (1)

and as an output, take

[1 − p(x0, XT , T, D, |σ|)](XT − K)+.

Draw many independent simulations of the output, and by averaging them

out, one gets an approximation of

E([1 − p(x0, XT , T, D, |σ|)](XT − K)+)

= E(E(1∀t<T : Xt>D|X0, XT )(XT − K)+)

= E(1∀t<T : Xt>D(XT − K)+).

This leads to an unbiased Monte Carlo procedure, provided that we are able to

compute the conditional trigger probability. Actually, this quantity is explicit

1 U
d
= V means that U and V have the same distribution.
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and it is given by

p(x, y, T, D, |σ|) =















1 if x or y are below D,

exp(−2 log(x/D) log(y/D)
|σ|2T

) otherwise.
(2)

This expression easily follows from the known distribution of the value of a

Brownian motion and of its running maximum at a given time (see Revuz and

Yor [23]). Actually, this is equal to the probability that a Brownian bridge

(namely (log(Xt))t conditionally to log(X0) and log(XT )) reaches the level

log(D): this gives the label of such approach as Brownian bridge tech-

niques. It is worth noticing that the conditional trigger probability does not

depend on the drift µ.

Pseudo-code

Z=gauss(0,1);

X=X0*exp((mu-0.5*sigma^2)*T+ sigma*sqrt(T)*Z);

p=p(X0,X,T,D,|sigma|);

return (1-p)*max(X-K,0);

With the simulation of the trigger. In this toy example, to generate a

scenario we only need to draw one random variable (i.e. Z) and to weight the

call payoff by the non trigger probability. Note that one could also simulate

the trigger by taking as an output

1U>p(0,x0,XT ,T,D,|σ|)(XT − K)+

with an extra random variable U , independent of Z and uniformly distributed

on [0, 1]. The procedure is still unbiased since the expectation remains un-

changed. Only the variance is modified and it is now larger because the vari-

ance of the conditional expectation is smaller than the variance. Thus, the

confidence interval is wider and on this example, simulating the trigger is not

relevant for the computational efficiency.

1.2 Easy extensions

From the simple principle described above, we can derive several easy exten-

sions, which allows us to handle less specific payoffs. Whereas in the previous

examples there was no advantage to generate the underlying asset along a

time grid, it is no longer true if the coefficients µ, σ are time-dependant, say
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piece-wise constant on each sub-intervals 2 [ti, ti+1[ and equal to µi and σi. In

that case, one has firstly to generate (Xti)i at those times

Xti+1

d
= Xti exp((µi −

1

2
σ2

i )∆i + σi

√

∆iZi)

with i.i.d. random variables Zi
d
= Z. Then, as an output, take

(XT − K)+

N−1
∏

i=0

(1 − p(Xti, Xti+1
, ∆i, D, |σi|)), (3)

where the function p is still defined by (2).

Pseudo-code

X=X0;

prob=1;

for i=0 to N-1

Z=gauss(0,1);

Y=X*exp((mu_i-0.5*sigma_i^2)*Delta_i

+ sigma_i*sqrt(Delta_i)*Z);

prob=prob*(1-p(X,Y,Delta_i,D,|sigma_i|);

X=Y;

return prob*max(X-K,0);

If the barrier D is time dependant and piecewise constant as well, at each time

step one has to evaluate p(Xti , Xti+1
, ∆i, Di, |σi|) instead of p(Xti , Xti+1

, ∆i, D, |σi|).
Then, the procedure remains unbiased.

If there is an upper barrier U , we proceed very analogously, except that the

conditional trigger probability p is now given by

p(x, y, ∆, U, |σ|) =















1 if x or y are above U ,

exp(−2 log(x/U) log(y/U)
|σ|2∆ ) otherwise.

(4)

As in the toy example, we could alternatively simulate the trigger event. In

the same way it slightly increases the variance of simulations. But now, the

pseudo-code may be computationally cheaper since the loop over i can be

stopped as soon as the option is knocked out.

2 regarding the notations, we put t0 = 0, tN = T and ∆i = ti+1 − ti.
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For a double barrier option (with down and up barriers D and U), the expres-

sion for p is still explicit:

p(x, y, ∆, D, U, |σ|) =































1 if x or y are above U or if x or y are below D,

∑+∞
k=−∞

[

exp(−2k log(U/D)(k log(U/D)+log(y/x))
|σ|2∆ )

− exp(−2 (k log(U/D)+log(x/U))(k log(U/D)+log(y/U))
|σ|2∆

)
]

otherwise.

(5)

However, from large deviation arguments (see Baldi [2]) we know that one has

to consider only the barrier which is the closest from x and y (and neglect the

other one) and at a distance of order |σ|
√

∆i; then, the evaluation of p as a

series boils down to the computation of one term. For a dense time grid (∆i

small), there is no possible ambiguity for such choice of the closest barrier but

it may be questionable if ∆i is not small (Xti may be close to U and Xti+1

close to D).

Notice that it is also straightforward to take into account in the simulation

procedure that a jump component lies in the dynamics of X. For instance, if

dXt

Xt−
= µdt + σdWt + YtdNt (6)

where N is a Poisson process with parameter λ and Y stands for the random

jumps, we proceed as follows. Simulate the k = NT jump times (τi)i up to

time T (τ0 = 0). Between two jumps, X behaves like a geometric Brownian

motion for which we can apply Brownian bridge techniques. This heuristic

is fully justified by the fact that the Brownian part and the jump part are

independent. Thus, we average out independent simulations of

(XT − K)+(1 − p(Xτk
, XT , T − τk, D, U, |σ|))

×
k−1
∏

i=0

(1 − p(Xτi
, Xτ−

i+1
, τi+1 − τi, D, U, |σ|)) (7)

to get asymptotically and without bias the required expectation.

1.3 Further approximations

Up to now, we have described only unbiased procedures. But too often, models

and payoffs are so complex that approximations are necessary to get through

the numerics.
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Firstly, when the underlying process has a fairly general dynamics such as

dXt = µ(t, Xt)dt + σ(t, Xt)dWt

(with matrix notations) with non constant (or non linear) coefficients µ and

σ, it is likely that one can not simulate exactly the process at given times.

One alternative is to use the Euler scheme (based on a regular grid (ti)0≤i≤N

with time step ∆ = T/N), which is defined by XN
0 = X0 and

XN
ti+1

= XN
ti

+ µ(ti, X
N
ti

)∆ + σ(ti, X
N
ti

)(Wti+1
− Wti).

If X is a coordinate-wise positive process, it is better to use an Euler scheme

on the log-process log(X) to keep this positivity property. Regarding the

Brownian bridge techniques, they are still applicable because on each inter-

val [ti, ti+1[, XN is a Brownian motion with drift: XN
t = XN

ti
+ µ(ti, X

N
ti

)(t −
ti) + σ(ti, X

N
ti

)(Wt − Wti). Thus, (XN
t )ti≤t≤ti+1

conditionally to XN
ti

= x and

XN
ti+1

= y has the same law as (x̄t = x + σ(ti, x)(Wt −Wti))ti≤t≤ti+1
condition-

ally to x̄ti+1
= y (remind that the law of the Brownian bridge does not depend

anymore of the initial drift). Now suppose for instance that the trigger is made

via a knock out on the first asset X1 at the lower level D, and that the payoff

has the general form f(XT ). Thus, the conditional trigger probability of the

Euler scheme is given by

P(∃t ∈ [ti, ti+1] : XN
1,t ≤ D|XN

ti
, XN

ti+1
) = p(XN

ti
, XN

ti+1
, ∆, D, |σ1(ti, X

N
ti

)|)

with σ1(·) is the diffusion coefficient of X1 (equal to the first row of σ(·)) and

p(x, y, ∆, D, σ̄) =















1 if x1 or y1 are below D,

exp(−2 (x1−D)(y1−D)
σ̄2∆

) otherwise.

Then, as an output take

f(XN
T )

N−1
∏

i=0

(1 − p(XN
ti

, XN
ti+1

, ∆, D, |σ1(ti, X
N
ti

)|))

analogously to (3).

