
 

 
Optimal Auditing with Scoring Theory and Application  

to Insurance Fraud 
 
 
 

Georges Dionne 
Florence Giuliano 

Pierre Picard 
 
 
 

 
November 2005 

 
 

Cahier n° 2005-037 
 

 

 

ECOLE POLYTECHNIQUE 
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 

 

LABORATOIRE D'ECONOMETRIE 
1rue Descartes F-75005 Paris 

(33) 1 55558215 
 http://ceco.polytechnique.fr/  

mailto:labecox@poly.polytechnique.fr 
 

ha
l-0

02
43

02
6,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08

http://hal.archives-ouvertes.fr/hal-00243026/fr/
http://hal.archives-ouvertes.fr


 

 
Optimal Auditing with Scoring Theory and Application to 

Insurance Fraud 
 
 

Georges Dionne1 
Florence Giuliano2 

Pierre Picard3 
 
 
 

November 2005 
 
 

Cahier n° 2005-037 
 

Résumé: Cet article établit une liaison entre la théorie de l'audit optimal et la méthodologie du scoring dans un contexte 
d'asymétrie d'information. L'application retenue concerne la fraude à l'assurance, mais la même approche peut 
être appliquée à d'autres activités qui utilisent le scoring. Nous montrons que la stratégie et l'audit optimal 
consistent à transmettre les demandes d'indemnité à une cellule antifraude lorsque certains indicateurs de 
fraude sont observés. Les indicateurs de fraude sont classés en fonction d'une probabilité de fraude croissante. 
Une telle stratégie demeure optimale lorsque la politique d'enquête est budgétairement contrainte. De plus, la 
politique d'audit agit comme un mécanisme de dissuasion et nous expliquons pourquoi elle nécessite un 
engagement de l'assureur et comment elle devrait affecter les incitations financières du personnel de la cellule 
antifraude. Le modèle est calibré avec les données d'un grand assureur européen. Nous calculons une valeur 
critique d'un indice de suspicion de fraude qui fournit un seuil au delà duquel toutes les demandes d'indemnité 
doivent être soumises à audit et nous évaluons le gain potentiel qui pourrait être dérivé de la politique d'audit 
optimal. Nous montrons qu'il est possible d'améliorer ces résultats en séparant différents groupes d'assurés 
avec des coûts psychologiques de fraude différents. Enfin nos résultats montrent comment l'effet de dissuasion 
peut être pris en compte et comment il affecte la stratégie optimale d'audit.  

 
Abstract: This article makes a bridge between the theory of optimal auditing and the scoring methodology in an 

asymmetric information setting. Our application is meant for asurance claims fraud, but it can be applied to 
many other activities that use the scoring approach. We show that the optimal auditing strategy takes the form 
of a "Red Flags Strategy" which consists in referring claims to a Special Investigative unit (SIU) when certain 
fraud indicators are observed. Fraud indicators are classified based on the degree to which they reveal an 
increasing probability of fraud. This strategy remains optimal even when the investigation policy is budget 
constrained. Moreover, the auditing policy acts as a deterrence device and we explain why it requires the 
commitment of the insurer and how it should affect the incentives of SIU staffs. the models is calibrated with 
data from a large European insurance company. We compute a critical suspicion index for fraud, providing a 
threshold above which all claims must be audited and we estimate the potential gain that could be derived 
from the optimal auditing policy. We show that it is possible to improve these results by separating different 
groups of insureds with different moral costs of fraud. Finally, our results indicate how the deterrence effect of 
the audit scheme can be taken into account and how it affects the optimal auditing strategy. 

 
Mots clés : Audit, scoring, Fraude à l'assurance, Stratégie d'indicateurs, Indicateurs de fraude, Indice de suspicion, Coût 

moral de la fraude, Effet de dissasion. 
 
Key Words : Audit, scoring fraud, Red flags strategy, Fraud indicators, Suspicion index, Moral cost of fraud, Deterrence 

effect. 
 

