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Abstract

In this paper, we point out the role of anticomonotonicity in the
characterization of efficient contingent claims, and in the measure of
inefficiency size of financial strategies. Two random variables are said
to be anticomonotonic if they move in opposite directions. We first
provide necessary and sufficient conditions for a contingent claim to
be efficient in markets, which might be with frictions in a quite general
framework. We then compute a measure of inefficiency size for any
contingent claim. We finally give several applications of these results,
studying in particular the efficiency of superreplication strategies.

Keywords: anticomonotonicity, utility maximization, markets with frictions,
utility price.

Introduction

In this paper, we characterize efficient contingent claims in an economy
where agents have access to a continuous securities market which might be
with frictions by using the notion of anticomonotonicity. Roughly speaking,
two random variables are said to be anticomonotonic if they move in op-
posite directions. We define an efficient consumption as an optimal choice
for at least one rational agent with Von Neumann-Morgenstern preferences
and a concave, strictly increasing utility function. Following the work of
Jouini and Kallal [14], we compute for every contingent claim a measure of
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inefficiency that does not rely on a specific utility function, using the an-
ticomonotonicity property. We finally provide several applications of these
results.
In a couple of articles, Dybvig [6, 7] studied the efficiency of trading strate-
gies, i.e. strategies chosen by at least one rational agent: given a fixed time
horizon T > 0, and a complete market with a finite number of equiprobable
states of the world, agents are endowed with a concave and increasing utility
function, and choose strategies maximizing their expected utility of wealth
at time T . In this context, the no arbitrage condition implies the existence
of a unique positive linear pricing rule (i.e. Arrow-Debreu price vector). A
consumption bundle is then efficient if and only if it provides at least as
much consumption in cheaper states of the world, that is, in states of the
world with lower Arrow-Debreu prices (see Dybvig [7]). With the help of
this characterization, Dybvig introduces the notion of distributional price,
defined as the minimal price to obtain a given distribution; then he quanti-
fies the inefficiency size of every contingent claim, and studies the efficiency
of several trading strategies, such as the stop-loss one (see Dybvig [7]).
However, in a market with frictions, the pricing function of contingent claims
is not linear anymore, but in a lot of cases, is the supremum over a set of
linear pricing rules : for an incomplete market, or a market with short sales
constraints or with transaction costs, Jouini and Kallal [11, 12, 13] show that
the pricing rule can be described as sublinear and obtained as the maximum
over a set of underlying linear pricing rules. Jouini and Kallal [14] show
that, in markets with frictions and a finite number of states of the world,
the notion of distributional price is not relevant anymore. Nevertheless, they
prove that the efficiency of a contingent claim is equivalent to the existence
of an effective pricing vector such that the contingent claim and this pric-
ing vector are anticomonotonic. Furthermore, they introduce the notion of
”utility price”, defined as the minimal price to obtain a contingent claim
preferred by all rational agents, allowing them to quantify the inefficiency
with a measure that does not rely on a specific utility function.
In a continuous model, if one assumes only that assets’ values are semi-
martingales in a market with frictions, duality is more difficult to handle.
In this framework, Delbaen and Schachermayer [3], Kramkov and Schacher-
mayer [16], Hugonnier and Kramkov [10] give results of duality that we use
to characterize the efficiency of strategies.
This paper is organized as follows. In a first section, we present the frame-
work and define efficient trading strategies. In a second section, we char-
acterize them with the help of a duality method and provide a method to
compute the inefficiency size of any trading strategy (section 2). We then
give applications on the computation of measure performance in markets
with frictions and prove in particular that the superreplication strategy has
no inefficiency size (section 3).

2



1 Strategies and optimization problem

1.1 The Economy

We consider an economy where agents maximize their expected utility of
future consumption at the final date T > 0. Each agent is endowed with
some initial wealth x0 and some uncertain future endowment f ≤ 0 in
quantity q0 to hedge at the final date T . The random variable f is defined
on an atomless1 probability space (Ω,F ,P).
More precisely, we use the following assumption on the preferences of the
agents:

Assumption 1 Agents are characterized by a Von-Neumann Morgenstern
utility function U : R∗+ 7→ R which is supposed to be strictly increasing and
concave (not necessarily strictly concave). We denote by U the set of all
such functions. Agents maximize their expected utility, function of their
terminal wealth at T . We furthermore assume that they might have to hedge
a contingent claim f ≤ 0 in quantity q0 > 0 at the final date T .

These agents have access to a securities market with frictions which con-
sists of d + 1 assets (one bond and d stocks). We suppose that the price
process S0 of the bond is constant, i.e. S0(.) = 1, which is merely a normal-
ization as we can always choose the bond as the numéraire, and denote by
S = (Si)1≤i≤d the price process of the d stocks. The process S is assumed
to be a semimartingale on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P),
where the filtration (Ft)t∈[O,T ] satisfies the usual conditions with FT = F .
Each agent invests its initial wealth in the securities market and builds up
a self financing strategy which is defined as (x,H), where x is the initial
value of the portfolio, H = (H i)1≤i≤d is a predictable S-integrable process
specifying the amount of each asset held in the portfolio. The value process
of this strategy is given by:

Vt
∆= x + (H.S)t = x +

∫ t

0
HudSu, t ∈ [0, T ]. (1.1)

In order to take into account frictions on this securities market, we assume
that the process H has to belong to a cone H of the set La(S), defined as the
set of admissible processes (H)t∈[0,T ], i.e. such that the stochastic integral
(H.S) is bounded from below. We furthermore assume that the cone H
is closed in La(S) with respect to the topology of Emery, allowing us to
apply results of Föllmer and Kramkov [8]. From now on, we denote by X (x)
the family of admissible wealth processes with initial value x, satisfying a

1We will use the property of atomless to construct random variables following any given
distribution.
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no-bankruptcy condition, i.e. such that Vt ≥ 0 for all t ∈ [0, T ]:

X (x) ∆=
{

(x,H) | x +
∫ t

0
HsdSs ≥ 0, ∀t ∈ [0, T ]

}
. (1.2)

1.2 Characteristics of the securities market

As usual in mathematical finance, we assume that the market satisfies a
condition of no arbitrage. To describe this assumption we use the concept
of local supermartingale measure.

Definition 1 A probability measure Q ∼ P is called an equivalent local su-
permartingale measure if any (admissible) self-financing strategy X ∈ X (1)
is a local supermartingale under Q. The family of equivalent local super-
martingales is denoted by M.

In the following, we suppose that the securities market satisfies:

Assumption 2
M 6= ∅

This assumption is indeed strongly related to the absence of arbitrage op-
portunities (see for example Delbaen and Schachermayer [3]).

We want to take into account the possibilities of frictions in the securities
market. To do so, we use the cone H to describe the potential constraints
of the market. We now review some examples of economies with frictions,
specifying in each case H.

Case 1: Market (potentially) incomplete. H = La(S). If the market is dynam-
ically incomplete (without other imperfections), then the set M is the
set of equivalent local martingales, reduced to a singleton in the case
of a complete market (see e.g., Karatzas and Shreve [15]).

Case 2: Prohibition of short selling. H =
{
H ∈ La(S) | H i ≥ 0, 1 ≤ i ≤ m

}
.

In such a market, the first m assets cannot be held in negative quan-
tities.

Case 3: Short selling costs. The introduction of shadow prices is a way to
model such constraints. Assume that d = 2m and (Si)1≤i≤m are

the values of the assets when taken in a long position; (S̃i)1≤i≤m
∆=

(Si)m+1≤i≤d are the return processes of the same assets, but when
taken in a short position, with :

S̃i
t ≥ Si

t .