8
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Pseudo-code

X=X0;

prob=1;

for i=0 to N-1

// Gaussian vector for the Brownian increments

Z=gauss(0,Id);

// component by component

Y=X+mu(t_i,X)*Delta +sigma(t_i,X)*sqrt(Delta)*Z;

prob=prob*(1-p(X,Y,Delta,D,|sigma_1(t_i,X)|);

X=Y;

return prob*f(X);

In this situation, the Monte Carlo procedure is biased because we use the

Euler scheme. Indeed (XN
ti

)0≤i≤N are only approximative simulation values

of (Xti)0≤i≤N : the accuracy in Lp norm is of order ∆1/2 (i.e. ‖ supi≤N |XN
ti
−

Xti |‖p = O(∆1/2)). But one knows that for the evaluation of E(f(XT )), the

accuracy becomes a O(∆) (this is the weak error, see Bally and Talay [3]

for the mathematical analysis). The extension of this error analysis to barrier

options has been carried out in Gobet [13] and it is shown that the weak error

is still of order ∆. Hence, provided that one suitably weights the payoff f by

the conditional trigger probability of the Euler scheme, the simulation bias is

as small as if there was no barrier. It also means that it is not worth using a

Milshtein scheme because the weak error has the same magnitude (in addition,

we recall that the Milshtein scheme may be harder to use in general models

because of restrictive conditions on σ and its derivatives).

The crucial point in the above arguments is that one can analytically com-

pute the trigger probability of the Euler scheme bridge (or equivalently of a

Brownian bridge). For upper barrier and double barriers, this is possible as

explained in paragraph 1.2. Difficulties really arise when barriers are multi-

ple. When the trigger is associated to the first exit time of a given domain

D (i.e. the option payoff is of the form 1∀t<T :Xt∈Df(XT )), one may use large

deviations arguments (see Baldi [2]) to get an accurate approximation of

p(x, y, ∆,D, σ(ti, x)) = P(∃t ∈ [ti, ti+1] : XN
t /∈ D|XN

ti
= x, XN

ti+1
= y)

as ∆ goes to 0. An asymptotic expansion for this probability is available

(for smooth domain). But it is computational demanding and thus, this is of

limited interest for real time computations. One may alternatively think of

locally approximating the domain by a half-space (see Gobet [14]). This may

be formalized as follows. For XN
ti

= x close to the boundary ∂D, denote by

π(x) its projection on ∂D and by n(x) the associated inward normal vector at

9
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this point. In the computation of pi(x, y, ∆), then replace D by the half-space

containing x and delimited by the tangent hyper-plane at the point π(x).

Then, the conditional trigger probability becomes explicit because this boils

down to a one-dimensional situation. This leads to

p(x, y, ∆,D, σ(ti, x)) ≈















1 if x or y are outside D,

exp(−2 d(x,D)d(y,D)
|σ(ti,x)·n(x)|2∆) otherwise.

One can prove (see Gobet [14]) that the simulation bias is still of order ∆, as

before when the conditional trigger probability was exactly computed. But this

result is valid if the domain is smooth enough, while in practice for multiple

barriers the domain is of the form

D =]D1, U1[× · · ·×]Dd, Ud[ (8)

(where d is the number of assets): thus, it exhibits corners. Hence, for each

asset, there is a single or double barrier for which the individual conditional

trigger probability is easy to evaluate 3 :

pi,j(x, y, ∆) = P(∃t ∈ [ti, ti+1] : XN
j,t /∈]Dj , Uj[|XN

ti
= x, XN

ti+1
= y)

=































1 if xj or yj are above Uj or below Dj ,

∑+∞
k=−∞

[

exp(−2
k(Uj−Dj)(k(Uj−Dj)+yj−xj)

|σj(ti,x)|2∆ )

− exp(−2
(k(Uj−Dj)+xj−Uj)(k(Uj−Dj)+yj−Uj)

|σj(ti,x)|2∆ )
]

otherwise.

If the assets are not correlated, the individual trigger events on the interval

[ti, ti+1] are independent and thus

1 − p(x, y, ∆,D, σ(ti, x)) =
d
∏

j=1

(1 − pi,j(x, y, ∆)). (9)

But in the case of correlated assets, there is no closed formula for p. In that

case, Shevchenko [27] suggests to use the theory of copulas (Joe [19]) in order

to derive lower and an upper bounds for p. We recall the Frechet bounds: for

any events (Aj)1≤j≤d, one has





d
∑

j=1

P(Aj) − (d − 1)





+

≤ P





⋂

1≤j≤d

Aj



 ≤ min
1≤j≤d

P(Aj). (10)

3 if there is only one barrier, the above series reduces to one term.

10
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In our case, it writes


1 −
d
∑

j=1

pi,j(x, y, ∆)





+

≤ 1 − p(x, y, ∆,D, σ(ti, x)) ≤ 1 − max
1≤j≤d

pi,j(x, y, ∆).

(11)

Denote by 1 − pL
i (x, y, ∆) and 1 − pU

i (x, y, ∆) the above lower and upper

bounds. Then clearly, for positive payoff f one has

f(XN
T )

N−1
∏

i=0

(1 − pL
i (XN

ti
, XN

ti+1
, ∆)) (12)

≤ f(XN
T )

N−1
∏

i=0

(1 − p(XN
ti

, XN
ti+1

, ∆,D, σ(ti, x)))

≤ f(XN
T )

N−1
∏

i=0

(1 − pU
i (XN

ti
, XN

ti+1
, ∆)) (13)

which gives two Monte Carlo estimates of E(1∀t<T :Xt∈Df(XT )). These are lower

and upper bounds if the (Xti)i are simulated without error. In Shevchenko [27],

it is proposed to take the average as an estimator.

Numerical results are brought together with the methods of barrier shifting

in Section 3.

2 Shifting the barrier

We have mentioned in the preceding section that for the evaluation of E(ΨT )

with ΨT = 1∀t<T : Xt>D(XT − K)+ (Down Out Call), the simulation of ΨN
T =

1∀ti<T : Xti>D(XT −K)+ yields a systematic overestimation, because by moni-

toring the process only at times (ti)i, we ignore its possible exit between these

times. However, this positive bias shrinks to 0 as the number of monitoring

dates N goes to infinity. One natural idea to compensate the bias is to shift

the barrier D inside the activation zone of the option (i.e. one increases D to

get DN) and thus to compute

ΨN,shift
T = 1∀ti<T : Xti>DN

(XT − K)+.

Of course, the new barrier DN has to be tuned accurately, in order to exactly

remove the overestimation bias. This is not a trivial issue, but the way has

been paved by Broadie et al. [7] for a single asset X in the Black-Scholes model

with constant volatility σ. Namely, by setting

DN = D exp(0.5826σ
√

∆), (14)

11

ha
l-0

03
19

94
7,

 v
er

si
on

 1
 - 

9 
Se

p 
20

08



one gets

E(ΨN,shift
T ) − E(ΨT ) = o(∆1/2)

instead of O(∆1/2) without shifting the barrier. The constant 0.5826... is de-

fined later in (19).

Recently in Gobet and Menozzi [18], it has been established that there is a

universal rule for shifting the barrier. We discuss this hereafter. The purpose

of this section is to provide several refinements about the idea of shifting the

barrier, for the pricing of continuously monitored barrier option, for the pricing

of discrete barrier option as well, in the case of constant and non constant

volatilities, including jumps or not. Numerical experiments are postponed to

Section 3.

2.1 Understanding the influence of the monitoring frequency

Before coming into the details of barrier shifting, it is essential to well under-

stand what the main bias term in ΨN
T − ΨT is.

Actually, during the last decade, it has been paid a lot of attention to the

study of the associated convergence. Regarding the rate of convergence, it is

proved quite generally that it is at most of order ∆1/2. Namely, for a smooth

domain D and a general Itô process X, one has (see Gobet and Menozzi [17])

E(1∀ti<T : Xti∈Df(XT ) − 1∀t<T : Xt∈Df(XT )) = O(∆1/2).

