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ABSTRACT 
 
 
Since the underlying of the weather derivatives is not a traded asset, these contracts cannot be 
evaluated by the traditional financial theory. Cao and Wei (2004) price them by using the 
consumption-based asset pricing model of Lucas (1978) and by assuming different values for 
the constant relative risk aversion coefficient. Instead of taking this coefficient as given, we 
suggest in this paper to estimate it by using the consumption data and the quotations of one of 
the most transacted weather contracts which is the New York weather futures on the Chicago 
Mercantile Exchange (CME). We apply the well-known generalized method of moments 
(GMM) introduced by Hansen (1982) to estimate it as well as the simulated method of 
moments (SMM) attributed to Lee and Ingram (1991) and Duffie and Singleton (1993). This 
last method is studied since it is presumed to give satisfactory results in the case of the 
weather derivatives for which the prices are simulated. We find that the estimated coefficient 
from the SMM approach must have improbably high values in order to have the calculated 
weather futures prices matching the observations.  
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1.   Introduction 
 
 Weather impacts many sectors of the economy such as agriculture, construction, 
tourism and energy. It is estimated that 70% of the US economy is vulnerable to the 
unexpected weather conditions. To manage this risk, two power companies, Enron and Koch, 
negociated the first weather derivative swap contract in 1997. The market has rapidly 
expanded to give birth to a standardized market, the Chicago Mercantile Exchange (CME), in 
1999. Weather derivatives are financial instruments based on a weather index. They give a 
payment to the buyer of the contract when the underlying goes beyond a predetermined limit 
(the strike level). In contrast to the other derivatives, these contracts cannot be priced by using 
the traditional financial theory which consists in the elaboration of a hedging portofolio that 
attains the value of the weather derivative at the expiration date and by the non-arbitrage 
principle makes the price of the contract at time 0 equal to the cost of the hedging portfolio at 
time 0. Mathematically, this price corresponds to the discounted expectation of the payoff of 
the contingent claim under the equivalent martingale measure and not under the real 
probability measure. This pricing method is not possible here for the weather derivatives 
because the weather index is not a traded asset. It cannot be coupled with the riskless asset to 
form the hedging portfolio. Platen and West (2004) argue that the weather derivatives should 
be priced by the actuarial method since the weather index is not correlated with the growth 
optimal portfolio (GOP) which is approximated by the MCSI World index. Actuarial price is 
defined as the discounted expectation of the payoff with respect to the real probability plus a 
safety loading (or risk premium) payable by the insured. As noted by Platen and West (2004), 
this risk premium tends to diminish with the competition between insurers and when the 
reinsurance is available. Some authors such as Augros and Moréno (2002) and Brix, Jewson 
and Ziehmann (2002) emphasize the use of this pricing method for the weather derivatives 
because at the present time no hedging portfolio can be constituted and because the 
implementation of this method is simple. Indeed, the expectation of the payoff is calculated 
by averaging the number of simulations of the payoff and the price is then obtained by 
discounting at the riskless rate this expectation. But we can notice that this method does not 
account for the market information when quotations exist for the weather futures on the CME. 
Even if the organized market started in 1999, it is still nowadays illiquid but it is seen that 
some weather contracts have begun to be frequently traded (Jewson (2004)). Hamisultane 
(2006a) shows that incorporating the information contained in the prices of the most 
negociated contracts can improve the predictions of the weather derivative values. 
Furthermore, Cao and Wei (2004) and Richards, Manfredo and Sanders (2004) find that the 
temperature is significantly correlated with the aggregate consumption and that the market 
price of weather risk is significantly different from zero. Therefore, this latter cannot be 
ignored for the valuation of these contracts and applying the actuarial approach in the case of 
the weather derivatives is not appropriate. Cao and Wei (2004) were the first to suggest the 
consumption-based asset pricing model of Lucas (1978) to price the weather derivatives. In 
this model, individuals seek to maximize a time-additive intertemporal discounted utility 
function that depends on a stochastic consumption. To calculate the prices, Cao and Wei 
(2004) and Richards et al. (2004) use different values postulated by the theory for the relative 
risk aversion coefficient but they do not estimate it from the data. In this paper, we propose to 
find it by using the weather futures prices since they are the only available weather derivative 
quotations on the market. We will concentrate on the New York contract which is one of the 
most transacted weather derivatives on the CME. Two estimation techniques will be 
conducted, the generalized method of moments (GMM) developed by Hansen (1982) and the 
simulated method of moments studied by Lee and Ingram (1991) and Duffie and Singleton 
(1993). The second method can be regarded as a calibration rather than an estimation method. 
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It is more complex to implement than the GMM because it necessitates for the simulations the 
modelling and the estimation of the processes that enter into the stochastic equilibrium model 
whereas the GMM only needs to use the available data of the variables in the model to 
determine the value of the risk aversion parameter. The SMM approach is considered here 
because the price of the weather derivatives cannot have a closed-form expression and 
therefore needs to be calculated by using the Monte-Carlo simulations. Then, we think that a 
risk aversion coefficient which is valued by calibration such as the simulated prices are the 
nearest to the observed prices should allow us to have more adequately reproduced prices. 
Our findings confirm that. For deriving this coefficient by the SMM procedure, we will model 
on one hand, the temperature and on the other hand, the consumption behavior. Weather 
derivatives can be based on rain, snow or frost index. We choose to centre our analysis on the 
temperature-based contracts which represent the majority of the negociated contracts on the 
market. We will review all the models that have been suggested for capturing the features of 
the temperature behavior to select the proper one for the New York daily average temperature. 
We find that the risk aversion coefficient implied by the SMM way is very high and confirms 
what was put in evidence by the previous studies, that is, the incapacity of the consumption-
based asset pricing model to generate plausible values. Mehra and Prescott (1985) showed 
that the model predicted an equity premium (the excess average return on stocks over the 
return on short-term T-bills) that was too small compared to the US annual 6% of the 
observed one while Weil (1989) pointed out that the predicted risk-free rate was too high. 
These two stylised facts are known as the “equity premium puzzle” and the “risk-free rate 
puzzle”.  
 
 The contribution of this paper is threefold : firstly, it estimates the risk aversion 
coefficient instead of taking it as given, secondly, it suggests the use of the SMM approach to 
estimate this coefficient and thirdly, it exposes the econometric proceeding that leads to the 
selection of the proper process for the daily average temperature. The structure of the paper is 
as follows: section 2 outlines the consumption-based asset pricing model for the weather 
derivatives, section 3 describes the estimation of the relative risk aversion coefficient by the 
GMM approach, section 4 comments the estimation of the coefficient by the SMM procedure, 
section 5 investigates the modelling of the daily average temperature after reviewing the 
literature on this topic, section 6 discusses the modelling and the estimation of the 
consumption growth rate process, section 7 involves the computation of the New York 
weather derivative prices by using on one hand the risk aversion parameter given by the 
GMM and on the other hand, the parameter induced by the SMM, the test of the 
overidentifying restrictions (or goodness-of-fit test) will also be performed and section 8 
concludes the paper. 
 
 
2.   Theoretical framework 
 
 The model of Lucas (1978) considers an exchange economy where there is no money 
effect and a representative agent who maximizes the expected value of his or her time-
additive utility function given by 
 

 E
⎣
⎢
⎡

⎦
⎥
⎤ ∑

t=0

∞

  βt U(Ct) | F0   ,  0< β <1 (1) 

 
under the following budget constraint (we use here the Hansen and Singleton (1982)’s 
notation) : 
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 Ct + PtQt ≤ KtQt-M + Wt   (2) 
 
where Ct is the real per-capita consumption at time t, E[.] represents the expectation operator, 
F0 corresponds to the information available to the agent at time 0, β is a discount factor, U(.) 
is a strictly concave utility function with U’(.)>0 and U"(.)<0, Pt is the ex-dividend real price 
of the asset, Qt stands for the quantity of the asset, Kt refers to post-dividend real price given 
by Kt = (Pt + Dt), Dt is the real dividend and Wt denotes the real labor income at time t. 
 