The cone H is then given by:

H =
{
H ∈ La(S) | H i ≥ 0, 1 ≤ i ≤ m, and H i ≤ 0, m + 1 ≤ i ≤ d

}
.
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1.3 Efficient contingent claims

On this quite general framework, we want to characterize efficient contingent
claims (and the minimum costs of the trading strategies leading to them),
defined as the optimal choice for at least one rational agent, given its un-
certain future endowment to hedge. In this paragraph, we are going first to
describe the set of strategies that an agent can choose. We will then define
precisely the notion of efficient contingent claims.
Agents with an initial wealth x > 0 and a quantity q > 0 of random endow-
ment f to hedge choose their optimal trading strategy in the set

X (x, q) ∆=
{

X ∈ X (x) | XT + q.f
a.s.≥ 0

}
. (1.3)

Note that, for some vector (x, q), X (x, q) may be empty, or singulary small,
possibly reduced to a unique trading strategy. To exclude such situations
where the problem of expected utility maximization becomes trivial, we work
with the set K defined as the interior, in R2

+ of the vectors (x, q) such that
X (x, q) is not empty:

K ∆= int
{
(x, q) ∈ R2

+ | X (x, q) 6= ∅} . (1.4)

Finally, let C(x, q) be the set of integrable terminal wealth c such that there
exists a self-financing portfolio X with initial value x, i.e. X ∈ X (x), and
whose terminal wealth dominates c:

C(x, q) ∆=
{

c ≥ 0, c ∈ L1 | there exists X ∈ X (x) such that XT + qf
a.s.≥ c

}
.

(1.5)
We shall need to consider Adm(q, f), defined as the set of admissible con-
tingent claims attainable by at least one initial wealth, i.e.:

Adm(q, f) ∆=
⋃

x∈R∗+
C(x, q). (1.6)

Agents choose a strategy in order to maximize their expected utility of
terminal wealth:

Definition 2 Let (x0, q0) ∈ K. A contingent claim c0 ∈ C(x0, q0) is efficient
for the random endowment f in quantity q0, and the initial wealth x0 if there
exists a utility function U ∈ U such that c0 solves

sup
c∈C(x0,q0)

E (U(c)) < +∞. (1.7)

Note that we do not assume agents to be strictly risk adverse, neither
need we to impose any regularity condition on utility function, as usually
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done in the literature. Indeed, papers in the literature are particulary inter-
ested in the existence of an optimal strategy maximizing the expected utility
of terminal wealth (see Kramkov and Schachermayer [16], Cvitanic and al.
[2], or Hugonnier and Kramkov [10]), and such assumptions are crucial to
prove such an existence. However, our concern is quite different since our
issue is to characterize the necessary and sufficient conditions for a strategy
to be optimal for at least one utility function. Thus, it is important not
to restrict the set of utility functions based on regularity conditions, as we
do not want to exclude possible optimal strategies on such grounds. For
the same reason, we need to restrict the set of terminal wealth to integrable
random variables in order to ensure the existence of all expected utilities
functions of terminal wealth, whatever the preferences of the agent.

1.4 Description of the pricing rule

In this paragraph, we specify the pricing rule of any contingent claim at the
date T . In a market with frictions, the pricing rule is not linear anymore,
and is defined as the supremum over a set of density pricing measures. The
assumption (2) of no arbitrage, and the specifications of frictions described
with the cone H allow us to compute the pricing rule using the results of
Föllmer and Kramkov [8]. Let c be a positive contingent claim at date T ,
we define π(c) as the superreplication price of the contingent claim c: π(c)
is the minimum cost of a self-financing strategy leading to a terminal wealth
almost surely bigger than c. One can see easily that the pricing rule π is
sublinear, i.e. π(λc1) = λπ(c1) and π(c1 + c2) ≤ π(c1) + π(c2), for every c1

and c2 positive contingent claims and every nonnegative real number λ ≥ 0.
From a direct application of Proposition 4.2 of Föllmer and Kramkov [8],
we derive the following superreplication

Theorem 1 Assume that assumption (2) holds. Then, for every positive
contingent claim c, there exists an admissible self-financing strategy (π(c), Ĥ)

on the constrained market such that VT = π(c) +
∫ T
0 ĤsdSs

a.s.≥ c and:

π(c) = sup
Q∈M

EQ(c). (1.8)

In a discrete model of market with frictions, Jouini and Kallal [14] charac-
terize the efficiency of any contingent claim c with the anticomonotonocity
property with at least one effective linear pricing rule h0, that is such that
π(c) = E(h0c). But in our context (with a continuous market model), there
exist some contingent claims such that the supremum in the definition of
π is not attained, and duality results are more difficult to obtain. We are
going first to define particular sets that we will need in order to characterize
the efficiency of contingent claims, allowing us to study the case of a random
endowment to hedge.
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Without random endowment, one needs to study the set C(x) of terminal
wealth attainable from trading strategy in X (x) for some initial portfolio
x > 0:

C(x) ∆=
{

c ≥ 0 | ∃X ∈ X (x) with XT

a.s.≥ c

}
. (1.9)

Following Kramkov and Schachermayer [16], this leads to consider the set
of supermartingales

Y(y) ∆= {Y | Y0 = y an XY is a supermartingale for every X ∈ X (1)}.
(1.10)

and:

D(y) ∆= {h | 0 ≤ h ≤ YT for at leat one Y belonging to Y(y)} . (1.11)

In the case of incomplete markets, Kramkov and Schachermayer [16] prove
a bipolar relationship between the sets C(x) and D(y) which is a key result
to establish that there is no gap between the primal and the dual problem
of the expected utility maximization problem.

If we consider the case of a random endowment to hedge, we assume
first that the random variable −f is effectively hedgeable:

Assumption 3
x̂ = sup

Q∈M
EQ [−f ] < +∞

Under this assumption, there exists an admissible strategy (x̂, π̂, Ĉ) such
that the terminal value of this strategy dominates −f (see Theorem (1)),
i.e. the set C(x̂) is not empty. Following the work of Hugonnier and Kramkov
[10], one needs to consider the sets X (x, q) and C(x, q) as well as the measures
of pricing Y(y, r) and D(y, r), for y ≥ 0 and r ≤ 0, defined as:

Y(y, r) ∆= {Y ∈ Y(y) | E (YT XT ) ≤ xy + qr, ∀XT ∈ X (x, q)},(1.12)

D(y, r) ∆= {h | 0 ≤ h ≤ YT for at least one Y ∈ Y(y, r)} . (1.13)

In the same way as for the case without random endowment, we introduce
πqf (c) as the minimum cost to fund a strategy leading to a terminal wealth
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bigger than c, after hedging f in quantity q. Defining G2 by:

G ∆= {(y, r) ∈ R+ × R− | D(y, r) 6= ∅} (1.14)

and denoting by P̃ the set {p ∈ R− | (1, p) ∈ G}, one can see, using duality
results provided in appendix, that P̃ is a closed convex set and that the
pricing function πqf satisfies:

Theorem 2 The minimum cost πqf (c) of funding a strategy leading to a
terminal wealth bigger than c, after hedging f in quantity q, is given by:

πqf (c) = sup
p∈P̃

sup
h∈D(1,p)

E(hc)− qp

2 Trading strategies efficiency

In a complete model with a finite number of states of the world, Dybvig [6]
characterizes efficient strategies with the following property: the lower the
price of the Arrow-Debreu security for a state of the world, the higher the
value of an efficient consumption bundle. This very intuitive result states
a relationship of anticomonotonicity between the density of pricing and the
efficient contingent claim. We begin this section by introducing a formal
definition of the (anti)comonotonicity property. We then characterize the
efficient contingent claims and finally provide a method to compute the in-
efficiency size of any trading strategies.

2.1 Comonotonicity property

Definition 3 Two real-valued random variables c and h defined on the same
probability space (Ω, F, P ) are comonotonic if one of the following equivalent
conditions is satisfied

1. there exists A in F , with probability one, and such that
[
c (ω)− c

(
ω′

)] [
h (ω)− h

(
ω′

)] ≥ 0 for all
(
ω, ω′

) ∈ A×A

2One can prove that:

G = {(y, r) ∈ R+ × R− | xy + qr ≥ 0 for all (x, q) ∈ K}
Indeed, the inclusion ⊂ is straightforward. For the converse inclusion, let y ≥ 0, r ≤ 0
with xy + qr ≥ 0, for every (x, q) ∈ K. Since (x, 0) with x ≥ 0 belongs to K, necessarily
y ≥ 0, and one can find a process Y ∈ Y(y) (e.g. Y = y( dQ

dP ) for some Q ∈ M). If we
define the process Z by:

Zt =

�
Yt, t < T
0 t = T.

Z belongs to Y(y, r) and therefore (y, r) ∈ G.
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2. if P⊗2 denotes the product probability on the space
(
Ω2,F⊗2

)

P⊗2
[
[c(ω)− c(ω′)][h(ω)− h(ω′)] ≤ 0

]
= 1.