In addition, for a positive payoff function f and for a solution X to a non

degenerate SDE, the above error is bounded from below by a positive con-

stant times ∆1/2 (see Gobet and Menozzi [16]). These theoretical results are

supported by numerical experiments, which illustrate well that a discrete sam-

pling for such exotic contracts yields a positive bias, slowly decreasing. This is

analogous when in addition, an Euler scheme is used to approximate the un-

derlying process X. Hence in the following, we neglect this extra error which

contribution turns to be of order ∆ (see Paragraph 1.3).

The key point in the error analysis is to make the connection with the asymp-

totics of the overshoot Y N . The overshoot is defined by the distance of the

process to the barrier (the boundary of D) at the discrete trigger τN = inf{ti :

Xti /∈ D}:
Y N = d(XτN , ∂D). (15)

Actually, the important role of the overshoot has been underlined for years

in the binomial tree methods. When the first node of the tree (log(X0) +
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iσ
√

∆)i above the upper barrier log(U) coincides with the barrier, the over-

shoot of the binomial tree vanishes. In that case, one observes that the bi-

nomial tree method is quite accurate. Otherwise, the overshoot is equal to

σ
√

∆
(

1 − Frac
(

log(U/x0)

σ
√

∆

))

, where Frac(x) denotes the fractional part of x

(with the convention Frac(x) = 1 if x ∈ N). Then, one knows that the nu-

merical error is essentially proportional to this overshoot (see Gobet [12] for

a proof) and thus creates nasty oscillations as N varies: see Figure 1.

 22.5

 23

 23.5

 24

 24.5

 25

 20  40  60  80  100  120  140  160  180  200

Binomial method
Exact value

Figure 1. Up and Out Put (non discounted) with strike 900 and upper barrier at

1150. Underlying asset: initial value = 1000, T = 1 year, interest rate = 0.05 and

volatility = 0.2.

In the general case, to decompose the error we use the process Mt = E(1T<τtf(XT )|Ft)

where τt = inf{s ≥ t : Xs /∈ D} is the trigger time after t. Clearly, if no trigger

has occurred before t, then Mt is the price at time t of the barrier option. We

collect below the main properties related to M :

i) Xt /∈ D =⇒ τt = t and Mt = 0;

ii) for any given time t, (Ms∧τt)t≤s≤T is a martingale 4 ;

iii) under non degeneracy 5 on X and mild smoothness assumptions on µ, σ

and D, one has

Mt = u(t, Xt)

where u is a smooth function on [0, T [×D, vanishing on [0, T [×Dc and

solving a parabolic PDE with Cauchy-Dirichlet boundary conditions: u′
t+

∑

i µiu
′
xi

+ 1
2

∑

i,j[σσ∗]i,ju
′′
xi,xj

= 0 for t < T, x ∈ D; u(T, x) = f(x) for

x ∈ D; u(t, x) = 0 for x /∈ D and t < T .

4 indeed, one easily checks that Ms∧τt = 1s≤τtMs = E(1T<τtf(XT )|Fs).
5 ellipticity or hypo-ellipticity condition plus non characteristic boundary condition

13
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Then, it follows

E(1∀ti<T : Xti∈Df(XT ) − 1∀t<T : Xt∈Df(XT ))

=E(MT∧τN − M0) =
∑

0≤i<N

E(Mti+1∧τN − Mti∧τN ) (properties i)-iii))

=
∑

0≤i<N

E1ti<τN (Mti+1
− Mti)

=
∑

0≤i<N

E1ti<τN (Mti+1
− Mti+1∧τti

) +
∑

0≤i<N

E1ti<τN (Mti+1∧τti
− Mti)

=
∑

0≤i<N

E1ti<τN 1τti<ti+1
(Mti+1

− Mτti
) (properties i)-ii) and τti ≥ ti).

Because M vanishes when X is outside D and u is smooth inside D, one

has Mti+1
− Mτti

= 1Xti+1∈D∇xu(τti , Xτti
) · (Xti+1

− Xτti
) plus a term whose

expectation is of order ∆ and which can be neglected (see Gobet and Menozzi

[18] for details). This gives

E(1∀ti<T : Xti∈Df(XT ) − 1∀t<T : Xt∈Df(XT ))

=
∑

0≤i<N

E

(

1ti<τN 1τti<ti+1
E(1Xti+1∈D∇xu(τti , Xτti

) · (Xti+1
− Xτti

)|Fτti
)
)

+ O(∆).

Denote by n(s) the inward normal unit vector at s ∈ ∂D and set ∂nu(t, s) =

∇xu(t, s) ·n(s): since u = 0 on ∂D, ∇xu(t, s) lies only in the normal direction.

In addition, with a probability exponentially close to 1 w.r.t. N , on Fτti
Xti+1

is close to the boundary and the normal component of Xti+1
− Xτti

has an

amplitude equal to d(Xti+1
, ∂D). Bringing together all these remarks leads to

E(1Xti+1∈D∇xu(τti , Xτti
) · (Xti+1

− Xτti
)|Fτti

)

=∂nu(τti , Xτti
)E(1Xti+1∈Dd(Xti+1

, ∂D)|Fτti
) + o(∆)

=∂nu(τti , Xτti
)E(1Xti+1

/∈Dd(Xti+1
, ∂D)|Fτti

) + O(∆)

=∂nu(τti , Xτti
)E(Y N |Fτti

) + O(∆).

Finally we get

Theorem 1 Discrete monitoring and continuous monitoring yields a differ-

ence of prices that is proportional to the expected weighted overshoot. It writes

E(1∀ti<T : Xti∈Df(XT ) − 1∀t<T : Xt∈Df(XT ))

=
∑

0≤i<N

E(1ti+1=τN ∂nu(τti, Xτti
)Y N) + O(∆). (16)

Since the increments of X are of order ∆1/2, the same order applies to the

overshoot Y N and this justifies why the discrete monitoring yields a simulation

14
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bias of this order. More interesting is to see that an expansion at the order

∆1/2 is available, provided that the limit of the triplet (τN , XτN , ∆−1/2Y N)

can be identified. When (Xt = x0 + Wt)t is a linear Brownian motion and

D =] −∞, U [, finding the asymptotics of the renormalized overshoot
√

N
T

Y N

can be made as follows. Set (si =
√

N
T

WiT/N )i, which defines a Gaussian

random walk, and put τu = inf{i ≥ 0 : si > u}. Clearly one has

√

N

T
Y N :=

√

N

T
(XτN − U) = [sτu − u]|u=uN

:= y(uN) (17)

where uN =
√

N
T

(U − x0) goes to infinity with N . From the renewal theory

(see Siegmund [28]), sτu − u = y(u) weakly converges as u goes to infinity to

a random variable Y , whose cumulative function H is given by:

H(y) := (E[sτ0 ])−1
∫ y

0
P[sτ0 > z]dz. (18)

In our shifting approach, the quantity which plays a crucial role (remind of

(14)) is the expected asymptotic renormalized overshoot

ȳ(∞) = E(Y ) = lim
u→∞

E(y(u)) =
E[s2

τ0 ]

2E[sτ0 ]
= −ζ(1/2)√

2π
= 0.5826... (19)

(see Siegmund [28]). One also knows from Chang and Peres [8] that

ȳ(0) := E(y(0)) = E[sτ0 ] =
1√
2

= 0.7071... (20)

Unfortunately, the other values of ȳ(u) = E(y(u)) are not known (see Ap-

pendix for a numerical approximation).

The previous results by Siegmund on the scalar Brownian motion have been

recently extended to general diffusion processes (and to the associated Euler

scheme as well).

Theorem 2 (Gobet and Menozzi [18]). The sequence (τN , XτN , ∆−1/2Y N )N

weakly converges to (τ, Xτ , |n σ(τ, Xτ )|Y ) where Y is a random variable in-

dependent of (τ, Xτ ), and which cumulative function is equal to H (given in

(18)).

As a consequence and relying on (easy) extra uniform integrability results,

15
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one can pass to the limit in theorem 1 to get:

E(1∀ti<T : Xti∈Df(XT ) − 1∀t<T : Xt∈Df(XT ))

=ȳ(∞)

√

T

N
E(1τ<T ∂nu(τ, Xτ)|n σ(τ, Xτ )|) + o(N−1/2). (21)

As required, this is an overestimation (for positive payoff f) because the inward

normal derivative of u is positive.