The first-order condition (called the “Euler condition”) of this maximization problem given 
by (1) and (2) is defined as 

  E
⎣⎢
⎡

⎦⎥
⎤ βM U'(Ct+M)

U'(Ct)
 Kt+M

Pt
  | Ft  = 1. (3) 

 
In most of the studies, a constant relative risk aversion utility function is employed (see 
Mehra (2003) for explanations of this choice). It has the following form: 
 

 U(Ct) = 
C1-γ

t  - 1
1-γ

 (4) 

 
where  γ ≥0 is the relative risk aversion parameter which embeds the risk-neutral case when   
γ = 0. Putting this function in Eq.(3), we obtain  

 

  E
⎣⎢
⎡

⎦⎥
⎤ βM 

⎝⎜
⎛

⎠⎟
⎞Ct+M

Ct

-γ
  Kt+M

Pt
  | Ft  = 1. (5) 

 
By using Eq.(5), Cao and Wei (2004) show that the weather call option price f(t,tm) and the 
weather futures price F(t,tm) at time t for the maturity at date tm are determined as follows : 

 

f(t,tm) = E
⎣
⎢
⎡

⎦
⎥
⎤

 β(tm- t) 

⎝
⎜
⎛

⎠
⎟
⎞Ctm

Ct

-γ

max(I-K,0)  | Ft  (6) 

and 

 F(t,tm) = E 
⎣
⎢
⎡

⎦
⎥
⎤

 β(tm- t) 

⎝
⎜
⎛

⎠
⎟
⎞Ctm

Ct

-γ

I  | Ft  (7) 

 
where K is the strike level and I denotes the temperature index at the maturity date. At the 
date tm, we have f(tm,tm) = max(I-K,0) and F(tm,tm) = I. 
 
This temperature index can be the accumulation of the degree-days or the daily average 
temperatures. The average temperature for day t is defined as 
 

 Tt = T
max
t  + Tmin

t

2
 (8) 

 
where Tmax

t  and Tmin
t  represent respectively the maximum and minimum temperature at time t. 

The heating and cooling degree-day (HDD and CDD) for day t are expressed as follows 
 
 HDDt = max(65°F – Tt , 0) (9) 
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for October, November, December, January, February, March and April 
and 
 CDDt = max(Tt – 65°F , 0) (10) 
 
for May, June, July, August and September 
 
where 65°F ≈ 18°C is the reference temperature above which people start turning their air 
conditioners on for cooling and under which people start heating their homes. 
 
The HDD and CDD indexes over a period of m days are then formulated as 
 

  IH
m  = ∑

t=1

m

 HDDt  (11) 

and 

   IC
m = ∑

t=1

m

 CDDt . (12) 

  
 Cao and Wei (2004) calculate the weather derivative prices by taking three cases for 
the risk aversion coefficient : γ = -2 , γ = -10  and  γ = -40 

(1)
. They do not estimate it from the 

data. To fill the gap, we suggest in this paper to find the value of the risk aversion coefficient 
by using the consumption data and the weather futures prices since there is no available price 
for the weather options. The estimated parameter is thereafter employed to compute the 
weather futures prices. These daily prices are calculated by using the monthly consumption 
data which are disaggregated by a linear interpolation in order to obtain daily values. To 
derive the estimate of the risk aversion coefficient in a nonlinear expectation model, the 
GMM approach proposed by Hansen (1982) is the commonly applied procedure. However, 
the weather derivative price cannot be expressed in an analytical way and is generally 
calculated by the Monte-Carlo simulations. This point lets us expect that the estimated risk 
aversion coefficient from the SMM proceeding can give better reproduced prices than the 
GMM. The fact that Eq.(6) and Eq.(7) are formulated in terms of accumulated HDDs or 
CDDs does not allow us to find a closed-form representation for the price. Indeed, in the case 

of the HDD index, the expressions E
⎣
⎢
⎡

⎦
⎥
⎤max

⎝
⎜
⎛

⎠
⎟
⎞∑

t=1

m

 max(65°F-Tt ,0) - K, 0   | Ft  and 

E
⎣
⎢
⎡

⎦
⎥
⎤∑

t=1

m

 max(65°F-Tt ,0)  | Ft  cannot be simplified. We show in section 7 that the estimates from 

the calibration method yield indeed good results but the obtained values of the risk aversion 
coefficient are very high and implausible from a theoretical point of view as numerous 
previous works relative to the consumption-based asset pricing have already mentioned 
(Mehra and Prescott (1985), Mankiw and Zeldes (1991), Ferson and Constantinides (1991) 
and Constantinides and Duffie (1996)). Before commenting these results, we first introduce 
and compare the two mentioned estimation methods of the risk aversion parameter. 
   
  
3.   Estimation of the constant relative risk aversion coefficient : the GMM approach 
 
 In order to estimate the constant relative risk aversion coefficient by the GMM 
procedure and with the weather futures prices, Eq.(7) must be turned into an unconditional 
expectation. By applying the law of iterated expectations, we then obtain : 
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   E
⎣
⎢
⎡

⎦
⎥
⎤

 β(tm- t) 

⎝
⎜
⎛

⎠
⎟
⎞Ctm

Ct

-γ 
F(tm,tm)
F(t,tm)

  - 1  = 0 (13) 

and 
 
  E[ ht(θ)] = 0 (14) 
 
 

where θ = (β,γ)  and  ht(θ) = β(tm- t) 

⎝
⎜
⎛

⎠
⎟
⎞Ctm

Ct

-γ 
F(tm,tm)
F(t,tm)

 - 1  for  t =1,…, n. The term h(θ) can be 

considered as a disturbance. 
 
The GMM estimators of β and γ consist in minimizing this quadratic form 
 
 Qn(θ) = h (θ)’Wn h (θ) (15) 
 

where h (θ) = 1
n

 ∑
t=1

n

 ht(θ),  n is the number of observations of ht(θ) and Wn is a positive definite 

symmetric nonsingular weighting matrix. 
 
Since we only have one moment condition here (because we have assumed only one asset in 
the economy) and two unknowns, we cannot estimate these coefficients. To have at least as 
many moment conditions as unknowns, instrumental variables are used. Hansen and Singleton 
(1982) suggest to employ the lagged values of the consumption growth rate and return.  
 
We rewrite Eq.(14) by introducing these instrumental variables to obtain the following 
orthogonality conditions : 
 
 E[ ht(θ) ⊗zt ] = 0L (16) 
And 
 
  E[ gt(θ) ] = 0L (17) 
 
where gt(θ) = ht(θ) ⊗zt  , ⊗ represents the Kronecker product, zt refers to the vector of Z×1 
instruments, 0L is the L×1 vector of 0s, L= 1×Z (we multiply Z to 1 because we have one 
variable ht(θ) corresponding to the only one asset) and zt = 

⎝
⎜
⎛

⎠
⎟
⎞1, 

⎝
⎜
⎛

⎠
⎟
⎞Ctm

Ct -1
 , 
⎝
⎜
⎛

⎠
⎟
⎞Ctm

Ct -2
 ,..., 

⎝⎜
⎛

⎠⎟
⎞F(tm,tm)

F(t,tm) -1
 , 
⎝⎜
⎛

⎠⎟
⎞F(tm,tm)

F(t,tm) -2
 ,...

’
.  

 
 
Therefore, the quadratic form to minimize turns to : 
 
  Qn(θ) = g (θ)’Wn g (θ) (18) 
 

(θ) = 1
n

 ∑
t=1

n

 gt(θ), where (θ) is a L×1 vector and Wn corresponds to a L × L matrix. g g
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Andersen and Sørensen (1996) show that the just-identified case when there are as many 
moment conditions as unknowns produces poor results in terms of the root mean square error 
(RMSE) compared to those yielded by the overidentified case. For this reason, we will only 
consider the last configuration here. 
 
When the system is overidentified, we cannot find solutions so that the sample moments of 

the observed data is equal to zero, i.e, ∑
t=1

n

 gt( )= 0 where θ  corresponds to the estimated value 

of θ. We can only find solutions giving sample moments close to zero. A test allows us to 
check whether the moments are correctly specified. The test statistic is given by 

θ̂ ˆ

θ̂
θ̂

 
 J = n × . (19) )θ̂(Q̂n

 
The J-statistic follows a χ2

L-p  distribution when the moment conditions are correctly specified 
where L corresponds to the number of conditions and p denotes the number of unknowns. If J 
is greater than the critical value from the χ2

L-p distribution, the null hypothesis that the moments 
are not misspecified is rejected.  
 