3. the cumulative distribution function F(c,h) of the pair (c, h) is given by

Fc,h (ξ1, ξ2) = min (Fc (ξ1) , Fh (ξ2)) .

In particular, if c0 and h0 are anticomonotonic (i.e. c0 and −h0 are
comonotonic) and positive random variables on (Ω,F ,P) and if we denote
by F−1

c0 and F−1
h0

the respective inverse distributions of c0 and h0. We have:

E (h0c0) =
∫ ∞

0
F−1

c0 (t)F−1
h0

(1− t)dt

and for every c, distributed as c0 :

E (h0c0) ≤ E (h0c) .

Other characterizations of comonotonic random variables can be found in
Denneberg [4]. In particular, if two random variables c and h are such that
there exists a nondecreasing function ϕ for which c can be written in the
form c = ϕ (h) (or if h can be written in the form h = ϕ (c)), then c and h
are comonotonic. In fact, c and h are comonotonic if and only if they are
nondecreasing functions of the same third random variable x, which can be
chosen to be equal to c + h (Denneberg [4], Proposition 4.5, p.54). Further-
more, when c and h are nondecreasing functions of c+h, it is clear that these
functions can be chosen to be continuous and even 1-Lipschitz. Hence c and
h are comonotonic if and only if they are continuous nondecreasing functions
of the same third random variable c+h. Finally, from a computational point
of view, a usefull property for positive comonotonic random variables c and
h is that covQ (c, h) ≥ 0 for all probability measure Q equivalent to P.

2.2 Characterization of efficient trading strategies

We are now able to state the following theorem which characterizes efficient
contingent claims.

Theorem 3 Let (x0, q0) ∈ K. A terminal wealth c0 ∈ C(x0, q0) is efficient
for the initial wealth x0, and the quantity q0 of the contingent claim f to
hedge, if and only if there exists (y0, r0) ∈ G, h0 ∈ D(y0, r0) such that
P(h0 = 0) = 0 and:

1. h0 prices c0, i.e., E (h0c0) = x0y0 + q0r0, with x0 such that c0 ∈
C(x0, q0).
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2. Random variables c0 and h0 are anticomonotonic.

3. Random variables c0 and h0 satisfy the following condition:
{

ess sup c0 < +∞ ⇒ ess inf h0 > 0
ess inf c0 > 0 ⇒ ess sup h0 < +∞ . (2.1)

Thus, a contingent claim c0 is efficient if and only if there exists a positive
linear pricing rule h0 such that c0 brings at least as much value as in cheaper
states of the world. Another message of this theorem is the existence of a
density h0 effectively pricing the net efficient consumption bundle c0, which
is not the case for every contingent claims.
We will see in the following proof that item (1) and (2) of Theorem (3) derive
directly from the existence of a saddle point for the optimization problem.
Item (3) is more technical since it is a consequence of the fact that utility
functions U ∈ U are defined on all R∗+ (and not on an interval I in R∗+).
Note that the introduction of the set D(y, r) for (y, r) helps us to take into
account the random endowment to hedge. With no random endowment, we
obtain:

Corollary 3.1 Without random endowment, a contingent claim c0 ∈ C(x0)
for x0 > 0 is efficient if and only if there exists h0 ∈ D(1) such that P(h0 =
0) = 0 and:

1. h0 prices c0, i.e., E(h0c0) = x0 with c0 ∈ C(x0).

2. Random variables c0 and h0 are anticomonotonic.

3. Random variables c0 and h0 satisfy the following condition:
{

ess sup c0 < +∞ ⇒ ess inf h0 > 0
ess inf c0 > 0 ⇒ ess sup h0 < +∞ . (2.2)

The general idea of the following demonstration is to obtain Theorem
(3) from the convex optimization problem first order conditions as in Jouini
and Kallal [14]. For this purpose we need the following duality result, the
proof of which is provided in the Appendix.

Let an economic agent be defined by its utility function U belonging
to U , an initial wealth x0 and a terminal contingent claim f to hedge in
quantity q0, with (x0, q0) ∈ K. We consider the perturbed problem:

u(x0, q0)
∆= sup

c∈C(x0,q0)
E [U(c)] . (2.3)

One can easily see that u is a concave and strictly increasing function with
respect to the initial wealth. For (y, r) ∈ G, we define the dual optimization
problem as

v(y, r) ∆= inf
h∈D(y,r)

E (V (h)) (2.4)
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where V : R+∗ 7→ R is the Legendre-transform of the function −U(−x):

V (y) ∆= sup
x>0

[U(x)− xy] . (2.5)

V is a decreasing, convex function satisfying limy→+∞ V ′
l (y) = 0, where V ′

l

is the left derivative of V . By classical duality results, the following bidual
relationship holds:

U(x) = inf
y>0

[V (y) + xy] . (2.6)

We want to prove that there is no duality gap between the primal and dual
problems. The following lemma states that the functions u and v are indeed
conjugate.

Lemma 3.1 Assume that:

u(x, q) < ∞ for some (x, q) ∈ K. (2.7)

We have:

1. K ⊂ dom(u) and the value function u and v are conjugate:

v(y, r) = sup
(x,q)∈K

[u(x, q)− xy − qr] for (y, r) ∈ G, (2.8)

u(x, q) = inf
(y,r)∈G

[v(y, r) + xy + qr] for (x, q) ∈ K. (2.9)

2. If v(y, r) < +∞, then the optimal solution ĥ ∈ D(y, r) of the problem
(2.4) exists.

We are now in a position to obtain the characterization of efficient con-
tingent claims (Theorem (3)).

Proof of Theorem 3.
We begin by proving that efficient contingent claims satisfy the properties stated
in the theorem. For a contingent claim satisfying these properties, we then study
the converse assertion by constructing a utility function such that the contingent
claim is solution of the problem of expected utility maximization.

Let us start with the direct implication. Let c0 ∈ C(x0, q0), (x0, q0) ∈ K and
suppose that c0 is strictly efficient with the utility function U . Let (y0, r0) ∈
∂u(x0, q0). Since u and v are conjuguate (see Lemma (3.1)) then:

u(x0, q0)− v(y0, r0) = x0y0 + q0r0.

In particular, v(y0, r0) < +∞. By Lemma (3.1), there exists h0 ∈ D(y0, r0) solution
of the dual problem. Besides, we have:

u(x0, q0) = E[U(c0)] ≤ E[V (h0) + h0c0]
≤ v(y0, r0) + x0y0 + q0r0.
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Thus, the above inequalities become equalities and we obtain:

c0 = argmax{c≥0}E (U(c)− h0c) , (2.10)
E (h0c0) = x0y0 + q0r0. (2.11)

We claim now that P(h0 = 0). Indeed, suppose the existence of a set A,
with P(A) 6= 0, such that (h0)|A = 0. Let c̃ = c0 + 1A. We have E (U(c̃)) >

E (U(c0)), since U is strictly increasing. Moreover, E (h0c̃)) = E (h0c0), which is in
contradiction with (2.10).

Furthermore, c0 and h0 are anticomonotonic. Indeed, with equation (2.10),
there exists A ∈ F such that P(A) = 1 and, for every ω ∈ A:

c0(ω)=argmaxx>0U(c)− h0(ω)x.

Therefore, if (ω1, ω2) ∈ A2 then:

U (c0(ω1))− U (c0(ω2)) ≥ h0(ω1) [c0(ω1)− c0(ω2)] ,
U (c0(ω2))− U (c0(ω1)) ≥ h0(ω1) [c0(ω2)− c0(ω1)] .

Therefore, if we add up the previous inequalities, we obtain:

[c0(ω2)− c0(ω1)][h0(ω2)− h0(ω1)] ≤ 0

for every (ω1, ω2) ∈ A2.
In order to conclude the proof of the first implcation, let us prove that:

ess sup c0 < +∞ ⇒ ess inf h0 > 0,

ess inf c0 > 0 ⇒ ess sup h0 < +∞.

Assume for a moment that ess sup c0 = x0 ∈ R+ < +∞ and ess inf h0 = 0. Let
xs > x0 and ε > 0 be such that ε ≤ U(xs)−U(x0)

xs−x0
, which is always possible because

U is strictly increasing. By concavity of U , for every x ≤ x0, we have:

ε ≤ U (xs)− U (x)
xs − x

.