If we look carefully at the assumptions in the quoted references, the domain

D needs to be a little smooth (of class C2) and it does not allow us to directly

apply the results to domains with corners. Actually, the limitation is essentially

due to technical considerations related to good controls of the derivatives of

u, solution of the PDE. In Menozzi [21], these technicalities are handled in

the case of a bi-dimensional drifted Brownian motion.

As a computational consequence of this result, the Romberg extrapolation

techniques can be applied to get a more accurate procedure. Namely, by using

two monitoring frequencies N/T and 2N/T and by averaging out independent

simulations of

ΨN,Romberg
T = f(XT )(

√
2 1∀i≤2N : XiT/(2N)∈D − 1∀i≤N : XiT/N∈D)/(

√
2 − 1), (22)

we get

EΨN,Romberg
T − EΨT = o(N−1/2). (23)

Hence, at the first sight, we get a more accurate estimation of the price.

However, there are two drawbacks. First, the computational time has es-

sentially been multiplied by a factor 3 (because one simulates with N and

2N time steps). Second, the variance is approximately multiplied by a factor

((
√

2)2 + 12)/(
√

2 − 1)2 ≈ 17.5, which increases the statistical error of the

Monte Carlo method.

2.2 Derivation of the sensitivity to the barriers

As mentioned in the introduction of this section, to compensate the systematic

overestimation of discrete monitoring, we may think of slightly increase the

trigger zone by pushing the barrier towards the initial value of the underlying

process X. The question is how much should we shift the barrier? The answer

is strongly related to the sensitivity of the option price to the barrier.

We start with the simplest case of a drifted Brownian motion for Xt = x +

µt + σWt and an upper barrier U . In that case, due to explicit conditional

16
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trigger probability one gets

∂UE(1∀t<T : Xt<Uf(XT ))

= ∂U

∫ U

−∞
f(y)(1− exp(−2

(U − x)(U − y)

σ2T
))

1

σ
√

2πT
exp(−(y − x − µT )2

2σ2T
)dy

=
∫ U

−∞
f(y) exp(−2

(U − x)(U − y)

σ2T
)
2(2U − x − y)

σ3
√

2πT 3
exp(−(y − x − µT )2

2σ2T
)dy

=
∫ U

−∞
f(y)

2

σ2
exp(

µ(y − x)

σ2
− µ2

2σ2
T )h0(T, 2U − x − y)dy

where we set

hµ(t, b) =
|b|√

2πσ2t3
exp

(

−(b − µt)2

2σ2t

)

= h0(t, b) exp

(

µb

σ2
− µ2

2σ2
t

)

.

Actually, the first hitting time τ for X of the level U has a density equal to

hµ(t, U − x) (see Karatzas and Shreve [20]). The above relation with h0 can

be also obtained using the Girsanov theorem.

For the purpose of the barrier shifting, it is more convenient to relate

∂UE(1∀t<T : Xt<Uf(XT )) to the gradient of the solution u of the PDE at the

barrier. For this, use the convolution equality

h0(T, 2U − x − y) =
∫ T

0
h0(t, U − x) h0(T − t, U − y)dt

(U > x, U > y) which results from the definition of h and the independence

of hitting times of (x + σWt)t of successive levels. Then,

∂UE(1∀t<T : Xt<Uf(XT )) =
∫ T

0
hµ(t, U − x)

∫ U

−∞
f(y)

2

σ2
exp(

µ(y − U)

σ2
− µ2

2σ2
(T − t))h0(T − t, U − y)dydt.

In the same way, a direct computation shows that the above integral w.r.t. y

is actually equals to −∂xu(t, U), which finally gives

∂UE(1∀t<T : Xt<Uf(XT )) = −E(1τ≤T ∂xu(τ, Xτ )). (24)

This formula is remarkably simple. Actually it is not a coincidence with the

Brownian setting. It turns out that it can be extended to general diffusion

models. More interesting is to notice that this gradient formula looks like the

main term appearing in the discrete monitoring, this is discussed a bit later.

In the general case, the above explicit computations are no more explicit and

we have to carry out an alternative way to proceed. We give below another

proof using basic stochastic calculus arguments, which has the great advantage

17
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to handle a large generality of trigger zones and stochastic processes. Before,

we mention that related problems have been considered in the PDE literature.

Indeed, the price function is solution of Cauchy-Dirichlet PDE, of the same

type than the position of a elastic structure to which external forces are ap-

plied. Hence, computing the barrier sensitivity is very analogous to compute

the shape sensitivity of elastic structures (see Allaire [1] and references therein

about shape optimization). Sensitivities w.r.t. the domain are classic issues in

the numerical analysis literature and date back to Hadamard at the beginning

of the century. Recently in Costantini et al. [10], extensions to time-dependent

domains and to general diffusion processes have been obtained by probabilis-

tic techniques. Actually, the proof is rather elementary and we give it in the

previous case of an upper barrier U and linear diffusion process X. Denote by

τ ε = inf{t ≥ 0 : Xt ≥ U − ε} the first hitting time of U − ε by X (ε > 0).

Clearly (τ ε)ε defines a increasing sequence as ε ↓ 0, bounded by τ and it is not

hard 6 to show that it also converges to τ . We aim at computing the limit of

[E(1T<τf(XT )) − E(1T<τεf(XT ))]/ε as ε ↓ 0, which gives the left derivative 7

of E(1∀t<T : Xt<Uf(XT )) w.r.t. U .

Note that E(1T<τf(XT )) = u(0, x) = E(u(T∧τ ε, XT∧τε)) since (u(s∧τ, Xs∧τ))s≤T

is a martingale and τ ε < τ . In addition, 1T<τεf(XT ) = u(T ∧ τ ε, XT∧τε) −
1τε≤T u(τ ε, Xτε) because on T < τ ε, f(XT ) = u(T, XT ) (XT < U). Writing

Xτε = U − ε and u(τ ε, U) = 0, one finally gets

E(1T<τf(XT )) − E(1T<τεf(XT ))

ε
= E(1τε≤T

u(τ ε, U − ε) − u(τ ε, U)

ε
).

Passing to the limit, we clearly obtain the equality (24), not only for a drifted

Brownian motion but for a general diffusion model for X.

We now state a more general result for a multidimensional domain D ⊂ R
d

and take for instance 1∀t<T : Xt∈Df(XT ) as a general form 8 of the option payoff

for an initial trigger zone D: the price function u(t, x) is solution of a parabolic

PDE as mentioned before. We allow the domain D to be perturbed in various

directions with various amplitudes (parameterized by a function Θ and a small

parameter ε), which may result in a time-dependent domain in that way:

Dε
t = {x : x + εΘ(t, x) ∈ D}.

We focus on the price for the option associated to the perturbed trigger zone:

6 one needs here to assume that the diffusion coefficient of X does not vanish at

the barrier.
7 the computations for the right derivative are analogous and we skip them.
8 without extra difficulties, a rebate could be paid at the trigger time and the

domain may be time-dependent as well: see Costantini et al. [10] for details.
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it is equal to E(1∀t<T : Xt∈Dε
t
f(XT )). It is proved 9 (under suitable mild smooth-

ness assumptions and ellipticity condition, see Costantini et al. [10] for details)

that the latter price as a function of ε is continuously differentiable and its

derivative at ε = 0 is given by:

E

[

1τ<T ∂nu(τ,Xτ )[Θ.n](τ, Xτ )
]

,

where n(x) is the inward normal unit vector at ∂D at the point x and τ =

inf{t > 0 : Xt /∈ D} is the first exit time of (Xs)s≥0 from D. Equivalently, this

differentiability can be written as

Theorem 3 The price of knocked-out option is differentiable with respect to

trigger zone and the sensitivity is defined by

E(1∀t<T : Xt+εθ(t,Xt)∈Df(XT )) = E(1∀t<T : Xt∈Df(XT )) (25)

+ εE
[

1τ<T ∂nu(τ, Xτ)[Θ.n](τ, Xτ )
]

+ o(ε).