 To minimize the quadratic form, we have to choose a weighting matrix. The choice of 
this matrix is important when the number of moment conditions is greater than the number of 
unknowns. As noted by Andersen and Sørensen (1996), an inappropriate choice may induce 
hard convergence to the solution. Hansen (1982) suggests to take Wn=S-1 where S is the 
variance-covariance matrix of the random variable gt(θ) so as to minimize the asymptotic 
covariance matrix Σ of the estimator . Under the assumption that {gθ̂ t(θ)} is a stationary

(2) 

and ergodic process, θ  is consistent and asymptotically normal (Hansen (1982)) :                  
n

ˆ
½( - θ) ~> N(0,Σ) and the matrix Σ is given by θ̂

 
 Σ = (D’S-1D)-1 (20) 
 

where D = E
⎝
⎜
⎛

⎠
⎟
⎞∂gt( )

∂ '
 is a matrix of  dimension L × p. D is estimated by  

  D  = ˆ ∑
= ∂
∂n

1t '
t

θ̂
)θ̂(g

n
1  . (21) 

 
The matrix S is defined as  

 S =  ( ) ( )[ ]∑∑
= =

′n

1t

n

1s
st θgθgEn

1  . (22) 

 
By change of indexes, we obtain 
 

 S = ( ) ( )[ ]∑ ∑
−

+−= +=
−

′1n

1nj

n

1jt
jtt θgθgEn

1   for  j ≥ 0. (23) 

 
 
As n→∞,  S is equal to 2π times the spectral density of gt(θ) at frequency zero (λ ≈ 0) given 
by 
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 f(λ) = 1
2π

  ∑
j=-∞

∞

 e-ijλ E( )gt(θ) gt-j(θ)' . (24) 

 
 
Then, the matrix S is usually approximated by this spectral density. Its estimator is expressed 
as 

(3)

  = ΩŜ 0 + ∑
j=1

n-1

 [ Ωj + Ω'
j ] (25) 

where  

 Ωj = ∑
+=

−
′

n

1jt
jtt )θ̂(g)θ̂(gn

1 . (26) 

 
 
As noted by Newey and West (1987), this estimator may not be positive definite in any finite 
sample when the number of sample autocovariances is not zero. They suggest the following 
consistent, positive semi-definite, heteroskedasticity and autocorrelation covariance (HAC) 
matrix estimate : 
 

  =  ΩS~ 0 + ∑
j=1

b

  ker(j) [ Ωj + Ω'
j ] (27) 

 

where b stands for the bandwidth, ker(j) = 1- j
b+1

  is a weight and it is often called the Bartlett 

kernel function. Other kernel functions can also be considered such as the Parzen and the 
quadratic spectral kernel. We limit here our study to the Bartlett case since this latter performs 
well in terms of RMSE (see Andersen and Sørensen (1996) and Chiang and Kao (2005)). 
 
The value of the bandwidth b can be fixed independently of the size of the sample or 
according to it. When it is data-dependent, it is determined by the Newey and West (1994)’s 
approach or by the Andrews (1991)’s method.  
 
For the Newey and West (1994)’s approach, b is calculated as : 
 

 
   b = ( )1/3nˆ1.1447 γ  (28) 
where 

  
2

0

1

s
sγ̂ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  (29) 

and 

 s1 = 2  ∑
j=1

d
 jσ  ,  sjˆ jσ̂0 = + 2 ∑

j=1

d
  (30) 0σ̂

with 
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 d = 4
⎝⎜
⎛

⎠⎟
⎞n

100
2/9

 ,  = 1
n-1jσ̂  ∑

t=j+2

n

 gt(θ )gt-j( )'  and  j = 0,…,d (31) ˆ θ̂

 
 
For the Andrews (1991)’s method, b is defined as : 
 
    b = ( )1/3nα̂1.1447  (32) 
where 

 ∑
= +−

=
L

1 26

42

)ρ̂(1)ρ̂K(1
ρ̂ρ̂4α̂

l ll

ll  (33) 

and 

 K = ∑
= −

L

1 4

4

)ρ̂(1
σ̂

l l

l  (34) 

 
with ( , ) denoting the estimates of the autoregressive and innovation variance parameter 
for each of the moments (ℓ =1,…,L). 

lρ̂ lσ̂

 
For our study, we will employ both the Newey and West’s (1994) and Andrews (1991)’s 
methods since we have no intuition about what value to choose for the bandwidth. 
 
Andrews and Monahan (1992) show that the prewhitening procedure can improve the 
performance of the kernel HAC estimator. It consists in fitting a bth order vector 
autoregressive (VAR) to gt(θ ). We write here  the VAR(1) form for simplicity :  ˆ
 
 
 gt(θ ) = B gˆ ˆ t-1(θ ) + (θ ). (35) ˆ *tg ˆ

 
 
Thereafter, the prewhitened residuals (θ ) are used to compute the kernel HAC estimator *tg ˆ

*S~ which is next "recolored" to obtain the VAR prewhitened kernel estimator pwS~  :  
 
 
   pwS~  =  (I- B )ˆ -1 *S~  (I- 'B )ˆ -1. (36) 
 
 
The matrix pwS~  is then employed to minimize the quadratic function (18). 
 
We would like to point out that when starting the implementation of the GMM techniques, 
consistent values of  are required to compute the estimator of S but these latters are 
unknown. They can be obtained by using W

θ̂
n= In

-1 in the first step where In refers to the 
identity matrix since, according to Hansen (1982), any weigthing matrix can give consistent 
estimators. In the second step, the estimates of  θ are used to form Wn= S-1. 
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4.   Calibration of the constant relative risk aversion coefficient : the SMM approach 
 
 In the GMM aproach, the parameters β and γ are estimated from the data which are 
observed and not simulated. Therefore, these estimates can give no satisfactory results in the 
case where Monte-Carlo simulations are used to compute the prices. To find the values of β 
and γ such as the simulated prices are the closest to the observations, we use the SMM 
approach which consists in solving the following optimization problem in the weather 
derivative case : 
 

 Min
β,γ 

  QN(β, γ) = 
⎝
⎜
⎛

⎠
⎟
⎞

E
⎣
⎢
⎡

⎦
⎥
⎤

 β(tm- t) 

⎝
⎜
⎛

⎠
⎟
⎞Ctm

Ct

-γ

I  | Ft  - F(t,tm)
’ 
WN  ⎝

⎜
⎛

⎠
⎟
⎞

E
⎣
⎢
⎡

⎦
⎥
⎤

 β(tm- t) 

⎝
⎜
⎛

⎠
⎟
⎞Ctm

Ct

-γ

I  | Ft  - F(t,tm)  (37) 

 
⇔ 

Min
β,γ 

  QN(β, γ) =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑∑
=

−
−

=

−
−

N

1t
m

γ

t

tt)(t
N

N

1t
m

γ

t

tt)(t )tF(t,I
C

C
βN

1W)tF(t,I
C

C
βN

1 mmmm  (38) 

 

where N represents the number of simulations and I = IH
m  = ∑

t=1

m

 max(65°F-Tt ,0) or I = IC
m = 

∑
t=1

m

 max(Tt-65°F ,0) . 

 
On the contrary to the earlier method, no instrumental variable is needed here because we 
have more moment conditions than unknowns. Indeed, we have as many moment conditions 
as observed quotations for F(t,tm) to estimate β and γ. In that case, we can conduct the 
overidentifying restrictions test which was exposed before to check the goodness of fit of the 
model. Unlike the GMM principle, the present method requires the specification of the 
consumption and temperature processes in order to simulate them. In the following sections, 
we will pay attention to the modelling of the movements of the temperature and consumption. 
Aside from these differences, the implementation of the SMM techniques is based on the 
same procedures as those presented in the GMM approach with n replaced by N. 
 