Define then A
∆=

{
h0 ≤ ε

2

}
and c̃

∆= c01c
A +xs1A. First, note that P (A) 6= 0 because

ess inf h0 = 0. On the one hand, we obtain with the relationship (2.10):

E (U (c̃))− E (U (c0)) ≤ E (h0 (c̃− c0)) ≤ ε

2
E ((xs − c0)1A) . (2.12)

On the other hand:

E (U (c̃))− E (U (c0)) = E


(U (xs)− U (c0))1A︸ ︷︷ ︸

a.s.
≥ ε(xs−c0)1A




≥ εE ((xs − c0)1A)

which is in contradiction with (2.12) because E ((xs − c0)1A) 6= 0.
Now, suppose that ess inf c0 = x0 > 0 and ess sup h0 = +∞. Let us work to-
wards a contradiction. Let x1 be such that 0 < x1 < x0. We can choose a
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sequence (ωn){n≥1} such that h0(ωn) is increasing and limn→+∞ h0(ωn) = +∞.
Since h0(ωn) ∈ ∂U ((c0(ωn)), we have that c0(ωn) is a decreasing sequence and:

U (x1)− U (c0(ωn)) ≤ h0(ωn)(x1 − c0(ωn)) ≤ h0(ωn)(x1 − x0),

and thus by monotonicity of U(.), we have:

U (x1)− U (c0(ω1)) ≤ U (x1)− U (c0(ωn)) ≤ h0(ωn)(x1 − x0)

where the last term of this inequality goes to −∞. We conclude that U (x1) = −∞,
which is a contradiction with R∗+ ⊂ dom(U).

We turn now to the proof of the converse implication. Assume there exists
(y0, r0) ∈ R2

+, h0 ∈ D(y0, r0) and c0 ∈ C(x0, q0) which satisfy the three properties
of the theorem. Let’s build a utility function U ∈ U such that c0 is efficient for U .
Let A, with probability one, be such that for every (ω1, ω2) ∈ A2, we have:

[c0(ω1)− c0(ω2)] [h0(ω1)− h0(ω2)] ≤ 0 (2.13)

and such that, for every w ∈ A, h0(ω) ≤ ess sup h0. We define h : R+ → R+ by:

h (x) =
{

infA {h0 (ω) |c0 (ω) ≤ x}
ess sup h0

if {c0 (ω) ≤ x} 6= ∅
otherwise .

The function h satisfies the following properties.
First, h is non increasing and h(R∗+) ⊂ R∗+. Indeed, h is obviously non in-

creasing. Moreover if x < ess sup c0 then h(x) is not equal to zero. Indeed, if
h(x) = 0 then {c0 > x} ⊂ {h0 = 0}. It follows that P (h0 = 0) 6= 0, which is in
contradiction with the hypothesis. In the same way, we prove that if x > ess inf c0

then h(x) < +∞. Thus, the last equation implies that h(R∗+) ⊂ R∗+.
Second, we have h(c0) ≤ h0 and (x < c0 ⇒ h(x) ≥ h0). The first statement
follows directly from the definition of h. Suppose there exists x < c0(ω) such
that h(x) < h0(ω). Then there exists ω′ ∈ A such that c0(ω′) ≤ x < c0(ω) and
h0(ω′) < h0(ω) which is in contradiction with equation (2.13).

Let’s define the utility function U(x) ∆=
∫ x

1
h(t)dt for every x ∈ R∗+. From

the properties of h, we deduce that U is strictly increasing and concave. Let c ∈
C(x0, q0) be strictly positive. We obtain:

E (U (c))− E (U (c0)) = E




∫ c

c∗
h (t) dt

︸ ︷︷ ︸
a.s.
≤ h0(c−c0)



≤ E (h0 (c− c0)) .

Moreover, E (h0c) ≤ x0y0 + q0r0 and E (h0c0) = x0y0 + q0r0, we have:

E (U (c))− E (U (c0)) ≤ 0

which proves that c0 is efficient. ¤
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2.3 Inefficiency size

Now that we can characterize efficient and inefficient trading strategies, we
would like to evaluate the size of their inefficiency, that is, to have a measure
of how far they are from being optimal. We follow the definition of Jouini
and Kallal [14]:

Definition 4 Let (x0, q0) ∈ R2
+ and c0 ∈ X (x0, q0). For a given random

endowment f to hedge at date T , in quantity q0, the inefficiency cost of the
terminal wealth c0 ∈ Adm(q0, f) is the difference x0 − Vq0f (c0), where
Vq0f (c0) = supU∈U infc∈Adm(q0,f) {πq0f (c) | E (U(c)− U(c0)) ≥ 0} is the ”util-
ity price” of c0.

Indeed, Vq0f (c0) is the largest amount of money that is required by ra-
tional agents, with an uncertain future endowment f to hedge, in order
to get the same utility level as with the consumption bundle c0. Hence,
πq0f (c0) − Vq0f (c0) is the smallest discrepancy, across all rational agents
with future endowment f to hedge, between the cost of obtaining c0 and
the price at which it would be an optimal choice. Moreover, note that
πq0f (c0) ≥ Vq0f (c0), which means that the measure of inefficiency is always
nonnegative.
In the case of a dynamically complete market, with a unique linear pricing
rule h0, the ”utility price” coincides with the ”distributional price” intro-
duced by Dybvig [6]. Dybvig defined the distributional price of a contingent
claim c0 as the minimum cost to achieve the same distribution of consump-
tion. However, in the case of markets with frictions (with a finite number of
states of the world), where the pricing rule is defined as the supremum over
a set of linear functions, Jouini and Kallal [14] show that the distributional
price does not coincide with the utility price anymore. They prove in par-
ticular that the utility price of a contingent claim is the minimum cost over
the convex hull of random variables with the same distribution as c0.
We will now study how the results of Jouini and Kallal [14] may be extended
to our context. We are going to prove in this section the following result:

Theorem 4 For a given contingent claim f in quantity q0 to hedge, the
utility price of a consumption bundle c0 satisfies:

1.

Vq0f (c0) = min
c∈Adm(q0,f)

{πq0f (c) | E (U(c)) ≥ E (U(c0)) for all U ∈ U}
= min

c∈Adm(q0,f)
{πq0f (c) | c is a convex comb. of bundles distributed as c0}

2. Vq0f (c0) = supp∈P̃ sup (Pq0.f (c0, h)− q0p | h ∈ D(1, p)) where

Pq0f (c0, h) = min
c∈Adm(q,f)

{E(hc) | c distributed as c0)
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is the utility price of c0 in the frictionless economy defined by the linear
pricing rule h.

3. Vq0f (c0) = supp∈P suph∈D(1,p)

{∫ 1
0 F−1

c0 (y)F−1
h (1− y)dy − q0p

}
where

Fc0 (respectively Fh) is the cumulative distribution function3 of c0

(respectively of h), and F−1(.) is the quantile function, defined as
F−1(y) = min {z | F (z) ≥ y} for every y ∈ (0, 1). Moreover, if ess inf c0 =
0, the supremum over D(1, p) for p ∈ P becomes a maximum, i.e. there
exists p̃0 ∈ P̃ and h̃0 ∈ D(1, p̃0), such that:

Vq0f (c0) =
∫ 1

0
F−1

c0 (t)F−1

h̃0
(1− t)dt− q0p̃0

Result (1) says that the utility price of the net consumption bundle c0

obtained after hedging the random endowment q0f is equal to the cost of
the cheapest trading strategy leading to a net consumption bundle that is
a convex combination of random variables with the same distribution as c0.
In particular, the utility price Vq0f (c0) only depends on the distribution of
c0. Note that in the frictionless case, because the pricing π is linear, the
value

min
c∈Adm(q0,f)

{πq0f (c) | c is a convex combination of bundles distributed as c0}

is attained for a consumption bundle that has the same distribution as c0.
Hence, the utility price coincides with the minimum cost of achieving a given
distribution of net consumption. In imperfect markets, though, this mini-
mum is only attained for convex combination of consumption bundles that
have the same distribution as c0.
Result (2) states that the utility price Vq0f (c0) is the largest of the utility
prices of c0 in the underlying frictionless economies.
Note that in our general context, we must first solve problems of the exis-
tence of solutions. In particular we will show that the property ess inf c0 =
0, implying that the supremum over the set of linear pricing rules is a max-
imum, is strongly related to the proof of the existence of a dual solution
ĥ(y, r) for the dual problem v(y, r) of utility maximization. Indeed, the
proof of the existence of ĥ(y, r) uses in a crucial way the assumption that
utility functions are well defined on R∗+.
We are now going to prove this result. For this purpose we will need the
following definitions and Lemma. For c0 ∈ L1

+, a natural set we need to

3The cumulative distribution function Fc(z) of a random variable c defined on a prob-
ability space (Ω,F ,P) is the probability that the random variable c is less than or equal
to z:

Fc(z) = P (c ≤ x)
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study is the set of terminal wealth preferred by every agent whatever his or
her preferences are, and defined by:

P(c0)
∆=

{
c ∈ L1

+ | E (U(c)− U(c0)) ≥ 0 for every U ∈ U}
.