2.3 Connecting discrete/continuous monitoring: the BArrier Shifting Tech-

niques (BAST)

We recall that from (21), one gets

E(1∀ti<T : Xti
∈Df(XT ) − 1∀t<T : Xt∈Df(XT ))

=ȳ(∞)

√

T

N
E(1τ<T ∂nu(τ, Xτ)|n σ(τ, Xτ )|) + o(N−1/2).

Thus, combining this with (25) for the choice θ(t, x) = ȳ(∞)|n σ(t, x)|n(x) and

ε =
√

T
N

, one obtains several simple relations (Theorem 4, 5, 6) between prices

of discrete and continuous monitored barrier options with adjusted trigger

zones. In the following, we refer to these results as BAST (BArrier Shifting

Techniques).

Theorem 4 (From Discrete to Continuous (D2C)) The price of a dis-

crete barrier option equals that of a continuous barrier option with shifted

barrier:

E(1∀ti<T : Xti∈Df(XT )) − E(1∀t<T : Xt+ȳ(∞)|nσ|n(t,Xt)
√

T
N
∈Df(XT ))

= o(N−1/2). (26)

9 the arguments are similar to those used before for the case of one-dimensional

barrier U .
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In the above expression, n(x) has to be understood as the inward normal to

∂D at the closest point to x on ∂D (i.e. its projection on the boundary).

The above Theorem 4 is an extension of results by Broadie et al. [7] to multi-

assets and multi-barriers options. Such equality is useful to numerically eval-

uate the price of discrete barrier options only in situations where we are able

to compute more efficiently the price of continuous ones.

• This is the case for linear arithmetic/geometric Brownian motion with one

single/double barrier, for which there is a closed formula which is instan-

taneous to compute. This is the idea developed in Broadie et al. [7]. For

instance, for the Down and Out Call in a geometric Brownian motion model

with volatility σ and with dividend rate q, one has

DOC(X0, D) = E(e−rT1∀t<T : Xt>D(XT − K)+)

= CallBS(X0) −
(

X0

D

)1−2
(r−q)

σ2

CallBS

(

D2

X0

)

(27)

where CallBS(X0) is the usual Black-Scholes price of the vanilla Call when

the initial spot equals X0. In that case,

Xt + ȳ(∞)|nσ|n(t, Xt)

√

T

N
∈ D ⇐⇒ Xt + ȳ(∞)σXt

√

T

N
> D,

which is equivalent (at the order o(N−1/2)) to

Xt > D exp(−ȳ(∞)σ

√

T

N
).

If we denote by DOCN(X0, D) the price of the similar DOC with N moni-

toring dates, we get the approximation (see Broadie et al. [7])

DOCN (X0, D) = DOC(X0, D exp(−ȳ(∞)σ

√

T

N
)) + o(N−1/2). (28)

In the next paragraph, we discuss this approximation and we give a simple

additional improvement when X0 is close to the barrier or when N is small.

• This may also be applied if we can perform a efficient Monte Carlo methods

for the continuous barrier option, using for instance the Brownian bridge

techniques (see paragraph 1). To illustrate this, consider again an Down

and Out Call with a Merton’s model 10 of type (6). Then, the payoff (7)

10 in this jump diffusion model, the previous discussion is not supported by theo-

retical results. Nevertheless, the intuition is clear. Indeed, if the option is triggered
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(written with a lower barrier D) has to be replaced by

(XT − K)+(1 − p(Xτk
, XT , T − τk, D exp(−ȳ(∞)σ

√

T

N
), |σ|))

×
k−1
∏

i=0

(1 − p(Xτi
, Xτ−

i+1
, τi+1 − τi, D exp(−ȳ(∞)σ

√

T

N
), |σ|)).

(29)

In the same way one can go from the Discrete to Continuous barrier pricing, we

can approximate continuous barrier option using discrete ones with a Barrier

shifting procedure.

Theorem 5 (From Continuous to Discrete (C2D)) The price of a con-

tinuous barrier option equals that of a discrete barrier option with shifted bar-

rier:

E(1∀t<T : Xt∈Df(XT )) − E(1∀ti<T : Xti−ȳ(∞)|nσ|n(ti,Xti)
√

T
N
∈Df(XT ))

= o(N−1/2). (30)

This procedure avoids using Brownian bridge techniques and related variants.

This is particularly interesting for multi-assets and multi-barriers contracts

where the computation of joint trigger probabilities is not possible (see the

discussion in paragraph 1.3).

Also, for contracts with a large number of monitoring dates N1 � 1 (daily for

instance) we approximate them by the similar one with a medium number of

monitoring dates 1 � N2 � N1, by suitably adjusting the barrier twice. This

saves computational time because it is essentially linear with the number of

dates.

Theorem 6 (From Discrete to Discrete (D2D)) Two discrete barrier op-

tions with two different monitoring dates (t1,i = iT/N1)i and (t2,i = iT/N2)i

are equal provided that barriers are conveniently shifted:

E(1∀t1,i<T : Xt1,i∈Df(XT )) − E(1
∀t2,i<T : Xt2,i+ȳ(∞)|nσ|n(t2,i,Xt2,i)

(

√

T
N1

−
√

T
N2

)

∈D
f(XT ))

= o(N
−1/2
2 ). (31)

when a jump occurs, the monitoring frequency has no influence in these aspects.

Hence, the link between discrete and continuous barrier options really relies on the

good understanding of the Brownian part, as we have done before.
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2.4 An additional improvement: the Adjusted BAST (ABAST)

N Barrier D True value

Continuous

monitoring

Continuous monitoring

with BAST (and rela-

tive error in %)

87 6.281 6.244 6.281 (0.0%)

50 91 5.977 5.808 5.977 (0.0%)

95 4.907 4.398 4.907 (0.0%)

99 2.337 1.171 2.271 (-2.8%)

87 6.292 6.244 6.293 (0.0%)

25 91 6.032 5.808 6.033 (0.0%)

95 5.081 4.398 5.084 (0.0%)

99 2.813 1.171 2.673 (-5.0%)

91 6.187 5.808 6.194 (0.1%)

5 95 5.671 4.398 5.646 (-0.5%)

97 5.167 3.060 5.028 (-2.7%)

99 4.489 1.171 4.053 (-9.8%)

Table 1

D2C approximation for the discrete DOC in a Black-Scholes model with volatility

σ = 0.3, interest rate r = 0.1, K = X0 = 100, T = 0.2. N = 50, N = 25 or N = 5.

Before presenting several numerical illustrations of BAST, we provide an ad-

ditional improvement when the processes are close to the barrier or when the

number of dates N are relatively small.

To understand the necessity of this improvement, we report few numerical

values borrowed from Broadie et al. [7]. It deals with the price of discrete

DOC option using the closed formula for the continuous one in a Black-Scholes

model (see Formula (28)). One should carefully look at the accuracy of the

approximation when the barrier D varies and the number N of dates as well.

On the one hand, the approximation performs very well for large N or for

barriers D far from the initial spot X0. On the other hand, in the other cases

it can be quite bad and may provide errors or order of 5% and even more.

By a careful look at the proof of the influence of the discrete monitoring (which

is summed up in Equality (21)), one notices that the the crucial quantity for
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the limit is the expected overshoot

E(Y N) =

√

T

N
E(y(uN)) =

√

T

N
ȳ(uN)

when the level (directly expressed in the logarithmic variables) is defined by

uN = (log(X0) − log(D))/(σ
√

T
N

). Since usually uN is very large (since N is

large and D is not close to X0), we may focus only on the asymptotic value

ȳ(∞) ≈ 0.5826 as in Broadie et al. [6]. Indeed, in those cases, we have observed

a very good performance of the BAST. However, for medium 11 values of uN ,

one should replace ȳ(∞) by ȳ(uN). In the above case of a discrete DOC, this

means that Equality (28) becomes

DOCN(X0, D) = DOC



X0, D exp
[

− ȳ(log(X0/D)/(σ
√

T/N))σ

√

T

N

]



+o(N−1/2).

(32)

This is what we call in the following Adjusted BAST (ABAST). The

additional problem that one has to solve is the computation of the function

u 7→ ȳ(u), which is not obvious because only the values in 0 and ∞ are known.