 
5.   Modelling the temperature behavior 
 
 To find a model that captures the characteristics of our temperature series, we first 
review the main processes that were suggested in literature. In light of observations, Cao and 
Wei (2004) list the following features of the daily average temperature behavior. It reverts to 
a mean which has a seasonal cyclical pattern, it tends to rise with time due to a global 
warming trend, it has a larger variation in the winter than in the summer and the driving noise 
is Gaussian. They suggest the following process 
 

  Tt = mt + st + ∑
j=1

p

 ρjUt-j + σt t
~ε  , ~> iid(0,1) (39) t

~ε

 

 mt = β0
365

 
⎝⎜
⎛

⎠⎟
⎞t - n

2
 , (40) 
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  st = )1Y()1365(d
v

t TT ×× ⊗= l , (41) 
 

 dT  = ∑
=

Y

1y
y,dTY

1  , (42) 

 
 
where ℓ is a Y×1 vector of ones, d=1,…,365 corresponds to the day of the year y=1,…,Y,  
t=1,…, n  where n=365×Y (February 29 is removed for leap-years) , 
 
 

 Ut = Tt - ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+− v

t
0 T2

nt365
β  (43) 

and 

 σt = σ0 – σ1 ⎟
⎠
⎞

⎜
⎝
⎛ + φ365

tπsin  . (44) 

 
 
In order to analyse the significativity of the trend alone in Eq.(40), we rewrite this equation as 
follows : 
 

 mt = β1
365

 t  -  β0
365

 n
2
 . (45) 

 
 
Roustant (2002) proposes a model which incorporates a smoother cyclical component for the 
mean and for the variance. Furthermore, he allows the driving noise to have an ARMA(p,q) 
(AutoRegressive Moving Average) structure instead of an AR process like in Cao and Wei 
(2004), p and q representing respectively the orders of the AR and MA parts. His model is 
expressed as : 
 

 Tt = mt + st + ∑
j=1

p

 ρjUt-j  - ∑
l=1

q

 Θl εt-l +  εt (46) 

 
which can be rewritten in that way  
 
 
 [1-ρ(L)] (Tt - mt - st) = [1-Θ(L)] εt , (47) 
 
where 

 ρ(L) = ∑   ,   Θ(L) =  (48) 
=

p

1j

j
jLρ ∑

=

q

1
LΘ

1

l
l

 
with   L

n
 yt = yt-n  , 

  Ut = Tt – mt – st , (49) 
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mt = d t + e , (50) 
 
 
  st = a1cos(ωt) + b1sin(ωt) + a2cos(2ωt) + b2sin(2ωt) , (51) 
 
 

    ω = 2π
365

 , (52) 

 
   εt = σt t

~  ,  t
~ ~> iid(0,1) (53) ε ε

and 
 
  σt = a + b cos(ωt) + c sin (ωt). (54) 

 
 
Campbell and Diebold (2004) introduce a more generalized model including a GARCH 
(Generalized AutoRegressive Conditional Heteroskedasticity) process in the variance. It is 
formulated as follows : 
 

 Tt = mt + st + ∑
j=1

p

 ρjTt-j + σt t
~ε  , (55) 

 

  mt = ∑
m=0

M

 βm tm , (56) 

 

 st = ∑
k=1

K

 
⎣⎢
⎡

⎦⎥
⎤ δc,kcos

⎝⎜
⎛

⎠⎟
⎞2π k d(t)

365
 + δs,ksin

⎝⎜
⎛

⎠⎟
⎞2π k d(t)

365
 (57) 

and 
(4)

σ2
t  =  c + ∑

q=1

Q

 
⎣⎢
⎡

⎦⎥
⎤ γc,qcos

⎝⎜
⎛

⎠⎟
⎞2π q d(t)

365
 + γs,qsin

⎝⎜
⎛

⎠⎟
⎞2π q d(t)

365
 + ∑

r=1

R

 µr( )σt-r r-tε~
2
 + ∑

s=1

S

 νsσ2
t-s  (58) 

 
 
where d(t) is a repeating step function that cycles through 1,…, 365. On the contrary to the 
simple GARCH process, positiveness rectrictions on the coefficients µ and ν are not necessary 

here because the estimated part  c + ∑
q=1

Q

 
⎣⎢
⎡

⎦⎥
⎤ γc,qcos

⎝⎜
⎛

⎠⎟
⎞2π q d(t)

365
 + γs,qsin

⎝⎜
⎛

⎠⎟
⎞2π q d(t)

365
   guaranties 

the positiveness of the volatility. 
 
 
Note that Tt is explained by mt , st and lagged values of Tt. We think that this process should 
be written with lagged values of (Tt – mt – st) instead of Tt in order to obtain an ARMA 
representation (precisely an AR process here) which is the common way to model a time 
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series. Therefore, we suggest to estimate the following process that we call the "Campbell and 
Diebold’s modified model" : 

 

Tt = mt + st + ∑
j=1

p

 ρk (Tt-j - mt-j - st-j) + σt tε~ . (59) 

 
Benth and Šaltytė-Benth (2005) use a discretized version of the Ornstein-Uhlenbeck process. 
It is written like an AR(1). In their model, they do not consider the trend because this latter is 
not significant. Their sample size regroups 4846 observations while the preceding authors 
work with a larger dataset (7300 for Cao and Wei (2004) and 7670 for Roustant (2002)). 
Their model is stated as follows : 
 
 
  Tt = mt + st + ρ(Tt-1-mt-1-st-1) + σt tε~ , (60) 

 
 mt = a0 (61) 
and 

  st = a1cos
⎝⎜
⎛

⎠⎟
⎞2π

365
 (t-t0) . (62) 

 
 
They account for the seasonality in the variance by using a non parametric estimator, i.e. 
 
 
  = 2

tσ̂ )1Y(
2

)1365(dˆ ×× ⊗ε l , (63) 
 

   ∑
=

=ε
1y

2
yd,

2
d ε̂Y

1ˆ
Y

 (64) 

and 
 =  (65) yd,ε̂ )ŝm̂(Tρ̂ŝm̂T 1y,d1yd,1yd,yd,yd,yd, −−− −−−−−
 
where denote the estimated values. ρ̂andŝ,m̂ tt

 
 Many other authors have also appealed to the continuous time processes for 
reproducing the observed temperatures. Brody, Syroka and Zervos (2002), Benth (2003) and 
Hamisultane (2006b) deal with the mean-reverting fractional Brownian motion process. 
Richards, Manfredo and Sanders (2004) and Hamisultane (2006a) consider respectively a 
mean-reverting jump-ARCH process and a mean-reverting jump-EGARCH (Exponential 
GARCH) process. The drawbacks of these models are they produce very volatile prices when 
using Monte-Carlo simulations (see Hamisultane (2006a) and Hamisultane (2006b)) and their 
AR(1) structure does not fit the observations. Based on the information criteria, we show in 
the following that the proper model for the temperature must encompass a higher lagged 
structure. This finding reveals the unability of the continuous time processes to capture the 
characteristics of the temperature. This point was also underlined in Roustant (2002). For 
these reasons, we will not examine these processes in this paper. However, we will keep the 
Benth and Šaltytė-Benth (2005)’s process for our study to gauge the precision of its results 
compared to those given by the other models. 
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 Another feature of the temperature that has been mentioned in the literature is its long 
memory. Caballero, Jewson  and Brix (2002), Moréno (2003) and Hamisultane (2006b) reveal 
the presence of a persistent phenomenon in the mean and also in the variance of the 
temperature. Hamisultane (2006b) shows that the use of the long memory process ARFIMA-
FIGARCH (Auto Regressive Fractionally Integrated Moving Average - Fractionally 
Integrated GARCH) gives prices that are not very different from those induced by the short 
memory process AR-GARCH. Therefore, for the sake of simplicity, we do not consider here 
this characteristic of the temperature. 
 
 We now use all these elements to built a model for our series. We possess historical 
data of the New York daily average temperature for a period from 01/01/1993 to 12/31/2005 
which represents 4745 observations (after dropping February 29). We start our investigation 
by the modelling of the deterministic part (mt and st) of the temperature. We estimate the 
Campbell and Diebold’s modified model which encompasses the Roustant (2002)’s and Benth 
and Šaltytė-Benth (2005)’s representation for the trend and seasonal component. We use the 
maximum likelihood method to estimate all the models. Based on the information criteria 
which are the Akaike (AIC), the Schwartz (SC) and the Hannan-Quinn (HQ) measures

(5)
 , we 

select the orders M=0, K=3 and p=5. The results of the estimation of the part including M=0 
and K=3 are reported in Table 1 while the estimates of p=5 are presented in Table 2. Our 
model does not include a trend like in Benth and Šaltytė-Benth (2005)’s specification. 
Moreover, the order of the seasonal part is larger than the Roustant (2002)’s and Benth and 
Šaltytė-Benth (2005)’s suggestions. When adding moving average (MA) terms, i.e., when 
writing the model as follows : 
 