Classification JEL: D81, G14, G22 

 
 

                                                           
1 HEC Montréal. 
2 Université Paris X. 
3 Ecole Polytechnique et HEC School of Management. 

ha
l-0

02
43

02
6,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



 
Optimal Auditing with Scoring: 

Theory and Application to Insurance Fraud 
 

Georges Dionne, Florence Giuliano and Pierre Picard 
 

This version: November 8, 2005 
 

 
 
 
Abstract 
 

This article makes a bridge between the theory of optimal auditing and the 

scoring methodology in an asymmetric information setting. Our application is meant 

for insurance claims fraud, but it can be applied to many other activities that use the 

scoring approach. We show that the optimal auditing strategy takes the form of a “Red 

Flags Strategy” which consists in referring claims to a Special Investigative Unit 

(SIU) when certain fraud indicators are observed. Fraud indicators are classified based 

on the degree to which they reveal an increasing probability of fraud. This strategy 

remains optimal even when the investigation policy is budget constrained. Moreover, 

the auditing policy acts as a deterrence device and we explain why it requires the 

commitment of the insurer and how it should affect the incentives of SIU staffs. The 

model is calibrated with data from a large European insurance company. We compute 

a critical suspicion index for fraud, providing a threshold above which all claims must 

be audited and we estimate the potential gain that could be derived from the optimal 

auditing policy. We show that it is possible to improve these results by separating 

different groups of insureds with different moral costs of fraud. Finally, our results 

indicate how the deterrence effect of the audit scheme can be taken into account and 

how it affects the optimal auditing strategy. 
 

Keywords: Audit, scoring, insurance fraud, red flags strategy, fraud indicators, 
suspicion index, moral cost of fraud, deterrence effect. 

 

JEL numbers: D81, G14, G22. 
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1. Introduction 
 

Auditing has been a major topic of interest in the economic and financial 

literature since the path-breaking articles published by Townsend (1979) and Gale and 

Hellwig (1985). It is indeed widely accepted that the prevalence of auditing arises 

from the informational asymmetries between principals (bankers, insurers, regulators, 

tax inspectors…) and agents (borrowers, insureds, regulated firms, tax payers…), 

asymmetries which lead to implement costly state-verification strategies. The trade-

off between monitoring costs and mitigating informational asymmetries between 

principal and agent is in fact the core of the economic analysis of auditing. 

On the empirical side, the importance of auditing in corporations, financial 

institutions or governmental agencies has given rise to serious analysis of the design 

of optimal auditing procedures (e.g. Should auditing be internal or external? How 

should auditors be rewarded? How can collusion between auditors and those audited 

be avoided? How frequent should auditing be?…) and has motivated firms and 

governments to search for relevant information on ways to cut auditing costs. 

Nowadays, the search for optimal auditing procedures is a major concern for a 

number of players: banks and insurance companies seeking better risk assessment of 

their customers; prudential regulators of the banking and insurance industries; 

governments pursuing better compliance by taxpayers; and regulatory agencies in the 

field of environmental law, food safety or working conditions.  

On the theoretical side, many extensions of the basic models have been proposed. 

In particular, Townsend (1988) and Mookherjee and Png (1989) have shown that 

random auditing dominates deterministic models. Among many other issues, the 

effect of collusion between auditees and auditors (e.g. between a tax inspector and a 
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 2

tax payer or between a manager and an internal auditor) or between auditees and third 

parties (such as a health care provider in the case of an insurance claim) has received 

special attention (Kofman and Lawarrée, 1993). The consequences of commitment vs. 

no-commitment assumptions in an auditing procedure have also been examined with 

the analytical tools of modern incentives theory (Graetz, Reinganum and Wilde, 1986; 

Melumad and Mookherjee, 1989). 

In such an asymmetric information setting, it is in the interest of principals to use 

signals on agents’ types or actions when deciding whether a costly verification should 

be performed. Scoring techniques are then most useful since they help to identify 

suspicious files to be audited as a priority by associating scores — i.e. numerical 

valuations — to an unobservable default risk, expected profitability or residual value. 

It is now widely used by banks in credit-risk management1, by corporations in hiring 

decisions, by tax authorities in tracking tax compliance, by insurers in detecting 

claims fraud and even by police officers in airport passengers screening procedures2.  