We first need to characterize the set P(c0), which is the set of contingent
claims c in L1

+ such that c º2 c0 with respect to the so-called second order
stochastic dominance. To do so, we denote by Σ0(c0) the convex hull (closed
with respect to the topology of convergence in probability) of the set of
random variables distributed as c0.

The following properties, characterize the second order stochastic dom-
inance. Second order stochastic dominance has been in particular studied
by Rothschild and Stiglitz in a couple of articles [17, 18]. Jouini and Kallal
[14] suggest another charaterization of second order stochastic dominance,
based upon Σ0(c0).

Proposition 1 (Characterization of P(c0)). Let c0 and c be two ran-
dom variables belonging to L1

+. The following statements are equivalent:

1. c ∈ P(c0),

2. c ∈ Σ0(c0) + L1
+,

3.
∫ x
0 P(c ≥ s)ds ≥ ∫ x

0 P(c0 ≥ s)ds for every x ∈ R+.

Finally, Diamond and Stiglitz [5] introduce the single-crossing property,
which is an useful criterion to prove second order stochastic dominance.

Proposition 2 Furthermore, if c1 in L1
+ is such that E(c1) = E(c0) and

such that there exists x0 ≥ 0 satisfying (single-crossing property):
{
P(c1 ≤ x) ≤ P(c0 ≤ x) for every x ≤ x0

P(c1 ≤ x) ≥ P(c0 ≤ x) for every x > x0
. (2.14)

Then c1 belongs to P(c0).

With the next Lemma (4.1) we will be able to compute the utility price
of a contingent claim as the supremum over the set of utility prices in each
frictionless economy defined with a linear pricing rule h ∈ D(1, p), for every
p ∈ P̃. Note that the following lemma states that there exists a contingent
claim preferred by every agent with a funding cost of infc∈P(c0) πq0f (c). The
proof of this Lemma is provided in the Appendix.

Lemma 4.1 Let c0 ∈ Adm(q0, f). We have :

inf
c∈P(c0)

πq0f (c) = min
c∈P (c0)

sup
p∈P

sup
h∈D(1,p)

E (hc)− q0p

= sup
p∈P

sup
h∈D(1,p)

min
c∈P(c0)

E (hc)− q0p.
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We are now in a position to compute the inefficiency size of a terminal
wealth.
Proof of Theorem 4.
We begin to study the case with a linear pricing rule; then using Lemma (4.1), we
extend the result to the general case.

Let h ∈ D(1, p) with P(h = 0) = 0. We first prove that:

sup
U∈U

inf
c∈BU (c0)

E(hc) = min
c∈P(c0)

E (hc)

with BU (c0)
∆= {c ≥ 0 | E (U(c)) ≥ E (U(c0))}. Indeed, since the probability space

is atomless, we can choose c̃ with the same distribution as c0 such that c̃ is anti-
comonotonic with h. Since c̃ ∈ P(c0), we deduce the following inequality:

sup
U∈U

inf
c∈BU (c0)

E (hc) ≤ E (hc̃) .

It could happen that c̃ and h don’t satisfy the last condition of Theorem (3), that
is:

ess sup c̃ < +∞ ⇒ ess inf h 6= 0,

ess inf c̃ > 0 ⇒ ess sup h 6= +∞.

Nevertheless, we consider for ε > 0, and x > 0 the random variables:

cx,ε = exp (−εh) c̃1{c̃≤x} +
[
c̃ +

ε

1 + h

]
1{c̃>x}.

The random variables cx,ε and h are anticomonotonic and satisfy the last con-
dition of Theorem (3). Since limx→+∞ E (cx,ε) = E (exp(−εh)c̃) < E (c̃), and

limx→0 E (cx,ε) = E
(
c̃ + ε

1+h

)
> E (c̃), one can choose x(ε), such that E

(
cε,x(ε)

)
=

E (c̃). The random variables cε,x(ε) and h satisfy the last condition of Theorem (3):
cε,x(ε) is efficient and there exists a utility function Uε ∈ U such that:

E
(
hcε,x(ε)

)
= min

c∈BUε
E (hc) .

Therefore:

inf
c∈P(cε,x(ε))

E (hc) = sup
U∈U

inf
c∈BU (cε,x(ε))

E (hc)

= inf
c∈BUε

E (hc)

= E
(
hcε,x(ε)

)
.

The random variables cε,x(ε) have been constructed in order to verify :

P
(
cε,x(ε) ≤ x

) ≥ P (c̃ ≤ x) for all x ≤ x(ε),

P
(
cε,x(ε) ≤ x

) ≥ P (c̃ ≤ x) elsewhere.

Thus, the single-crossing property implies that c̃ ∈ P(cε,x(ε)), and in consequence:

sup
U∈U

inf
c∈BU (c̃)

E (hc) ≥ sup
U∈U

inf
c∈BU (cε,x(ε))

E (hc)

= E
(
hcε,x(ε)

)
.
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Then, with the help of the dominated convergence Theorem, limε→0 E
(
hcε,x(ε)

)
=

E (hc̃), and we obtain:

sup
U∈U

inf
c∈BU (c̃)

E (hc) ≥ lim
ε→0

E(hcε,x(ε)) = E(hc̃).

We deduce that:

sup
U∈U

inf
c∈BU (c̃)

E (hc) ≥ min
c∈P(c0)

E (hc) = E (hc̃)

and therefore:
sup
U∈U

inf
c∈BU (c̃)

E (hc) = min
c∈P(c0)

E (hc) .

Let us now consider the general case. We begin with straightforward assertions.
We recall that:

Vq0f (c0) = sup
U∈U

inf
c∈BU (c0)

π(c) = sup
U∈U

sup
p∈P̃

sup
h∈D(1,p)

inf
c∈BU (c0)

E (hc))− q0p

and in consequence:

Vq0f (c0) ≥ sup
p∈P̃

sup(
h ∈ D(1, p)
P(h = 0) = 0

sup
U∈U

inf
c∈BU (c0)

E (hc))− q0p.

But applying the result of the first step, we have:

sup
p∈P̃

sup(
h ∈ D(1, p)
P(h = 0) = 0

sup
U∈U

inf
c∈BU (c0)

E (hc))−q0p = sup
p∈P̃

sup(
h ∈ D(1, p)
P(h = 0) = 0

min
c∈P(c0)

E (hc)−q0p.

Furthermore, let h∗ ∈ D(1, p∗), with P(h∗ = 0) 6= 0 for some p∗ ∈ P. If we consider
the sequence hn = 1

nh∗+ n−1
n h for some h ∈ D(1, p) , hn belongs to D(1, 1

np∗+(1−
1
n )p), and P(hn = 0) 6= 0. We have for every c ∈ P(c0), limn→+∞ E (hnc) = E (h∗c).
Thus,

inf
c∈P(c0)

E (h∗c)− q0p
∗ ≤ sup

p∈P̃
sup(

h ∈ D(1, p)
P(h = 0) = 0

min
c∈P(c0)

E (hc))− q0p

We deduce that:

sup
p∈P̃

sup(
h ∈ D(1, p)
P(h = 0) = 0

min
c∈P(c0)

E (hc))− q0p = sup
p∈P

sup
h∈D(1,p)

min
c∈P(c0)

E (hc))− q0p.

Now, we can use Lemma (4.1), and obtain the following inequality:

Vq0f (c0) ≥ min
c∈P(c0)

sup
p∈P̃

sup
h∈D(1,p)

E (hc)− q0p.