A numerical study (reported in Appendix) shows that one has the equality

ȳ(u) ≈ 0.5826 + 0.1245 exp(−2.7u1.2) (33)

with less than 1 percent error. We present in Table 2 the same results as before,

including now the ABAST. In this table, we also provide the value of uN . In

view of (33), there is no additional improvement in the case uN > 1 (but in this

case, the approximation is already very accurate), which is confirmed by the

numerical experiments. In the converse case, the improvement is significant

and leads to very good results when N is not small (N = 25 and N = 50);

the accuracy is now robust in the distance of the spot to the barrier. The

improvement is not so spectacular for N = 5, but this is not surprising because

all the analysis related to barrier sensitivities and the influence of the discrete

monitoring is based on the asymptotics T/N → 0.

3 Numerical tests

We conclude this work by presenting different illustrations of the Brownian

bridge techniques and of ABAST on practical examples.

11 in other words, the convergence stated in (21) is not uniform in X0.
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N Barrier D True value

BAST (and rela-

tive error in %) uN

ABAST (and rel-

ative error in %)

87 6.281 6.281 (0.0%) 7.33 6.281 (0.0%)

50 91 5.977 5.977 (0.0%) 4.97 5.977 (0.0%)

95 4.907 4.907 (0.0%) 2.70 4.907 (0.0%)

99 2.337 2.271 (-2.8%) 0.53 2.332 (-0.2%)

87 6.292 6.293 (0.0%) 5.18 6.281 (0.0%)

25 91 6.032 6.033 (0.0%) 3.51 6.033 (0.0%)

95 5.081 5.084 (0.0%) 1.91 5.0841 (0.0%)

99 2.813 2.673 (-5.0%) 0.37 2.794 (-0.7%)

91 6.187 6.194 (0.1%) 1.57 6.194 (0.0%)

5 95 5.671 5.646 (-0.5%) 0.85 5.663 (-0.1%)

97 5.167 5.028 (-2.7%) 0.51 5.111 (-1.1%)

99 4.489 4.053 (-9.8%) 0.17 4.353 (-3.1%)

Table 2

D2C approximation for the discrete DOC in a Black-Scholes model with volatility

σ = 0.3, interest rate r = 0.1, K = X0 = 100, T = 0.2. N = 50, N = 25 or N = 5.

3.1 Merton’s model

Consider first the case of discrete DOC (with N monitoring dates), for which

we apply the D2C approximation described in (29) (with modifying ȳ(∞)

as indicated before). The advantage is mainly computational because instead

of simulating the underlying process at the N monitoring dates and at the

NJ jump times 12 , the formula (29) requires the knowledge of the underlying

process at the NJ jump times plus the maturity T . In the following example,

we take λ = 1 and T = 0.5, which requires in average to simulate the process

at 0.5 + 1 dates instead of N + 2 dates. This can be much faster. To complete

our description, we numerically observe that the confidence interval width

is not significantly modified. We report numerical results in Table 3, when

the barrier and N vary. It turns out that, up to the statistical error due to

the Monte Carlo simulations, we get a very good accuracy for high frequency

monitoring (N large), exactly when such procedure may be interesting to save

computational time. In Table 3, analogous results are given for a larger jump

12 which, in any case, is necessary for the simulation procedure.
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N Barrier D

Discrete DOC

(true value)

Continuous DOC

with ABAST

Error

(in percent)

89 9.65 (0.035) 9.68 (0.035) 0.3

91 9.02 (0.035) 9.05 (0.034) 0.3

93 8.16 (0.034) 8.20 (0.033) 0.5

25 95 7.04 (0.033) 7.08 (0.032) 0.6

97 5.69 (0.030) 5.67 (0.029) -0.4

99 4.21 (0.027) 3.93 (0.024) -6.6

89 9.32 (0.035) 9.33 (0.035) 0.1

91 8.55 (0.034) 8.56 (0.034) 0.1

93 7.52 (0.033) 7.53 (0.033) 0.1

125 95 6.22 (0.031) 6.22 (0.031) 0.0

97 4.55 (0.028) 4.56 (0.027) 0.2

99 2.60 (0.022) 2.55 (0.020) -1.9

Table 3

D2C approximation for the discrete DOC in a Merton model. Volatility σ = 0.3;

lognormal jumps with mean µJ = −0.02, standard deviation σJ = 0.2 and intensity

λ = 1; interest rate r = 0.05, K = X0 = 100, T = 0.5. N = 25 (weekly) or N = 125

(daily). 1000000 simulations.

The true value is obtained using Monte Carlo simulations. Values in parentheses

indicate the half-width of the 95% confidence interval.

intensity (λ = 4). This is still satisfactory.

3.2 Up and Out Put in the Heston stochastic volatility model

In this one asset example, one considers the payoff of a continuous Up and

Out Put option

1∀t≤T :Xt<U(K − XT )+,

where the underlying asset (under the valuation probability) is defined by a

Heston model

dXt

Xt
= r dt +

√

VtdWt,

dVt = β(α − Vt)dt + σV

√

Vt dBt,
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N Barrier D

Discrete DOC

(true value)

Continuous DOC

with ABAST

Error

(in percent)

89 11.84 (0.050) 11.93 (0.050) 0.8

91 10.99 (0.049) 11.10 (0.049) 1.0

93 9.90 (0.048) 10.03 (0.047) 1.3

25 95 8.52 (0.045) 8.68 (0.044) 1.9

97 6.89 (0.041) 6.98 (0.040) 1.3

99 5.05 (0.037) 4.89 (0.033) -3.2

89 11.49 (0.050) 11.51 (0.050) 0.2

91 10.50 (0.049) 10.52 (0.049) 0.2

93 9.22 (0.047) 9.26 (0.046) 0.4

125 95 7.62 (0.044) 7.65 (0.043) 0.4

97 5.63 (0.039) 5.67 (0.038) 0.7

99 3.27 (0.030) 3.22 (0.028) -1.5

Table 4

Similar to Table (3) with jump intensity λ = 4.

where B and W are two correlated Brownian motions (with correlation ρ =

0.1). For the next experiments, we take X0 = 40, K = 42, r = 0.03 for the

interest rate, T = 0.5 for the expiration date, and the following values for the

stochastic volatility: β = 4, α = 0.04 = V0, σV = 0.15.

We apply here the C2D approximation given in Theorem 5. For the simulation

of the volatility component, we use the symmetrized Euler scheme with step

size h, which writes V(i+1)h = |Vih + β(α − Vih)h + σV

√
Vih(B(i+1)h − Bih)|.

Since we focus on the monitoring error, we choose a small step size h = 1/250

(daily) to ensure that the related discretization error can be neglected. In the

pseudo-code below, we only give the details related to the trigger, once the

asset and its volatility are generated.
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Pseudo-code

Delta=T/N;

// Brownian bridge techniques

prob=1;

for i=0 to N-1

prob=prob*(1-p(X[i],X[i+1],Delta,U,sqrt(V[i])));

payoffBrownianBridge=prob*max(0,K-X[N]);

// ABAST

exitABAST=0;

cste_ABAST=y_bar(log(U/X[0])/sqrt(V[0]*Delta));

for i=0 to N-1

U_ABAST=U*exp(-cste_ABAST*sqrt(V[i]*Delta));

if (X[i+1]>U_ABAST) exitABAST=1;

if (exitABAST==1) payoffABAST=0;

else payoffABAST=max(0,K-X[N]);

We observe that the Brownian bridge techniques still yield very accurate re-

sults w.r.t. the number of monitoring dates N . Indeed, for each given barrier

U , the output values are almost constant w.r.t. N . As usual, the discrete

monitoring procedure provides a price overestimation, which becomes larger

and larger as the trigger probability (U closer to the initial spot). Regarding

ABAST, the accuracy is very good, except for U = 41 where the asymptotics

is recovered only for large values of N . In this example of one single barrier

on one single asset, the procedure using Brownian bridges is more efficient.