Although scoring and auditing are complementary ways to reduce the asymmetry 

of information between principals and agents, almost all theoretical approaches have 

completely ignored the role od scoring techniques in the design of an optimal auditing 

strategy3. This paper tries to fill this gap by bringing together auditing and scoring 

within a unified costly state verification approach and by applying the model to 

insurance claim fraud. In doing so, we shall build a model of optimal auditing which 

is much more closely related to auditing procedures actually used by insurers (or other 

principals) than abstract auditing models. Scoring will signal whether an audit should 

be performed or not, depending on the signals perceived by the insurer: This will be 

called a red flags strategy. In fact, we shall build a model where the optimal auditing 

strategy actually takes the form of such a red flags strategy. Though designed to audit 

insurance claims, it will appear clearly that our approach can be used for many other 

activities that apply the scoring techniques. 

Insurance fraud provides a fascinating case study for the theory of optimal 

auditing, and particularly for connecting the scoring methodology with the theory of 
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 3

optimal costly state verification. In recent years, the economic analysis of insurance 

fraud has developed along two branches. The first branch is mostly theoretical and its 

foundations may be found in the theory of optimal auditing. It aims at analyzing the 

strategy adopted by insurers faced with claims or application fraud.4 This approach 

focuses mainly on questions such as: What should be the frequency of claim auditing 

and how do opportunistic policyholders react to the auditing strategy? What are the 

consequences of potential fraud on the design of insurance contracts, especially with 

regard to the indemnity schedule? What is the deterrence effect of an auditing policy? 

What is the role of good faith when insurance applicants may misrepresent their risk? 

The most usual setting for this literature is a costly state-verification model in which 

insureds have private information about their losses and insurers can verify claims by 

incurring an audit cost. Important assumptions are made relative to the ability of 

insurers to commit to an auditing policy and to the skill of defrauders in manipulating 

audit costs, i.e. to make the verification of claims more difficult.5 

The second branch of the literature on insurance fraud is more statistically based: 

It focuses mainly on the significance of fraud in insurance portfolios, on the practical 

issue of how insurance fraud can be detected, and on the scope of automated detection 

mechanisms in lowering the cost of fraudulent claims.6 The scoring methodology is 

one of the key ingredients in this statistical approach. Two of the key questions in this 

literature are: How do insurers actually react to fraud indicators (the so-called red 

flags) and how can automated early detection of fraud be performed by relying on 

fraud scores. As shown by Derrig (2002) and Tennyson and Salsas-Forn (2002), when 

there is suspicion of fraud, claims are usually handled with a two-stage procedure: 

After careful examinations, the claim is either paid under routine settlement or 

subjected to more intensive investigation. This investigation may take different forms: 

referral to a Special Investigative Unit (SIU), request for recorded or sworn statements 

from the claimant, the policyholder or a witness to the accident, on site investigation, 

etc. Furthermore, the reaction to red flags may vary depending on the particulars of 

policyholders. Developing automated methods (via the scoring approach) capable of 
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 4

using the informational content of red flags as efficiently as possible is currently the 

subject of intense research by some insurance companies, particularly in the 

automobile insurance sector. 

Our approach reconciles an important result of optimal audit theory with the 

widespread practice of insurance companies. Indeed, on one hand, theory predicts that 

an optimal auditing strategy should be random. In other words, claims should be 

audited with probability less than one. Indeed, filing fraudulent claims is a strictly 

dominated strategy for opportunistic policyholders if claims are always audited 

(assuming that audit allows the insurer to detect fraud with certainty). In such a case, 

slightly decreasing the audit probability would allow insurers to reduce their audit 

costs without inciting policyholders to fraud. On the other hand, factual evidence 

suggests that insurers tend to systematically audit certain claims and to directly pay 

the other ones, depending on the available information on policyholders’ and on the 

perceived red flags. Our model will show that such a red flag strategy is in fact the 

key ingredient of a random auditing strategy, when individuals cannot control the 

fraud signals perceived by the insurers. From the insurers’ standpoint, the auditing 

strategy is deterministic (the optimal audit decision is actually a non-random function 

of red flags) but it is random for the policyholders. 