  Tt = mt + st + ∑
j=1

P

 ρj (Tt-j - mt-j - st-j) - ∑
l=1

q

 Θl ( )σt-l lt-ε~  + σt tε~ , (66) 

 
we do not decrease the information criteria as shown in Table 2. Our model has then a pure 
AR process for the disturbance. Next, we compare the results in Table 1 to the estimates of  
the trend and the seasonnality of the the Cao and Wei ’s model which are shown in Table 3. 
Since the trend was not significant, it does not appear in Table 3. After removing the seasonal 
part from the initial observations of the temperature to obtain a stationary time series, we 
model the behavior of the new sample by the AR process. The smallest values of the 
information criteria are reached for p=5. The results of the estimation are put in Table 4.  We 
see that the Cao and Wei ’s representation has information measures which are smaller than 
those of the Campbell and Diebold ’s estimated model. When MA terms are introduced, they 
do not improve the results as we can notice in Table 3. We therefore choose the AR(5) 
process to represent the deterministic part of the New York temperature. We now check 
whether its residuals are white noises. Table 4 puts in evidence the non autocorrelation of the 
residuals since the corresponding H statistic of Durbin (in absolute value) is below 1.96 at 5% 
level. We use here the H statistic instead of the Durbin-Watson measure to avoid the bias due 
to the use of the autoregressive model. Table 5 sets out the ARCH test which shows that the 
variance of the residuals is not constant since the probability that the statistic nR² exceeds the 
value of 77.74 under the null hypothesis is close to zero (so inferior to the 5% level) which 
means that the alternative hypothesis that the variance is not homoskedastic is accepted. This 
finding involves the necessity of modelling the variance of the temperature. We estimate five 
possible representations for the variance which results are reported in Tables 6. Concerning 
the Campbell and Diebold’s variance, we use the information measures to select the orders Q, 
R and S of the equation. We found that Q= 1, R=1 and S=1 is the best combinaison. It 
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minimizes the AIC, SC and HQ information criteria. Our results in Table 6 reveal that 
accounting only for the seasonality of the volatility is not enough to obtain a good model 
since the Cao and Wei ’s and Roustant’s variance processes fail to have information measures 
which are inferior to those of the Campbell and Diebold’s suggestion. In the same way, 
considering only the GARCH structure is not an appropriate choice. Finally, the Campbell 
and Diebold’s process appears to be a good mixture of all these elements but it does not 
represent the “best” model for the volatility of the New York temperature when we compare it 
to the Benth and Šaltytė-Benth’s estimated model. Indeed, the information criteria of this 
latter are lower than those of the Campbell and Diebold’s representation. We plot it in Figure 
2. We depict also the Campbell and Diebold’s variance model in Figure 1 for comparison. We 
see that this last process is too smooth to capture the irregularities of the observed squared 
residuals. In conclusion, we choose the estimated model of Cao and Wei for the trend and the 
seasonality and the process of Benth and Šaltytė-Benth for the volatility. This representation 
will be used to simulate the temperature in the implementation of the SMM approach. Now, 
we need to model the behavior of the consumption. This point is treated in the following 
section. 

 
 
 

Table 1 :  Estimation of  the coefficients of the trend and the seasonality of the 
Campbell and Diebold’s model  

 
 Estimation t-statistic 
β0 55.95 548.60 
δc,1 -20.39 -141.36 
δc,2 -0.22 -1.55 
δc,3 -0.02 -0.14 
δs,1 -9.16 -63.51 
δs,2 0.17 1.20 
δs,3 -0.96 -6.63 
LL -15979.96  

AIC 6.7384  
SC 6.7480  
HQ 6.7418  

 
LL represents the value of the log-likelihood at the optimum , 

AIC, SC and HQ refer recpectively to the Akaike, Schwarz and Hannan-Quinn information measures, 

Tt = mt + st  ,  mt = ∑
m=0

M

 βm tm   and  st = ∑
k=1

K

 ⎣⎡ ⎦⎤ δc,kcos⎝⎛ ⎠⎞2π k d(t)
365

 + δs,ksin⎝⎛ ⎠⎞2π k d(t)
365

 . 
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Table 2 :  Estimation of  the coefficients of the ARMA  process for the stationnarized series by the 
removal of the estimated trend and seasonnality of the Campbell and Diebold’s model 

 
 

 AR process ARMA process 
 Estimation t-statistic Estimation t-statistic 
ρ1 0.80 55.31 1.37 7.00 
ρ2 -0.27 -14.32 -0.72 -4.57 
ρ3 0.13 7.09 0.28 5.05 
ρ4 -0.03 -1.59 -0.10 -3.21 
ρ5 0.04 2.87 0.04 2.40 
Θ1   -0.57 -2.90 
LL -14405.49  -14403.66  

AIC 6.0804  6.0800  
SC 6.0872  6.0882  
HQ 6.0828  6.0829  
H | -0.897| = 0.897  NA 

(6)  
 

LL represents the value of the log-likelihood at the optimum ,  AIC, SC  and HQ refer recpectively to the Akaike, 
Schwarz and Hannan-Quinn information measures, H stands for the H statistic of Durbin and 

(Tt -  mt - st) =  ∑
j=1

p

 ρk (Tt-j - mt-j - st-j)  - ∑
l=1

q

 Θl εt-l  +  εt 
. 

 
 
 
 

Table 3 :  Estimation of  the coefficients of the trend and the seasonality of the 
 Cao and Wei’s model 

 
 

 Estimation t-statistic 
β0 55.95 566.31 
κ 1.00 161.09 

LL -15831.71  
AIC 6.6738  
SC 6.6766  
HQ 6.6748  

 
LL represents the value of the log-likelihood at the optimum ,  AIC, SC and HQ refer 

recpectively to the Akaike, Schwarz and Hannan-Quinn information measures,  Tt = mt + st ,  mt = β1
365

 t  -  β0
365

 n
2

  

and  st = κ )T( )1Y()1365(d ×× ⊗ l  with dT  = ∑
=

Y

1y
y,dT

Y
1  where  n corresponds to the number of observations, 

 ℓ is a Y×1 vector of ones, d=1,…,365 denotes the day of the year  y=1,…,Y and  t=1,…, n. 
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Table 4 :  Estimation of  the coefficients of the ARMA  process for the stationnarized series by the 
removal of the estimated trend and seasonnality of the Cao and Wei’s model 

 
 
 

 AR process ARMA process 
 Estimation t-statistic Estimation t-statistic 
ρ1 0.81 55.63 1.37 7.44 
ρ2 -0.26 -14.18 -0.72 -4.82 
ρ3 0.14 7.40 0.29 5.42 
ρ4 -0.03 -1.75 -0.10 -3.42 
ρ5 0.04 3.06 0.04 2.57 
Θ1   -0.57 -3.08 
LL -14227.20  -14225.40  

AIC 6.0051  6.0048  
SC 6.0120  6.0130  
HQ 6.0075  6.0077  
H |- 1.500| = 1.500  NA  

 
 

LL represents the value of the log-likelihood at the optimum ,  AIC, SC and HQ refer recpectively to the Akaike, 
Schwarz and Hannan-Quinn information measures, H stands for the H statistic of Durbin and  

 (Tt -  mt - st) =  ∑
j=1

p

 ρk (Tt-j - mt-j - st-j)  - ∑
l=1

q

 Θl εt-l  +  εt 
. 

 
 
 

Table 5 :  ARCH test for the squared residuals (RESID^2) of the  
Cao and Wei ’s AR(5) process . 

 
 

ARCH Test: 

F-statistic 39.49447     Probability 0.000000 
Obs*R-squared 77.74210     Probability 0.000000 

Test Equation: 
Dependent Variable: RESID^2 
Method: Least Squares 
Sample(adjusted): 8 4745 
Included observations: 4738 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 

C 19.59371 0.699188 28.02353 0.0000 
RESID^2 (-1) 0.088121 0.014480 6.085564 0.0000 
RESID^2 (-2) 0.084879 0.014481 5.861505 0.0000 

R-squared 0.016408     Mean dependent var 23.69354 
Adjusted R-squared 0.015993     S.D. dependent var 36.45495 
S.E. of regression 36.16226     Akaike info criterion 10.01454 
Sum squared resid 6192004.     Schwarz criterion 10.01863 
Log likelihood -23721.45     F-statistic 39.49447 
Durbin-Watson stat 2.006676     Prob(F-statistic) 0.000000 
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Table 6 :  Estimation of the coefficients of the Cao and Wei ’s AR(5) process and of the variance 
equation 

 
 

 AR(5) – GARCH(1,1) 
(*) 

 AR(5) – variance of 
Cao and Wei (**) 

 AR(5) – variance of 
Roustant (***) 