The other inequality is straightforward and we conclude that:

Vq0f (c0) = min
c∈P(c0)

πq0f (c)

= sup
p∈P̃

sup
h∈D(1,p)

min
c∈P(c0)

E (hc)− q0p.
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It remains to prove that the infinimum is attained as soon as ess inf c0 = 0.
Let us finally prove that suprema are maxima as soon as ess inf c0 = 0. Indeed,

choose pn ∈ P, and hn ∈ D(1, pn) such that:

Vq0f (c0) = lim
n→+∞

∫ 1

0

F−1hn(t)F−1
c0

(1− t)dt− qopn.

With the help of Komlos Theorem, one can find a maximizing sequence (pn, hn),
with pn → p0 and hn ∈ D(1, pn) such that hn → h0 with h0 ∈ D(1, p0).
Let’s prove:

lim
n→+∞

∫ 1

0

F−1
hn

(t)F−1
c0

(1− t)dt− q0pn =
∫ 1

0

F−1
h0

(t)F−1
c0

(1− t)dt− q0p0.

Indeed, let ε > 0 and, since inf ess c0 = 0, let t0 be such that F−1
c0

(t) < ε if t ≤ t0.
Then

∫ t0
0

F−1
c0

(t)F−1
hn

(1− t)dt < ε. Moreover, for every t ≥ t0:

F−1
hn

(1− t) ≤ F−1
hn

(1− a0) ≤
∫ 1

0
F−1

hn
(1− t)dt

a0
=

1
a0

.

Then, with the dominated convergence Theorem, we obtain the existence of n such
that for every n ≥ n0, |

∫ 1

a0

[
F−1

hn
(1− t)− F−1

h0
(1− t)

]
F−1

c0
(t)dt| ≤ ε and the result

follows. Therefore, the theorem is proved. ¤

3 Applications

In this section we provide several applications of the results of the previ-
ous sections. First, we prove that the superreplication strategies that are
known to be too expensive in the presence of market frictions have a zero-
inefficiency size. Roughly speaking, this means that it is always possible to
find individuals that are willing to adopt strategies arbitrarily close to the
superreplication one. As in Dybvig [6] or Jouini and Kallal [14], we also
provide applications of our results for performance measurement.

3.1 Trading strategies with no inefficiency size

In this paragraph, we study the strategies with no inefficiency size. An
efficient trading strategy has obviously no inefficiency size, but the converse
is not true in general. We would like now to have a simple characterization
of strategies with no efficiency cost. We begin with the following lemma,
which states that one can study only the class of random variables c such
that ess inf c = 0:

Lemma 5.1 Let c0 be a consumption bundle with no inefficiency size, and
x0 its price. Let b0 be a cash endowment, i.e. a constant random variable.
Then the contingent claim c0 + b0 has no inefficiency size for the initial
portfolio x0 + b0.
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Proof of Lemma 5.1.
Indeed, suppose that c0 + b0 has an inefficiency size. From Theorem (4), there
exists a strategy which leads to the consumption bundle c̃ belonging to the closed
convex set of random vectors distributed as c0 + b0 from an initial portfolio x̃, with
x̃ < x0 + b0. Let c̃1 = c̃ − b0. The random variable c̃ belongs to the set Σ0(c0),
and is attainable from the initial portfolio x̃− b0. This implies in particular that c0

is inefficient with respect to the initial portfolio x0, which is a contradiction, and
concludes the proof. ¤

In a context of financial markets with a finite number of states one can
see that efficient consumption bundles are stable with the addition of a
constant (see Jouini and Kallal [14]). Note that, in our framework, this is
not the case anymore, because of the last properties of Theorem (3).
One can furthermore obtain the following characterization for the contingent
claims with no inefficiency size.

Theorem 5 For a random endowment f , in quantity q0, a consumption
bundle c0 ∈ Adm(q0, f), s.t. ess inf c = 0 has no inefficiency size if and
only if there exists p0 ∈ D(1, p) and h0 ∈ D(1, p), which satisfies:

1. E(h0c)− q0p0 = πq0f (c)

2. the random variables h0 and c0 are anticomonotonic.

Proof of Theorem 5.
Suppose that c0 ∈ Adm(q0, f) verifies the properties of Theorem (5). We have:

πq0f (c) = E (h0c0)− q0p0 =
∫ 1

0

F−1
h0

(t)F−1
c0

(1− t)dt− q0p0.

Moreover, for all h ∈ D(1, p) and p ∈ P, we have the following result:

πq0f (c0) = E (h0c0)− q0p0 ≥ E (hc0)− q0p ≥
∫ 1

0

F−1
h (t)F−1

c0
(1− t)dt− q0p

and therefore, with the last theorem, there is no inefficiency cost for c0. ¤

Note that, in this theorem, the random variable of pricing h0 is not
necessarily strictly positive as it was the case for the characterization of
strictly efficient consumption bundles. Let us give now two applications of
the above result, first in the case of no consumption bundle to hedge, and
then for the superreplication strategy.

Corollary 5.1 A contingent claim with ess inf c = 0 has no inefficiency
cost if and only if there exists h ∈ D(1), which satisfies:
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1. E (hc) = π(c)

2. c and h are anticomonotonic.

This corollary is an immediate consequence of the last theorem. Another
corollary quite interesting, is that superreplication strategies have a zero-
inefficiency size:

Corollary 5.2 Let f be a contingent claim with f ≤ 0. The superreplication
strategy of the contingent claim f has no inefficiency size.

Proof of Corollary 5.2.
Indeed, let X ∈ X (x̂) be the superreplication strategy of the contingent claim f , x̂
being the initial value of this strategy. Note that the random variable 0 belongs to
the set D(1, 1), is anticomonotonic with XT + f , and satisfies:

E (0(XT − f)) = 0 = x̂− x̂.

Applying Theorem (5) gives the corollary. ¤.

As Jouini and Kallal [14] already stressed, note that the superreplication
strategies of the contingent claim f are not necessarily replicating ones.
Nevertheless, they always have a zero inefficiency size.

3.2 Performance measure

In this paragraph, we apply the results of the previous sections to the mea-
sure of performance. As in Dybvig [6] or Jouini and Kallal [14], we follow
the tradition of comparing some investment strategy and its distribution of
payoffs to the alternative of trading in a given securities market: the bench-
mark market. Since we do not assume that the market is frictionless, we
have to take into account the uncertain future endowment because invest-
ment and hedging decisions can no longer be separated.
Given an uncertain future endowment f in quantity q0, an investment strat-
egy is evaluated on the basis of the distribution Fc of its net payoff c, where
c might depend on information not available to the agents (but only to the
portfolio manager), allowing for information-trading and private investments
outside the benchmark market. The benchmark market is described by the
set M of supermartingales measures of pricing that summarize the invest-
ment opportunities that are available. For utility pricing, by Theorem (4),
the relevant characteristic of the benchmark market is the set of cumulative
distribution functions of the random variables belonging to

⋃
p∈P D(1, p).

We then obtain the following result.
Suppose that an investment strategy leads from an initial wealth ω0 to a

cumulative net distribution of payoffs Fc0 , with the hedging of a random en-
dowment f in quantity q0 with c ∈ L1. Let Vq0,f (c0) = supp∈P suph∈D(1,p){

∫ 1
0 F−1

c (t)F−1
h (1−

t)dt− q0p. Then,
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1. if ω0 < Vq0f (c0), then there is superior performance, i.e. there exists
a rational agent with concave and strictly increasing von Neumann-
Morgenstern preferences who prefers receiving the net distribution of
payoffs Fc0 to trading in the benchmark market. Moreover, the largest
amount such that a rational agent would pay to switch is Vq0f (c0) −
ω0 > 0.

2. if ω0 = Vq0,f (c0), then there is ordinary performance, i.e., every ratio-
nal agent with concave and strictly increasing von Neumann-Morgenstern
preferences weakly prefers trading in the benchmark market to receiv-
ing the distribution of payoffs Fc0 . However, the lowest amount such
that a rational agent would pay to switch is equal to zero.

3. If ω0 > Vq0f (c0), then there is inferior performance, i.e., every rational
agent with concave and strictly increasing von Neumann-Morgenstern
preferences strictly prefers trading in the benchmark market to receiv-
ing the distribution of payoffs Fc0 . Moreover, the lowest amount such
that a rational agent would pay to switch is ω0 − Vq0f (c).