We will also derive some consequences of our results for the implementation of 

the optimal auditing strategy. Firstly, it will be shown that such a strategy requires a 

strong commitment from insurance companies. More explicitly, the optimal strategy 

does not amount to perform an audit if and only if the expected benefits of auditing 

(i.e. the expected  value of possibly detected fraudulent claims) exceed the audit cost. 

Indeed, claims are verified in order to detect fraud but auditing also acts as a 

deterrence device. The deterrence objective requires auditing some claims although 

the investigation cost may exceed the expected benefits that the insurer may get from 

verification. As a consequence, the SIU should not be managed as a profit center of 

the insurance company. Secondly, we will show that the optimal proportion of 

successful audits depends on the policyholders’ type (more precisely on the 
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 5

particulars that can be observed by the insurer)7, which affects the incentive scheme 

that should be offered to the insurance staffs in charge of verifying claims. 

In the empirical part of the paper, we will calibrate our model by using data on 

automobile insurance (theft and collision) from a large European insurance company 

and we will derive the optimal auditing strategy. As a final outcome, our analysis 

yields an easily automated procedure which may be viewed as a prototype for the kind 

of insurance fraud detection mechanisms that are now more and more used by large 

insurance companies. 

Section 2 presents the theoretical model while Section 3 derives the optimal 

auditing strategy. The application of the model to the portfolio of an insurer begins 

with Section 4 where the regression analysis is presented. The Section 5 outlines the 

model calibration and its results. Section 6 concludes. Proofs, data set presentation, 

and variables description are in the appendices. 

 

2. The model 
 

We consider a population of policyholders who differ from one another in the 

moral cost of filing a fraudulent claim. For the sake of notational simplicity, all 

individuals own the same initial wealth and they all face the possibility of a monetary 

loss L with probability π with 0 < π < 1. We simply describe the event leading to this 

loss as an “accident”. 

All individuals are expected utility maximizers and they display risk aversion 

with respect to their wealth. Let u be the state dependent utility of an individual drawn 

from this population. u depends on final wealth W but it also depends on the moral 

cost incurred in case of insurance fraud:  u = u (W, ω)  in case of fraud and u = u (W, 

0) otherwise, where ω is a non-negative parameter which measures the moral cost of 

fraud to the policyholder. We assume 0,0 ''
11

'
1 <> uu  and 0'

2 <u  and that ω is 

distributed over R+ among the population of policyholders. In other words, individuals 
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 6

who choose to defraud incur more or less high moral costs. Some of them are purely 

opportunistic (their moral cost is very low) whereas others have a higher sense of 

honesty (their moral cost is thus higher). Note that moral cost is private information 

held by the insured: it cannot be observed by the insurer. 

All the individuals in the insurer portfolio have taken out the same insurance 

contract. This contract specifies a level of coverage t in case of an accident and a 

premium that should be paid to the insurer. If there is no fraud, we have W = W0 – L + 

t in case of an accident and W = W0 if no accident occurs where W0 is the initial 

wealth net of the insurance premium. 

Each individual in the population is characterized by a vector of observable 

exogenous variables θ , with θ  ∈ Θ ⊂  Rm. The moral cost of fraud may be 

statistically linked to some of these variables. Let ( )H ω θ  be the conditional, 

cumulated distribution of ω over the population of type-θ  individuals, with a density 

( )h ω θ . 

Our model describes insurance fraud in a very crude way. A defrauder simply 

files a claim to receive the indemnity payment t although he has not suffered any 

accident. If a policyholder is detected to have defrauded, he will receive no insurance 

payment and must in addition pay a fine B to the government.8 Let Qf be the 

probability that a fraudulent claim is detected; this probability is the outcome of the 

insurer's antifraud policy and it depends on the observable variables θ  as we shall see 

in Section 3. 