 Estimation  Estimation  Estimation 
ρ1 0.81 (54.40) Ρ1 0.81 (57.72) ρ1 0.81 (56.43) 
ρ2 -0.26 (-14.27) Ρ2 -0.26 (-14.32) ρ2 -0.26 (-14.41) 
ρ3 0.14 (7.12) Ρ3 0.13 (6.98) ρ3 0.13 (7.02) 
ρ4 -0.03 (-1.70) Ρ4 -0.03 (-1.77) ρ4 -0.03 (-1.84) 
ρ5 0.04 (2.94) Ρ5 0.04 (2.76) ρ5 0.04 (2.84) 
α0 0.47 (3.52) σ

0
6.57 (47.91) a 4.80 (112.14) 

α1 0.05 (6.88) σ
1

2.76 (15.42) b 0.92 (13.91) 
α2 0.93 (91.96) φ 2.80 (101.20) c 0.74 (11.52) 
LL -14128.89 LL -14104.62 LL -14094.12 

AIC 5.9649 AIC 5.9547 AIC 5.9503 
SC 5.9758 SC 5.9656 SC 5.9612 
HQ 5.9688 HQ 5.9585 HQ 5.9541 

 AR(5) – variance of 
Campbell and Diebold 

(****) 
 AR(5) – variance of 

Benth and Šaltytė-
Benth (*****) 

  

 Estimation  Estimation   
ρ1 0.81 (51.22) ρ1 0.82 (56.41)   
ρ2 -0.27 (-13.40) ρ2 -0.26 (-11.37)   
ρ3 0.13 (6.76) ρ3 0.15 (8.52)   
ρ4 -0.03 (-1.62) ρ4 -0.05 (-2.10)   
ρ5 0.04 (2.83) ρ5 0.05 (3.08)   
c 5.58 (36.04) η 1.00 (55.18)   
γ

c,1
2.15 (2.95)     

γ
s,1

1.45 (2.08)     
µ

1
0.05 (4.08)     

ν
1

0.72 (43.95)     
LL -14078.52 LL -13860.78   

AIC 5.9445 AIC 5.8510   
SC 5.9582 SC 5.8591   
HQ 5.9493 HQ 5.8538   

 
LL represents the value of the log-likelihood at the optimum ,  AIC, SC and HQ refer recpectively to the Akaike, Schwarz  
and Hannan-Quinn information measures, the numbers in parentheses indicate the value of the t-statistic. 
(*)        where  α2

1t2
2

1-t10
2
t ε −σα+α+α=σ 0 >0,  α1≥0 and  α2 ≥0 

(**)      σ
t 
= σ

0
 – σ

1 ⎟
⎠
⎞

⎜
⎝
⎛ + φ365

tπsin  

(***)    σ
t
 = a + b cos(ωt) + c sin (ωt)  where  ω = 2π

365
 

(****)    ∑ ∑∑
= =

−
=

− σν+εµ+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ πγ+⎟

⎠
⎞

⎜
⎝
⎛ πγ+=σ

Q

1q

S

1s

2
sts

R

1r

2
rtrq,sq,c

2
t 365

)t(dq2sin
365

)t(dq2cosc  

(*****)   = η2
tσ )ˆ( )1Y(

2
)1365(d ×× ⊗ε l   where   ∑

=

=ε
Y

1y

2
yd,

2
d ε̂Y

1ˆ  , =  ,  

denote the estimated values , ℓ is a Y×1 vector of ones, d=1,…,365 corresponds to the day of the year  

y=1,…,Y,  t=1,…, n and n = Y × 365  represents the number of observations. 

yd,ε̂ )ŝm̂(Tρ̂ŝm̂T 1y,d1yd,1yd,yd,yd,yd, −−− −−−−−

ρ̂andŝ,m̂ tt
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Figure 1 :  Squared residuals of the Cao and Wei’s AR(5) process and estimated variance 
of Campbell and Diebold. 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

150

200

250

300

350

400

450

01/01/1993 - 12/31/2005

 Squared residuals
 Campbell and Diebold's variance

 
 
 
 
 
 

Figure 2 :  Squared residuals of the Cao and Wei’s AR(5) process and estimated variance 
of Benth and Šaltytė-Benth . 
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6.  Modelling the behavior of the growth rate of consumption 
 
 
 We notice that the Euler condition is expressed in terms of  the growth rate of the real 

per-capita consumption  
Ctm
Ct

 . To make the simulation and estimation of the process of this 

variable more practical, the Euler condition is reformulated as follows : 
 
 

 )t,t(FFIeβE mt
tlnC

mtlnCγt)m(t =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ⎟
⎠
⎞

⎜
⎝
⎛ −−

−  (67) 

 
 
Following Cao and Wei (2004), we assume that ln Ct  follows a Markov process stated as : 
 

 
  ln Ct = α0 + α1 ln Ct-1 + µt  (68) 
 
 
where α1 ≤ 1  ,  µt = 1-ρ² σν t

~ν + σt  [ ] ρ t  + η1ε~ 1-tε
~  + … + ηm

~
   , σm-tε ν is the volatility of the 

noise which is independent of the temperature disturbance ,  σt  refers to the volatility of the 
temperature, ρ stands for the correlation coefficient between  ln Ct  and  the temperature, 
η1,…, ηm are the coefficients of the lagged innovations of the temperature which impact the 
consumption, ~> iid(0,1)  and ~> iid(0,1). t

~ν t
~ε

 
Cao and Wei (2004) use monthly total personal consumption data which were taken from the 
Federal Reserve Bank of Saint-Louis. However, Mankiw and Zeldes (1991) point out that the 
use of the total consumption is not correct since it includes the stockholder and  
nonstockholder consumption. This latter is unlikely to satisfy the Euler condition of the 
consumption-based asset pricing. Using the data provided by the Panel Study of Income 
Dynamics (PSID), Mankiw and Zeldes (1991) isolate the families who hold stocks and find a 
value of the risk aversion coefficient which is less important than in the case where the total 
consumption is accounted for since the  consumption of this group is more correlated with the 
stock market. This finding does not resolve yet the equity premium puzzle raised by Mehra 
and Prescott (1985) since the value of the risk aversion is still too high but it constitutes an 
encouraging result. For our study, we cannot use these data because their frequency is a year 
while we want to calculate the weather derivative price for a day. The conversion of these 
data into a daily series by a linear interpolation will not give satisfactory results. We therefore 
choose to work with the monthly consumption data for which the disaggregation will not 
produce a too imprecise daily series. Unlike Cao and Wei (2004), we use expenditures on 
nondurable goods and services in order to have an utility function which is time-separable 
(Ferson and Constantinides (1991)). These data series are available in nominal and real 
measures from the Federal Reserve Bank of Saint-Louis. For our framework, we choose the 
real series. In order to obtain the per-capita consumption, we divide the expenditures on 
nondurables and services by the population. We need not here to deflate the weather futures 
prices that enter into the Euler condition since they are quoted in degree-day index points and 
not in value. For estimating the process of the daily real per-capita consumption, we use 
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observations for a period spanning from 01/01/1993 to 12/31/2005. We then obtain the 
following result : 
 
 

ln Ct = -0.000560 + 1.000062 ln Ct-1 - 2.14 × 10-7 rest + 1-( )-2.14 × 10-7 2
 × σν t

~ν  (69) 
  (-3.40)      (60073.28) (-0.81)  
  
 
where the number in parentheses refers to the t-statistic and rest is the residual at time t of the 
Cao and Wei ’s AR(5) process, it represents the estimation of the innovation σt t

~ε of the 
temperature. 
  
The standard deviation σν in equation (69) is estimated by : 
 
 

 σν =  kn
ˆ 2

t
−
ν  × 1

 1-( )-2.14 × 10-7 2 (70) 

 
 
where = ln Ctν̂ t - ( )-0.000560 + 1.000062 ln Ct-1 - 2.14 × 10-7 rest  , n is the number of 
observations and k is the number of dependent variables (we have here three variables). 
 
Contrary to Cao and Wei (2004), our correlation coefficient is not significant (the t-statistic is 
below 1.96 at 5% level). We think that this is may be due to the choice of the linear 
interpolation for the consumption and decide to convert the daily temperature data into a 
monthly series as did Cao and Wei (2004) in order to compute the correlation coefficient 
between the monthly temperature and consumption. We see in Table 7 that it is still non 
significant even if we split the obervations into HDD and CDD periods. We also use the total 
consumption expenditures like in Cao and Wei (2004). The results are displayed in Table 8. 
We choose the real and nominal measures for this aggregate and even in those cases, it 
remains non significant. We think that this difference comes from the fact that Cao and Wei 
(2004) use longer time series than ours (240 monthly observations versus 156 for us). 
Moreover, they average the temperatures across five cities whereas we only employ the New 
York temperature. We decide to keep the relation given in Eq.(69) for our simulations even if 
the correlation between the New York temperature and the consumption on nondurables and 
services is not proved since assuming no link between these two variables is equivalent to 
saying that the agents are risk neutral in the case of the weather derivatives (γ=0), that is to 
say that no market price of risk is required for these constracts which is inconsistent with our 
intuition (weather derivatives cannot be hedged by a self-financing portfolio, therefore a risk 
premium is expected) and with the findings of the previous works (Cao and Wei (2004) and 
Richards et al. (2004)). 
 