3.3 Down Out Call on three assets

We borrow this example to Shevchenko [27]. The buyer of the contract receives

at T the payoff (X1,T−K)+, i.e. a Call on the first asset, with knocked out lower

barriers on the three assets. The assets are modelled by correlated geometric

Brownian motions with constant coefficients. Our Table 6 (which completes

Table 4 in Shevchenko [27]) compares 4 estimators: 1) using the simple discrete

monitoring; 2 and 3) using the lower and upper copula bounds to compute the

conditional trigger probability (see inequalities (12-13)); 4) using ABAST. In

the latter case, according to Theorem 5, each barrier are shifted separately: the

lower barrier for the asset Xk becomes Dk exp(ȳ(uk,N)σk

√

T
N

) where uk,N =

log(Xk,0/Dk)/(σk

√

T
N

). Contrary to the Brownian bridge techniques, we do not

need to take into account the correlation between assets to adjust the barriers.

This theoretical choice is confirmed by numerical experiments in Table 6 and

7.
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Barrier

U

Discrete UOP

/ Brownian

Bridge /

ABAST

(N = 13)

Discrete UOP

/ Brownian

Bridge /

ABAST

(N = 26)

Discrete UOP

/ Brownian

Bridge /

ABAST

(N = 52)

Discrete UOP

/ Brownian

Bridge /

ABAST

(N = 126)

41 1.729

0.984

1.133

1.516

0.984

1.040

1.364

0.983

0.995

1.233

0.983

0.982

42 2.244

1.730

1.752

2.110

1.728

1.726

2.008

1.727

1.725

1.913

1.727

1.727

43 2.595

2.253

2.251

2.510

2.251

2.250

2.442

2.250

2.250

2.378

2.250

2.250

44 2.808

2.594

2.591

2.756

2.593

2.592

2.714

2.592

2.592

2.674

2.592

2.592

45 2.926

2.802

2.800

2.897

2.801

2.801

2.873

2.801

2.801

2.850

2.801

2.801

46 2.988

2.920

2.920

2.973

2.920

2.920

2.960

2.920

2.919

2.948

2.920

2.920

Table 5

Continuous UOP in a Heston model with parameters: X0 = 40, K = 42, r = 0.03,

T = 0.5, β = 4, α = 0.04 = V0, σV = 0.15, ρ = 0.1. Upper barriers from U = 41 to

U = 46. Comparison of discrete monitoring, Brownian bridge techniques, ABAST

(C2D approximation), as N increases: N = 13, N = 26 (weekly), N = 52, N = 126

(daily). 10000000 simulations: the 95%-statistical errors are smaller than 0.002 and

are not reported.

It is observed in Shevchenko [27] that the spread between the prices given by

upper and lower copula bounds shrinks to 0 as N goes to infinity. In Table

6, indeed it is small and it is of order of the statistical error. The ABAST

behaves also very well.

In the next experiments in Table 7, we take the barriers closer to the initial

spot. In that case, the upper and lower copula bounds have a more significant

impact on the price spread. Note that the larger the correlation is, the larger

the spread is. This would be even worse if we took Dk ≈ Xk,0. The accuracy
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N Discrete

monitoring

Copula

Lower

bound

Copula Up-

per bound

ABAST

8 10.68 (0.03) 7.48 (0.02) 7.66 (0.02) 7.53 (0.02)

16 9.85 (0.03) 7.53 (0.02) 7.59 (0.02) 7.52 (0.02)

32 9.22 (0.03) 7.55 (0.02) 7.57 (0.02) 7.54 (0.02)

64 8.74 (0.03) 7.54 (0.02) 7.55 (0.02) 7.53 (0.02)

128 8.41 (0.03) 7.55 (0.02) 7.55 (0.02) 7.55 (0.02)

Table 6

Down Out Call on three assets. σ1 = σ2 = σ3 = 0.4, ρi,j = ρ = 0.5 for i 6= j,

X1,0 = X2,0 = X2,0 = 100, K = 100, r = 0.05, T = 1. Barrier down: D1 = D2 =

D3 = 80. Comparison of discrete monitoring, Brownian bridge techniques with lower

and upper copula bounds, ABAST (C2D approximation), as N increases. 4000000

simulations. Values in parentheses indicate the half-width of the 95% confidence

interval.

of ABAST does not seem to be affected by the correlation changes.

3.4 Down Out Call on a basket

In this paragraph, we consider a DOC with two barriers, but the two barriers

are applied to a basket of 6 assets. The payoff is given by 1∀t<T : B1,t>D1,B2,t>D2(B1,T−
K)+ where the two baskets are given by

B1,t = 0.5X1,t + 0.3X2,t + 0.2X3,t and B2,t = (X4,t + X5,t + X6,t)/3.

In the following, the 6 assets Xk are modeled by correlated geometric Brownian

motions, with constant correlation ρ = 0.4 and constant volatilities σk = 0.3.

Their initial values are all equal to 100. The option expiration is T = 1 year,

the interest rate equals r = 0.05. The barriers D1 = D2 = D are taken to 85,

90 and 95. During the ABAST simulation procedure, these barriers are shifted

to Dk exp(ȳ(uk,N)σk,ti

√

T
N

) where we should take for σk,ti the volatility of the

basket Bk at time ti. Since the basket does not follow a geometric Brownian

motion dynamics, the determination of σk,ti has to be made carefully. For this,

consider a general Basket on different assets Xi with weights pi:

Bt =
∑

i

piXi,t. (34)

29

ha
l-0

03
19

94
7,

 v
er

si
on

 1
 - 

9 
Se

p 
20

08



ρ N Discrete

monitoring

Copula

Lower bound

Copula Up-

per bound

ABAST

0 16 1.124 (0.009) 0.347 (0.005) 0.383 (0.005) 0.385 (0.005)

32 0.855 (0.008) 0.352 (0.005) 0.362 (0.005) 0.357 (0.005)

64 0.688 (0.007) 0.359 (0.005) 0.361 (0.005) 0.357 (0.005)

128 0.579 (0.007) 0.359 (0.005) 0.360 (0.005) 0.359 (0.005)

0.25 16 2.73 (0.02) 1.12 (0.01) 1.22 (0.01) 1.24 (0.01)

32 2.21 (0.01) 1.15 (0.01) 1.18 (0.01) 1.17 (0.01)

64 1.87 (0.01) 1.15 (0.01) 1.16 (0.01) 1.15 (0.01)

128 1.66 (0.01) 1.16 (0.01) 1.16 (0.01) 1.16 (0.01)

0.5 16 4.98 (0.02) 2.45 (0.01) 2.67 (0.01) 2.72 (0.02)

32 4.22 (0.02) 2.52 (0.01) 2.59 (0.01) 2.57 (0.02)

64 3.71 (0.02) 2.54 (0.01) 2.56 (0.01) 2.54 (0.02)

128 3.39 (0.02) 2.56 (0.01) 2.56 (0.01) 2.56 (0.02)

0.75 16 7.93 (0.02) 4.45 (0.02) 4.89 (0.02) 5.01 (0.02)

32 6.99 (0.02) 4.64 (0.02) 4.81 (0.02) 4.79 (0.02)

64 6.33 (0.02) 4.69 (0.02) 4.76 (0.02) 4.73 (0.02)

128 5.89 (0.02) 4.72 (0.02) 4.75 (0.02) 4.74 (0.02)

1 16 13.02 (0.03) 7.70 (0.02) 9.71 (0.03) 10.02 (0.03)

32 12.15 (0.03) 8.39 (0.02) 9.70 (0.03) 9.74 (0.03)

64 11.49 (0.03) 8.78 (0.02) 9.69 (0.03) 9.68 (0.03)

128 11.02 (0.03) 9.06 (0.03) 9.71 (0.03) 9.71 (0.03)

Table 7

Down Out Call on three assets. Parameters analogous to Table 6 but for D1 = D2 =

D3 = 90. Impact of the correlation ρ on the accuracy of the numerical methods.