Hence, by comparing the initial investment required by an investment
strategy to the utility price of the distribution of its payoff we can evaluate
its performance. If the utility price is lower than the initial investment, the
portfolio is not well diversified and is underperforming. If the utility price is
equal to the initial investment, the portfolio is well diversified and it is per-
forming as it should. If the utility price is larger than the initial investment,
the manager has superior ability and/or information and/or is subject to
lower transaction costs, and the portfolio is overperforming.
This result gives an alternative to the Security Market Line (SML) in mea-
suring portfolio performance. As opposed to the standard SML analysis,
this alternative gives a correct evaluation even when a superior performance
is due to private information. Indeed, the SML is based on mean-variance
analysis, and even securities are assumed to be jointly normally distributed,
they will typically not be normal once conditioned on information.

A Appendix

Duality results and proof of Lemma (3.1)

In this section, we prove duality results leading to Theorem (2) and Theo-
rem (3.1). We first establish a bipolar relationship between the sets C(x, q)
and D(y, r), giving us immediately Lemma (2). We then use a uniform inte-
grability property in order to obtain the existence of a solution for the dual
problem.
The following result, proved in the context of incomplete market by Hugonnier
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and Kramkov [10], is the necessary extension of the bipolar relationship be-
tween C(x) and D(y) to the case of expected utility maximization problem
with an uncertain future random endowment at date T .

Proposition 3 1. Let (x, q) ∈ K and c ≥ 0. The random variable c
belongs to C(x, q) if and only if:

E [hc] ≤ xy + qr for every (y, r) ∈ G and h ∈ D(y, r). (A.15)

2. Let (y, r) ∈ G and h ≥ 0. The random variable h belongs to D(y, r) if
and only if:

E [hc] ≤ xy + qr for every (x, q) ∈ K and c ∈ C(x, q). (A.16)

Proof of Proposition 3..
We begin with a closure property of the sets D(y) and D(y, r). Then we prove
respectively the first and second assertions of Proposition (3).

Let us first characterize the closure of D(y) and D(y, r). Let (y, r) ∈ G. The
sets D(y, r) and D(y) are closed for the topology of convergence in measure. We
establish the result for D(y, r). Indeed, let hn ∈ D(y, r) be a sequence which
converges almost surely to a random variable h. First, we have by Fatou’s Lemma,
E (h(XT + qf)) ≤ xy + qr for every X ∈ X (x, q). By definition of D(y, r), there
exists a sequence of supermartingales Y n belonging to Y(y, r) such that Y n

T ≥ hn.
Following Lemma 5.2 from Föllmer and Kramkov [8], there exists a sequence Ỹ n ∈
conv{Y n, Y n+1, ...}, n ≥ 1, and a supermartingale with Y0 ≤ y such that Ỹ n is
Fatou-convergent to Y on a dense countable set τ of [0, T ]. Using Fatou Lemma, it
is easy to see that Y X is a supermartingale for each X ∈ X (x). Moreover, YT ≥ h
and if we define:

Zt =
{

Yt, if t < T
h t = T

.

Then Z ∈ Y(y, r), and thus h ∈ D(y, r).

Let us now prove the first assertion. Suppose that c
a.s.≥ 0 and such that for

every (y, r) ∈ G and h ∈ D(y, r), we have:

E [hc] ≤ xy + qr for some (x, q) ∈ K

Let us prove that c belongs to C(x, q). Let p belong to P̃ , and define the set
M(p) ⊂ M of measures Q ∈ M such that EQ [f ] = p. We have obviously M ⊂
Y (1). Furthermore, if hT

∆= dQ
dP , for some Q ∈M(p), and X ∈ X (x), we have:

E (hT (XT + qf)) = E(hT XT ) + qp ≤ x + qp.

Thus, hT ∈ D(1, p) and:

EQ(c− qf) ≤ x + qp− qp = x

for every Q ∈ M(p) and p ∈ P. With the help of the superreplication Theorem
(see Proposition 4.1 in Föllmer and Kramkov [8]), there exists a superreplication
strategy of c− qf in X (x) , i.e. c ∈ C(x, q), and the first assertion is proved.
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We turn now to the second assertion. Let h0 ≥ 0, (y0, r0) ∈ G, and suppose
that

E(h0c) ≤ xy0 + qr0

for every (x, q) ∈ K and c ∈ C(x, q). We want to prove that h0 ∈ D(y0, r0).
If y0 = 0, since r0 ≤ 0, necessarily r0 = 0; Thus h0 = 0, which belongs to D(0, 0).
Now, let assume that y0 6= 0. By the superreplication Theorem, the following
property holds:

c ∈ C(1, 0) if and only if E (hc) ≤ y0 for every h ∈ D(y0).

Thus, applying the bipolar Theorem (see Brannath and Schachermayer [1]), since
D(y) is closed with respect to the topology of probability convergence, we have :

h ∈ D(y0) if and only if E (hc) ≤ y0 for every c ∈ C(1, 0)

which is the case for h0 and thus h0 ∈ D(y0). Therefore, there exists Y ∈ Y(y)

such that YT

a.s.≥ h0, and, in the same way as in the proof of the closure of D(y, r)),
we define a new process Z by:

Zt =
{

Yt, if t < T
h0 t = T .

Then Z belongs to Y(y, r) and thus, finally, h0 belongs to D(y, r). ¤

A straightforward application of this result is Theorem (2).
We shall need now the following result of uniform integrability. This prop-
erty, already proved in Kramkov and Schachermayer [16] is a key result to
obtain the existence of a solution to the dual problem.

Lemma A.1 Let (y, r) ∈ G. The family of random variables V (h)−h∈D(y,r)
is uniformly integrable.

We are now in a position to prove Lemma (3.1). We follow the sketch
of the proof of Lemma (3.6) in Kramkov and Schachermayer [16]. We first
restrict our study to the case of terminal wealth bounded by a positive
integer n in order to apply a minimax theorem. Then, using the uniform
integrability of the family V (h)−h∈D(y,r) for (y, r) ∈ G, we let n go to infinity
and we prove the existence of the solution of the dual problem as well as the
conjugate relationship between the functions u and v.
Proof of Lemma (3.1).
We prove first that:

v(y, r) = sup
(x,q)∈K

[u(x, q)− xy − qr] for (y, r) ∈ G, (A.17)

and the fact that the optimal solution ĥ ∈ D(y, r) of (2.4) exists as soon as v(y, r) <
+∞.
First, we put aside the case (y, r) = (0, 0). Indeed, since only 0 belongs to D(0, 0),
we have v(0, 0) = supx>0 U(x) = sup(x,q)∈K u(x, q) and the result is therefore trivial.
Now, let (y0, r0) ∈ G \ {(0, 0)}. Consider the set C⊥(y0, r0) defined as follows:

C⊥(y0, r0)
∆= {c ∈ C(x, q), for (x, q) ∈ K such that xy0 + qr0 ≤ 1} .
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We define, for n > 0, the set Bn of L∞ by Bn
∆= {g | 0 ≤ |g| ≤ n}. The set Bn is

σ(L∞, L1)-compact and D(y0, r0) is a closed-convex subset of L1. Furthermore, the
function fn defined on D(y0, r0)× Bn by:

fn(h, c) ∆= E [U(c)− ch]

is obviously concave with respect to c, linear and continuous with respect to h in
the space L1. One can therefore apply the minimax Theorem, stated in Strasser
(Theorem 45.8 p. 239, in [19]), and we obtain:

sup
c∈Bn

inf
h∈D(y0,r0)

fn(h, c) = inf
h∈D(y0,r0)

sup
c∈Bn

fn(h, c). (A.18)

Now, let’s study the convergence of both right and left sides of this equation, letting
n goes to infinity.
For the left side, one deduce first easily from the definition of D(y0, r0) and
C⊥(y0, r0) that h ∈ D(y0, r0) if and only if

E [hc] ≤ 1 for every c ∈ C⊥(y0, r0).

Thus, from the bipolar Theorem (see Brannath and Schachermayer [1]), the random
variable c belongs to the closure C̃⊥(y0, r0) of C⊥(y0, r0) if and only if:

sup
h∈D(y0,r0)

E (hc) ≤ 1.