After modelling the consumption and the temperature behavior, we can implement the SMM 
approach to find the value of the risk aversion coefficient. This procedure as well as the GMM 
methodology are run in the following section. 
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Table 7 : Estimation of the log-consumption process with US real per-capita consumption 
expenditures on nondurables and services 

 
 

 Daily data Monthly data 
 HDD period

(n=2756) 
CDD period

(n=1989) 
All days 
(n=4745) 

HDD period
(n=91) 

CDD period 
(n=65) 

All months 
(n=156) 

α0 -0.0007 
(-0.49) 

0.0008 
(0.25) 

-0.0006 
(-3.40) 

-0.0088 
(-0.16) 

0.0295 
(0.28) 

-0.0068 
(-0.25) 

α1 1.0001 
(6577.28) 

0.9999 
(3230.52) 

1.0001 
(60073.28) 

1.0012 
(177.33) 

0.9974 
(94.08) 

1.0008 
(362.24) 

ρ -9.17 × 10-7 

(-0.42) 
-6.15 × 10-6 

(-1.04) 
-2.35 × 10-7 

(-0.88) 
3.01 × 10-5 

(0.07) 
-0.0004 
(-0.36) 

-0.0002 
(-0.74) 

 
HDD period regroups January, February, March, April, October, November , December ,  CDD period spans from May to 

September, n denotes the number of observations and  the figure in parentheses refers to the t-statistic. 
 
 
 
 

Table 8 : Estimation of the log-consumption process with US total monthly consumption expenditures 
 

 
 Real data Nominal data 

 HDD period
(n=91) 

CDD period
(n=65) 

All months 
(n=156) 

HDD period
(n=91) 

CDD period 
(n=65) 

All months 
(n=156) 

α0 0.0535 
(0.34) 

0.1522 
(0.56) 

0.0266 
(0.36) 

0.0104 
(0.07) 

0.0555 
(0.21) 

0.0016 
(0.03) 

α1 0.9983 
(188.43) 

0.9951 
(108.60) 

0.9992 
(400.80) 

0.9999 
(209.15) 

0.9985 
(113.91) 

1.0001 
(573.33) 

ρ 0.0003 
(0.36) 

-0.0008 
(-0.40) 

-2.84 × 10-5 

(-0.07) 
9.12 × 10-5 

(0.09) 
-0.0002 
(-0.08) 

0.0001 
(0.25) 

 
HDD period regroups January, February, March, April, October, November , December ,  CDD period spans from May to 

September, n denotes the number of observations and the figure in parentheses refers to the t-statistic. 
 
 
 
7.  Results 
 
 We want here to compute the monthly New York CDD weather futures prices for the 
period from 06/01/2006 to 06/30/2006 with the use of the estimates of the risk aversion 
parameter by the GMM and SMM approaches. The estimation of the coefficient by the GMM 
proceeding is carried out with the weather futures quotations for the period from 04/01/2004 
to 12/31/2005 which represents 443 observations and for the CDD period covering from 
05/01/2005 to 09/30/2005 which consists of 107 prices. We need for this method to define the 
instrumental variables. Since we have little guidance in choosing their number, we use three 
different sets of instruments. In the first one, we include the constant and two lagged values of 
the consumption growth rate. In the second one, we regroup the constant and one lagged value 
of the consumption growth rate and return. In the third set, we form the vector of instruments 
by using the constant and two lagged values of the consumption growth rate and return. 
Ferson and Constantinides (1991) point out that other variables than these lagged values 
should be employed as instruments to avoid the measurement errors to bias the parameter 
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estimates as well as the test of overidentifying restrictions. It is difficult in our case to find 
variables that are good instruments, i.e., that are highly correlated with both the consumption 
and the return of the weather futures. For instance, the personal disposable income is very 
correlated with the consumption expenditures but not with the weather futures prices. The 
GDP is surely correlated with the two variables but its frequency is a year or a quarter. So we 
cannot employ it to calculate the daily prices. Therefore, we limit our study to the first three 
proposed sets which represent respectively 3, 3 and 5 moment conditions. The results of the 
GMM principle are shown in Table 9 and Table 10. For the estimation of the coefficients by 
the SMM approach, we use a shorter period for the quotations which is from 06/01/2005 to 
06/30/2005 which corresponds to 30 moment restrictions (in fact 22 since the quotations are 5 
day week). With the SMM procedure, instead of the number of instruments, we need to 
determine the number of simulations N to run. We choose N=2000 for our experimentations. 
The findings are presented in Table 11. 
 
 We can notice in Table 9 that the estimated value of the risk aversion coefficient from 
the GMM approach is not stable. It varies with the set of instruments and with the bandwidth 
chosen for the estimation. Moreover in some cases, it is negative. We see that these values are 
particularly biased when the sample size is small (Table 10). The test of overidentifying 
restrictions indicates that the model is well specified in all the cases even when the risk 
aversion coefficient has the wrong sign. Indeed, the probability that the J-statistic exceeds the 
calculated value is always well above the 5% level. Lund and Engsted (1996) put also in 
evidence these aberrations. The fact that the test is biased in favor of accepting the model may 
be due to the use of the lagged values of the consumption growth rate and return. Another 
point which is also mentioned in some studies and that we can remark in Table 9 and Table 10 
is that the prewhitening method enables to improve the confidence interval coverage but at the 
cost of inflating the value and the variance of the estimators. In some settings, it increases the 
bias as well as the nonconvergence problems especially for the small sample sizes (see also 
Andersen and Sørensen (1996) and Chiang and Kao (2005)). When we compare the results 
provided by the GMM principle to those of the SMM approach in Table 11, we see that they 
are quite different. The hypothesis that the model fits the data is rejected. The estimates of the 
risk aversion coefficient are greater than those presented in Table 9 and Table 10 (whithout 
the prewhitening procedure) because the simulated consumption is smoother than the 
observed one which induces a smaller value of the consumption ratio in the case of the SMM 
approach than for the GMM proceeding. So a more important size of the risk aversion 
parameter is needed to diminish the level of the estimated prices to match the quotations. We 
illustrate in Figure 3 the weather futures prices obtained when applying the SMM findings 
and in Figure 4 the results when employing the GMM estimates. For the last case, we choose 
the values resulted from the set 3 of instrumental variables and the Andrews (1991)’s 
bandwidth selection with prewhitening since they are the nearest to those of the SMM 
proceeding. We observe that the calculated prices fit better the quotations when the SMM 
estimates are used. To allow the computed prices to match the observations, the derived risk 
aversion parameter must be very high whereas the range of its plausible values is between 0 
and 10 (see Mehra (2003)). As we exposed in section 2, numerous studies pointed out this 
failure of the consumption-based asset pricing model and attempted to bring some 
explanations. Among them, the Mankiw and Zeldes (1991)’s and Constantinides and Duffie 
(1996)’s points of view are particularly interesting. As we mentioned before, Mankiw and 
Zeldes (1991) showed that it was very high because the total consumption which was 
commonly used for the estimation was less correlated with the asset movements than the 
stockholder consumption. Constantinides and Duffie (1996) argued that the estimated 
coefficient did not correspond to the value of the risk aversion parameter. It is in fact a 
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function of it when individuals have heterogeneuous income. They demonstrate that, in the 
presence of shocks to the labor income of each agent, the Euler condition includes in addition 
the cross-sectional variance of the individual consumers’ consumption growth. This Euler 
condition can then be turned into the familiar form by assuming that the shocks are persistent, 
independently and identically distributed. The resulted coefficient that appears in this last 
representation is not the risk aversion coefficient but is a function of it. We can attempt to 
derive the “true” value of the risk aversion parameter by applying the Constantinides and 
Duffie (1996)’s formula and to see whether it belongs to the range of realistic values but this 
undertaking is beyond the objective of this paper which is to find the estimates of the 
parameters of the Euler condition so that the calculated weather futures prices reproduce 
correctly the observed quotations. 