We define σB,t its volatility at time t by

dBt

Bt

= · · ·dt + σB,tdWt

where W is a Brownian motion. If Xi has a dynamics of the form dXi,t

Xi,t
=

· · ·dt + σX
i,tdWi,t where the Brownian motions (Wi)i are correlated, then by
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N

Discrete

monitoring

D = 85

ABAST

D = 85

Discrete

monitoring

D = 90

ABAST

D = 90

Discrete

monitoring

D = 95

ABAST

D = 95

12 10.15 9.03 8.36 6.51 5.73 3.52

24 9.90 9.06 7.88 6.49 4.95 3.20

50 9.70 9.09 7.53 6.53 4.39 3.10

100 9.51 9.07 7.22 6.50 4.00 3.06

250 9.35 9.06 6.97 6.51 3.66 3.06

Table 8

Down Out Call on a Basket with 6 assets and two barriers. Accuracy of ABAST

as N increases. 1000000 simulations. For all the results, the statistical errors are

smaller than 0.033.

equating the quadratic variations of both sides of (34) we easily get

[BtσB,t]
2 =

∑

i,j

pipjSi,tSj,tσ
X
i,tσ

X
j,tρi,j.

This gives the value σB,ti which should be used to shift the barrier at time

ti. In Table 8, we present numerical results for different values of the barriers.

The aim of these tests is to check the accuracy of ABAST. Indeed, the usual

discrete monitoring procedure still yields a slow convergence w.r.t. N while

for ABAST, it is much quicker. For a weekly monitoring (roughly N = 50),

this approach gives a bias smaller than the statistical error.

3.5 BLAC Down Out option

This example is aimed at illustrating the D2D approximation from Theorem

6. The Basket Lock Active Coupon (BLAC) Down Out option pays 1 Euro

if at most one of 5 underlying assets has touched a lower barrier L before

the expiration. This is a bit more sophisticated than a simple barrier option.

Usually, the assets are daily monitored to determine whether the barrier has

been touched and if so, by how many assets. For contract expirations larger

than 1 year, it may be computational demanding for the pricing and one

may be interested in speeding it up by monitoring the assets only weekly

or monthly and by adjusting the barrier L (see Theorem 6 with N1 = 250

and N2 = 52 or N2 = 12). Note that the barrier may be shifted differently

for each asset because their volatilities may differ. In our experiments, the 5

assets (Xk)k≤5 are modeled by correlated geometric Brownian motions, with
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Barrier True price ABAST

N2 = 52

ABAST

N2 = 26

ABAST

N2 = 12

70 0.519 (0.001) 0.519 (0.001) 0.517 (0.001) 0.512 (0.001)

75 0.387 (0.001) 0.386 (0.001) 0.385 (0.001) 0.381 (0.001)

80 0.2632 (0.0009) 0.2628 (0.0009) 0.2617 (0.0009) 0.2583 (0.0009)

85 0.1578 (0.0007) 0.1578 (0.0007) 0.1559 (0.0007) 0.1551 (0.0007)

90 0.0773 (0.0005) 0.0773 (0.0005) 0.0764 (0.0005) 0.0790 (0.0005)

Table 9

BLAC Down Out option on 5 assets, with daily monitoring N1 = 250. D2D ABAST

approximation with weekly monitoring N2 = 52. 1000000 simulations. Values in

parentheses indicate the half-width of the 95% confidence interval.

constant correlation ρ = 0.5 and constant volatilities: σ1 = 0.3, σ2 = 0.32,

σ3 = 0.35, σ4 = 0.38, σ5 = 0.4. Their initial values are all equal to 100 and

the interest rate equals 0. The option expiration is T = 1 year. We report in

Table 9 firstly the prices computed by Monte Carlo simulations of the assets

at N1 dates, and secondly those with N2 = 52, 26, 12 dates but with shifted

barriers. The accuracy is very good and the computational time has been

approximately divided by 5, 10 or 20.
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Appendix: numerical approximation of the expected overshoot of a

Gaussian random walk

The necessity of well approximating the expected overshoot ȳ(u) = E(sτu −u)

for arbitrary levels u is explained in Paragraph 2.4. It aims at reducing the

simulation bias when the initial spot is close to the barriers.

From the numerical point of view, the computation of ȳ(u) using a Monte Carlo

method is not straightforward. The objective of this section is to provide a

few related facts. On the one hand, it seems that one has only to simulate

a Gaussian random walk (si)ı≥0, until the hitting time τu of the level u and

then compute the overshoot sτu − u. On the other hand, although τu is finite

with probability one, it has an infinite mean. This implies that our simulation

procedure with M independent paths will finish after some time, but it may

take a huge computational time!!

To practically compute the expected overshoot, one should stop a simulation

when it is too long, say when τu > t for a appropriate choice of a large t to

ensure a desired accuracy. For this, put

ȳ(u, t) := E((sτu∧t − u)+). (35)

This is the quantity that we can compute by the simulation of the Gaussian

random walk until time t (or less). Since si < u for i < τu, one also has

ȳ(u, t) = E(1τu≤t(sτu − u)). (36)
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Thus, ȳ(u, t) is increasing w.r.t. t and by monotone convergence theorem, its

limit as t → ∞ is ȳ(u). To estimate the approximation error, it is useful to

derive upper bounds related to the overshoot.

Lemma 7 For any p > 0 and for any u > 0, one has

E(sτu − u)p ≤ E|s1|p. (37)

PROOF. We embed the Gaussian random walk into a standard Brownian

motion W : si = Wi. Put τi = inf{s > i : Ws = u}. Then, writing

sτu − u =
∑

i≥1

1τu>i−1(si − u)+ =
∑

i≥1

1τu>i−11τi−1<i(Wi − Wτi
)+

and using the strong Markov property, the scaling invariance and the symme-

try property of W , it follows that

E(sτu − u)p =
∑

i≥1

E(1τu>i−11τi−1<i(Wi − Wτi
)p
+)

≤
∑

i≥1

E(1τu>i−11τi−1<i)E([s1]
p
+)

= 2E([s1]
p
+)
∑

i≥1

E(1τu>i−11si>u) = 2E([s1]
p
+) = E(|s1|p).

For p = 1, by a direct computation E|s1|, we get the uniform upper bound

ȳ(u) ≤ 2/
√

2π = 0.7979.

We recall from Chang and Peres [8] that ȳ(0) = 1/
√

2 = 0.7071 and ȳ(∞) =

0.5826, which is not far from the upper bound.

To discuss the accuracy of ȳ(u, t) for large t, we need to upper bound

P(τu > t) = P(max
i≤t

Wi < u)

≤ P(max
s≤t

Ws < u +
√

3 log t) + P(max
i≤t

Wi < u; max
s≤t

Ws ≥ u +
√

3 log t).

The term
√

3 log t is chosen in order to approximately equate each contribu-

tion. The first one is equal to

P(|Wt| < u +
√

3 log t) ≤ 2√
2πt

(u +
√

3 log t).
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Approximation
y(.,t)

43.532.521.510.50

0.72

0.7

0.68

0.66

0.64

0.62

0.6

0.58

Figure 2. The numerical values of ȳ(., t) and its approximation (38)

The second contribution is upper bounded by

P(∃i ≤ t − 1 : sup
s∈[i,i+1]

(Ws − Wi) >
√

3 log t) ≤ tP(|W1| >
√

3 log t)

≤ 2t exp(−(
√

3 log t)2/2) =
2√
t
.

By the Holder inequality, we deduce that for any p ≥ 1 and u ≤ 4

0 ≤ ȳ(u) − ȳ(u, t) = E((sτu − u)1τu>t) ≤ ‖sτu − u‖2p(P(τu > t))(2p−1)/(2p)

≤
((2p!)

2pp!

)1/(2p)( 2√
2πt

(4 +
√

2π +
√

3 log t)
)(2p−1)/(2p)

.

For instance, an accuracy of 0.0025 is achieved for t = 3.15 × 108 (take p = 7

in the upper bound). To tune the number of simulations M in the evaluation

of ȳ(u, t), we note that the variance of (sτu −u)1τu≤t is bounded by E(s2
1) = 1

(owing to Lemma 7). Thus, M = 1.962/0.00252 ≈ 615000 yields a statistical

error of order 0.0025 with probability 95%, and thus an overall error of 0.005

(i.e. a posteriori less than 1% error).

The estimation of ȳ(., t) that we obtain is plotted on Figure 2. A good ap-

proximation may be achieved using an exponential type function of the form

ȳ(u) ≈ ȳ(∞) + (ȳ(0) − ȳ(∞)) exp(−2.7u1.2) (38)

with ȳ(0) = 0.7071 and ȳ(∞) = 0.5826. It achieves an accuracy at least of

1%.
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