When an individual has not suffered any loss, his utility is written as u (W0, 0) if 

he does not defraud. If he files a fraudulent claim (i.e. if he claims to have suffered an 

accident although this is not true), his final wealth is: W = W0 + t  if he is not detected 

and W = W0 – B  if he is detected. An individual with moral cost ω decides to defraud 

if he expects greater utility from defrauding than staying honest, which is written as: 

(1 – Qf) u(W0 + t, ω) + Qfu(W0 – B, ω) ≥  u(W0, 0). 
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 7

This inequality holds if ω ≤ φ (Qf), where function φ (p): [0,1] → R+ is implicitly 

defined by: 

(1 – p) u(W0 + t, φ ) + pu (W0 – B, φ ) = u(W0, 0)  if  0 ≤ p ≤ p0 

and φ (p) = 0  if  p0 ≤ p ≤ 1 where p0 is given by 

(1 – p0) u (W0 + t, 0) + p0 u (W0 – B, 0) = u (W0, 0) 

with 0 < p0 < 1  if  B > 0   and   p0 = 1  if  B = 0. p0 is the audit probability that deters 

an individual with no moral cost (ω = 0) from defrauding. We have φ (0) > 0, φ (p0) = 

0 and φ ′(p) < 0 if 0 < p < p0. φ (Qf) is the critical value of the moral cost under which 

cheating overrides honesty as a rule of behavior. When Qf < p0, the higher the 

probability of being detected, the lower the threshold of the moral cost and thus the 

lower the frequency of fraud. When Qf ≥ p0, there is no more fraud. 

When a policyholder files a claim — be it honest or fraudulent — the insurer 

privately perceives a k-dimensional signal σ that can take on anyone of ℓ possible 

configurations. We assume: 

σ ∈ { }1 2, , ..., lσ σ σ  = Σ 

with σi ∈ ℕk, k ≥ 1   for all i = 1,...,ℓ. Hereafter, k will be interpreted as the number of 

fraud indicators (or red flags) privately observed by insurers. Fraud indicators are 

claim-related signals that cannot be controlled by the defrauder and that should make 

the insurer more suspicious9. If indicator j takes Nj possible values10 – say 0,1,...,Nj−1 

–, we have ℓ = j

k

j
NΠ

=1
. When all indicators are binary (i.e. when Nj = 2 for all j = 

1,...,k), then ℓ = 2k and σ is a vector of dimension k all of whose components are 0 or 

1: component j is equal to 1 when indicator j is "on" and it is equal to 0 when it is 

“off”. 

Let f
ip  and n

ip  be, respectively, the probability of the signal vector σ taking on 

configuration σi when the claim is fraudulent and when it corresponds to a true 

accident (non-fraudulent claim), i.e.: 
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 8

f
ip  = P (σ = Fiσ ) 

n
ip  = P (σ = Niσ ) 

with i = 1,...,ℓ, where F and N refer respectively to "fraudulent" and "non-fraudulent" 

and P(•) denotes probability11. Of course, we have: 

∑∑
==

==
ll

11
1

i

f
i

i

n
i pp . 

The probability distribution of signals is supposed to be common knowledge to 

the insurer and to the insureds. For simplicity of notations, we assume n
ip  > 0 for all i 

= 1,...,ℓ and w.l.o.g. we rank the possible signals in such a way that12 

1 2

1 2

...< < < l

l

f f f

n n n

p p p
p p p

 

This ranking allows us to interpret i ∈{1,...,ℓ} as an index of fraud suspicion. Let 

P(F | θ ) be the proportion of fraudulent claims among the claims filed by type - θ  

individuals. Section 3 will show how P(F | θ ) can be deduced from the insurer’s 

auditing strategy. Bayes law shows that the probability of fraud conditional on signal 

σi and type θ  is: 

 ( ) ( )
( ) ( )( )

,
1

=
+ −

f
i

i f n
i i

p P F
P F

p P F p P F

θ
σ θ

θ θ
 (1) 

which is increasing with i. In other words, as index i increases so does the probability 

of fraud. 