We deduce that:

sup
c∈Bn

inf
h∈D⊥(y0,r0)

E [U(c)− ch] = sup
z>0

sup
c∈Bn∩zC̃⊥(y0,r0)

E [U(c)− z] .

Applying Lemma (11) from Hugonnier and Kramkov [10], we have:

sup
c∈Bn∩zC̃⊥(y0,r0)

inf
h∈D⊥(y0,r0)

E [U(c)− z] = sup
c∈Bn∩zC⊥(y0,r0)

E [U(c)− z] .

Thus:

lim
n→+∞

sup
c∈Bn

inf
h∈D⊥(y0,r0)

E [U(c)− ch] = sup
z>0

{
sup

c∈C⊥(y0,r0)

E (U(zc))− z

}

= sup
(x,q)∈K

u(x, q)− xy0 − qr0.

Now, for the right side of the equation, if we define Vn(y) = sup0<x≤n U(x)− xy,
we have:

inf
h∈D(y0,r0)

sup
c∈Bn

E [U(c)− ch] = inf
h∈D(y0,r0)

E[Vn(h)) ∆= vn(y0, r0).

Consequently, since we have, by the convergence of the left side of the equation
(A.18):

lim
n→+∞

vn(y0, r0) = sup
(x,q)∈K

u(x, q)− xy0 − qr0
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it is sufficient to prove that limn→+∞ vn(y0, r0) = v(y0, r0). Obviously, we have
vn ≤ v. Let (hn)n≥1 be a sequence in D(y0, r0) such that:

lim
n→+∞

E [Vn(hn)] = lim
n→+∞

vn(y0, r0).

Since the set D(y0, r0) is bounded in L1, we can apply Komlòs Lemma (see Hall
and Heyde [9]) and find a sequence gn ∈ conv(hn, hn+1, ...), hn ∈ D(y0, r0), which
converges almost surely to a random vector ĥ. The sequence gn and the limit
ĥ belong to D(y0, r0) by closure of D(y0, r0) with respect to the convergence in
probability topology. Furthermore, from the convexity of Vn, we have:

E [Vn(gn)] ≤ sup
m≥n

E [Vn(hm)] ≤ sup
m≥n

E [Vm(hm)]

where the last inequality holds because of the increasing of the sequence Vn(.).
Moreover, the family Vn(gn)− is uniformly integrable. Indeed, we can choose y0 > 0
such that there exists x0 < 1 with x0 ∈ ∂V (y0). We have then ∂V (y0) = ∂Vn(y0) =
∂V1(y0) and ∂Vn(y) = ∂V (y) as soon as y > y0, i.e. Vn(y) = V (y) as soon as
y > y0. We deduce then that:

Vn(gn)− ≤ V (gn)− + V (y0)−.

The property of uniform integrability of the family Vn(gn)− comes then from the
one of (V (gn))− (see Lemma (A.1)).
This leads to the following inequalities, with Fatou’s Lemma:

lim
n→+∞

E [Vn(hn)] ≥ lim inf
n→+∞

E [Vn(gn)] ≥ E
[
V (ĥ)

]
≥ v(y0, r0)

which proves the equality (A.17), and the fact that if v(y0, r0) < +∞, ĥ is solution
to the dual problem.

It only remains to prove that:

u(x, q) = inf
(y,r)∈G

[v(y, r) + xy + qr] for (x, q) ∈ K.

This equation is obtained by usual theory of conjugate functions, since K is an
open set belonging to the domain of u. ¤

A.1 Proof of Lemma (4.1).

Proof of Lemma 4.1.
One can first remark that the following inequality is straightforward, for c ∈ P(c0):

inf
c∈P(c0)

sup
p∈P̃

sup
h∈D(1,p)

E (hc)− q0p ≥ sup
p∈P̃

sup
h∈D(1,p)

inf
c∈P(c0)

E (hc)− q0p.

Thus, we just need to prove the converse inequality in order to obtain the result.
The sketch of the proof is as follows. We use the same scheme as in the proof of du-
ality results for the utility maximization problem. We begin with a remark an then
study bounded random variables with some integer n, finally letting n go to infinity.
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Remark A.1 To verify that a terminal wealth c ∈ L1
+ belongs to the set P(c0),

we could restrict our study to bounded and twice continuous differentiable utility
functions. Indeed, one can always find a sequence of utility functions Un ∈ U ∩
C2

b (R∗+,R), such that |Un(x)| is non decreasing and such that limn→+∞ Un(x) =
U(x). Then, the theorem of dominated convergence implies that if E (Un(c)) ≥
E (Un(c0)), then E (U(c)) ≥ E (U(c0)).

With this remark, note that it is straightforward to see that P(c0) is closed with
respect to the topology of convergence in measure. For each p ∈ P̃, we denote
by Dn(1, p) the set D(1, p) ∩ {h | 0 ≤ h ≤ n} The sets Dn(1, p) are weak convex
compact subsets of L1. Moreover with the theorem of dominated convergence,
(h, p) → E (hc)− q0p is continuous. By the same minimax Theorem (Strasser [19])
as the one applied in the proof of Theorem (3), we obtain:

sup
p∈P̃

sup
h∈Dn(1,p)

inf
c∈P(c0)

E (hc)− q0p = inf
c∈P(c0)

sup
p∈P̃

sup
h∈Dn(1,p)

E (hc)− q0p. (A.19)

Now, let n go to infinity and study the convergence of both sides of the equation
(A.19). To do so, we define the function πn as

πn(c) ∆= sup
p∈P̃

sup
h∈Dn(1,p)

E(hc)− q0p.

The equation (A.19) implies in particular that:

lim
n→+∞

inf
c∈P(c0)

πn(c) = lim
n→+∞

sup
p∈P̃

sup
h∈Dn(1,p)

inf
c∈P(c0)

E (hc)− q0p

≤ sup
p∈P̃

sup
h∈Dn(1,p)

inf
c∈P(c0)

E (hc)− q0p.

Note that, for every random variable c ∈ P(c0), we can always find a random
variable c̃ ∈ Σ(c0) with c̃ ≤ c (Theorem (1)). Thus, we can choose a sequence
cn ∈ Σ(c0) such that

lim
n→+∞

inf
c∈P(c0)

πn(c) = lim
n→+∞

πn (cn) .

Since E(cn) = E(c0) (indeed cn ∈ Σ(c0)), one can apply the Komlos Theorem, and
find a sequence c̃n ∈ conv {cn, cn+1, cn+2, ...} such that c̃n → c̃ almost surely. Since
Σ(c0) is closed with respect to the topology of convergence in measure, the sequence
c̃n and its limit c̃ belong to the set Σ(c0). We obtain:

πn(c̃n) ≤ sup
m≤n

πn(cm)

≤ sup
m≤n

πm(cm)

where the first inequality is obtained since πn is convex, and the second one by
monotonicity of the sequence πn. Moreover:

πn(c̃n) ≥ inf
k≥n

πn(c̃k) ≥ sup
p∈P̃

sup
h∈Dn(1,p)

inf
k≥n

E (hc̃k)− q0p

≥ sup
p∈P̃

sup
h∈Dn(1,p)

E
(

inf
k≥n

hc̃k

)
− q0p = πn

(
inf
k≥n

hc̃k

)
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where the two first inequalities are straightforward and the third one is deduced
from Fatou’s Lemma. Finally, the theorem of monotone convergence gives:

lim
n→+∞

πn(cn) ≥ lim
n→+∞

πn

(
inf
k≥n

c̃k

)

= sup
p∈P̃

sup
h∈D(1,p)

E (hc̃)− q0p.

Thus, using equation (A.20), we obtain:

sup
p∈P̃

sup
h∈D(1,p)

inf
c∈P(c0)

E (hc)− q0p ≥ lim
n→+∞

πn(cn)

≥ sup
p∈P̃

sup
h∈D(1,p)

E (hc̃)− q0p.

As c̃ ∈ P(c0), we conclude that:

min
c∈P(c0)

sup
p∈P̃

sup
h∈D(1,p)

E (hc)− q0p ≤ sup
p∈P̃

sup
h∈D(1,p)

inf
c∈P(c0)

E (hc)− q0p.

The other inequality is straightforward and the result is proved. ¤
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