 
 

Table 9 :  Estimation of the coefficients of the Euler conditions by the GMM procedure for the period  
from 04/01/2004 to 12/31/2005 

 
 

 Set 1  
(n=443 and L=3) 

Set 2  
(n=443 and L=3) 

Set 3  
(n=443 and L=5) 

 Β γ β γ β γ 
Newey and West 

(1994)’s bandwidth 
selection 

0.998 
(702.69) 

-50.040 
(-1.45) 

1.000 
(791.19) 

12.885 
(0.91) 

0.999 
(865.04) 

3.157 
(0.25) 

b 15 15 15 
J-statistic 1.58 3.38 4.68 

Probability 0.21 0.06 0.20 
Newey and West 

(1994)’s bandwidth 
selection + prewhitening 

0.998 
(172.07) 

-54.501 
(-0.50) 

1.003 
(225.23) 

71.548 
(1.04) 

1.003 
(233.64) 

68.04 
(1.03) 

b 0 8 7 
J-statistic 0.007 0.73 1.28 

Probability 0.93 0.39 0.73 
Andrews (1991)’s 

bandwidth selection 
0.998 

(665.44) 
-53.758 
(-1.57) 

0.999 
(752.06) 

11.795 
(0.75) 

0.999 
(881.38) 

0.230 
(0.02) 

b 31 37 36 
J-statistic 1.58 2.77 3.75 

Probability 0.21 0.09 0.29 
Andrews (1991)’s 

bandwidth selection + 
prewhitening 

0.998 
(149.02) 

-57.561 
(-0.47) 

1.004 
(188.12) 

77.761 
(0.88) 

1.003 
(202) 

67.341 
(0.82) 

b 2 2 2 
J-statistic 0.0118 0.89 1.15 

Probability 0.91 0.34 0.76 
 
The New York weather futures quotations and the US real per-capita consumption are used for the period from 04/01/2004 to  
12/31/2005. n is the number of observations, b denotes the bandwidth and the figure in parentheses refers to the t-statistic. 
"Probability" corresponds to the probability that the J-statistic with L-p degrees of freedom exceeds the calculated value 
where L and p are respectively the number of conditions and unknowns. 
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Table 10 :  Estimation of the coefficients of the Euler conditions by the GMM procedure for the 
period from 10/01/2005 to 04/30/2005 

 
 

 Set 1  
(n=107 and L=3) 

Set 2  
(n=107 and L=3) 

Set 3  
(n=107 and L=5) 

 Β γ β γ β γ 
Newey and West 

(1994)’s bandwidth 
selection 

0.925 
(45.82) 

-33.224 
(-1.40) 

0.915 
(54.31) 

 

-31.554 
(-1.28) 

0.940 
(65.03) 

-7.815 
(-0.53) 

b 8 8 8 
J-statistic 2.10 2.15 3.52 

Probability 0.15 0.14     0.32 
Newey and West 

(1994)’s bandwidth 
selection + prewhitening 

0.852 
(15.12) 

-221.462 
(-0.62) 

 
 

   

b 7 No convergence No convergence 
J-statistic 0.03   

Probability 0.87   
Andrews (1991)’s 

bandwidth selection 
0.923 

(82.99) 
-40.836 
(-1.57) 

0.920 
(91.60) 

-36.428 
(-1.92) 

0.947 
(107.80) 

-23.281 
(-1.70) 

B 25 27 25 
J-statistic 1.55 1.53 3.63 

Probability 0.21       0.22     0.30 
Andrews (1991)’s 

bandwidth selection + 
prewhitening 

0.870 
(20.75) 

-199.024 
(-0.53) 

0.914 
(49.85) 

-36.866 
(-0.17) 

0.921 
(65.80) 

-27.693 
(-0.16) 

b 2 0 0 
J-statistic 0.01 0.45 0.48 

Probability 0.91       0.50     0.92 
 
The New York weather futures quotations and the US real per-capita consumption are used for the period from 10/01/2005 to 
04/30/2005 (CDD period). n is the number of observations, b denotes the bandwidth and the figure in parentheses refers to 
the t-statistic. "Probability" corresponds to the probability that the J-statistic with L-p degrees of freedom exceeds the 
calculated value where L and p are respectively the number of conditions and unknowns. 
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Table 11 : Estimation of the coefficients of the Euler conditions by the SMM procedure for the period 
from 06/01/2005 to 06/30/2005. 

 
 

 N=2000 and L=22 
 β γ 

Newey and West 
(1994)’s bandwidth 

selection 

0.999 
(471.53) 

 

61.736 
(1.76) 

 
b 8 

J-statistic 221.69 
Probability 0.00 

Andrews (1991)’s 
bandwidth selection 

0.999 
(515.63) 

61.706 
(1.91) 

b 24 
J-statistic 80.23 

Probability 0.00 
 

N is the number of simulations for the temperature and the consumption, b denotes 
the bandwidth and the figure in parentheses refers to the t-statistic.  "Probability" 

corresponds  to the probability that the J-statistic with L-p degrees of freedom exceeds 
the calculated value where L and p are respectively the number of conditions and unknowns. 
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Figure 3 : New York CDD weather futures prices (for working days) expiring in June 2006. 
Prices are calculated with the estimates of the SMM approach which was implemented with the 

Andrews (1991)’s bandwidth selection without prewhitening and by using 2000 simulations. 
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Figure 4 : New York CDD weather futures prices (for working days) expiring in June 2006. 
Prices are calculated with the estimates of the GMM approach which was implemented with the set 3 
of instruments and the Andrews (1991)’s bandwidth selection with prewhitening and by using 2000 

simulations. 
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8.  Conclusion 
 
 In this paper, we have computed the New York weather futures prices by using the 
consumption-based asset pricing model. The parameters of this model were estimated by 
applying two methods which are the GMM and SMM approaches. The last one was 
implemented by simulating the New York daily average temperature and the per-capita 
consumption growth rate processes. We have shown that for the modelling of the temperature 
behavior the process composed of the Cao and Wei (2004)’s suggestion for the seasonality in 
the mean and the Benth and Šaltytė-Benth (2005)’s proposal for the seasonality in the 
variance is the more appropriate. The calculated prices resulting from the use of the SMM 
estimates have appeared to be the nearest to the observations. We plan in our future research 
to analyse the consequences of the use of the sectorial indexes (for instance in energy) instead 
of the consumption to compute the weather derivatives prices. The advantage of this approach 
is that no interpolation is needed to convert the data into a daily series since the frequency of 
the sectorial indexes is a day. Futhermore, this substitute can be more correlated with the 
temperature than the consumption. 
 
 
 
Footnotes 
 
 
 
(1)

   Cao and Wei (2004) take negative values for the risk aversion parameter because their 

utility function is of the form :  U(Ct) = 
C1+γ

t

1+γ
 . 

 
(2)

   Asset return and consumption growth rate are regarded as stationary variables. 
 
(3)

   When the errors gt( ) are uncorrelated, S  is written as   =θ̂ ˆ Ŝ ′∑
=

)θ̂(g)θ̂(gn
1

t

n

1t
t . 

 
(4)

  Campbell and Diebold (2004) omit the constant term. The problem here is that the 
variance can be negative since its cyclical pattern has positive and negative phases. 
 
(5)

  The Akaike (AIC), Schwarz (SC) and Hannan-Quinn (HQ) information criteria are 
respectively expressed as : 
 

AIC = -2 
⎝⎜
⎛

⎠⎟
⎞LL

n
 + 2k

n
  , 

 

SC = -2 
⎝⎜
⎛

⎠⎟
⎞LL

n
 + k ln(n)

n
 , 

and 

HQ = -2 
⎝⎜
⎛

⎠⎟
⎞LL

n
 + 2k ln(ln(n))

n
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where  LL corresponds to the log-likelihood of the model with k parameters. 
 
(6)

   The H statistic of Durbin is given by : 
 

( ) 2
)1(ARˆn1

n
2

DW1H
σ−

−=  

 
where  DW refers to the estimated value of the Durbin-Watson statistic,  denotes the 
estimated variance of the first coefficient of the AR(5) process and n corresponds to the 
number of observations. The H statistic follows asymptotically a centered normal distribution 
with a variance one. When the term under the square root is negative, we cannot compute the 
statistic. In that case, autocorrelation of the errors is assumed. 

2
)1(ARσ̂
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