 

3. Auditing strategy 
 

The insurer may channel dubious claims to a Special Investigative Unit (SIU) 

where they will be verified with scrupulous attention. Other claims are settled in a 

routine way. The SIU referral serves to detect fraudulent claims as well as to deter 

fraud. We assume for simplicity that an SIU referral always allows the insurer to 
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 9

determine beyond the shadow of a doubt whether a claim is fraudulent or not. In other 

words, the SIU performs perfect audits. An SIU claim investigation costs c to the 

insurer with c < t. 

The insurer’s investigation strategy is characterized by the probability of an SIU 

referral, this probability being defined as a function of individual-specific variables 

and claim-related signals. Hence, we define an investigation strategy as a function q : 

Θ × Σ → [0,1]. A claim filed by a type-θ policyholder is transmitted to the SIU with 

probability q(θ,σ) when signal σ is perceived. 

Let Q f(θ ) – respectively Qn(θ ) – be the probability of an SIU referral for a 

fraudulent –non-fraudulent – claim filed by a type-θ individual. Qf(θ ) and Qn(θ ) 

result from the insurer's investigation strategy through: 

 ( ) =θfQ ( )∑
=

l

1
,

i
i

f
i qp σθ  (2) 

 ( ) =θnQ ( )∑
=

l

1
,

i
i

n
i qp σθ  (3) 

In particular, a type-θ defrauder knows that his claim will be subjected to careful 

scrutiny by the SIU with probability Qf(θ ). The insurer knows that, given his 

investigation strategy, truthful claims filed by type-θ individuals are mistakenly 

channeled to the SIU with probability Qn(θ ). 

An optimal investigation strategy minimizes the total expected cost of fraud over 

the whole population of insureds. Cost of fraud includes the cost of investigation in 

the SIU and the cost of residual fraud (fraudulent claims not detected). Let IC denote 

the expected investigation cost. A type-θ individual has an accident with probability π 

and in such a case his claim will be channeled to the SIU with probability Qn(θ ). If 

such an individual has not had an accident, he may decide to file a fraudulent claim, 

and he will actually do so if his moral cost ω is lower than ( )( )θφ fQ  which occurs 

with probability ( )( )( )θθφ fQH . Hence, the expected investigation cost is: 
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 10

 IC =cπ θE Qⁿ(θ ) + c(1 – π) θE Q f(θ ) ( )( )( )θθφ fQH  (4) 

where θE  denotes the mathematical expectation operator with respect to the 

probability distribution of θ  over the whole population of insureds. 

Let RC be the cost of residual fraud, which corresponds to the cost of undetected 

fraudulent claims. We have: 

 RC = t(1 – π) θE ( )( )θfQ−1 ( )( )( )θθφ fQH  (5) 

Let TC = IC + RC be the total expected cost of fraud. An optimal investigation 

strategy minimizes TC with respect to q (.) : Θ × Σ → [0,1] under the constraints 

 0 ≤  q (θ, σ) ≤  1   for all (θ , σ) in Θ × Σ (6) 

Such a strategy is characterized in the following proposition. 

 

Proposition 1 :  An optimal investigation strategy is such that 

 q(θ, σi) = 0   if i < i*(θ ) 

 q(θ, σi) ∈ (0,1]   if i = i*(θ ) 

 q(θ, σi) = 1   if i > i*(θ ) 

where i*(θ ) { }l,...,1∈  is a critical suspicion index that depends on the vector of 

individual-specific variables. 

 

Proposition 1 says that an optimal investigation strategy consists in subjecting 

claims to an SIU referral when the suspicion index i exceeds the individual-specific 

threshold i*(θ ), or equivalently when the probability of fraud is larger than a type-

dependent threshold. Hence the insurer plays a socalled red flags strategy: for some 

signals σi  −  those for which  i > i*(θ )  −  claims are systematically audited at SIU, 

while there is no audit when i < i*(θ )13. Furthermore the optimal red flags strategy is 

type-dependent : if  σi  is perceived with i*(θ 0)  <  i < i*(θ 1) , then the claim should 

be sent to SIU if it has been filed by a type-θ 0 individual but no special investigation 

should be performed for a type-θ 1 insured. 
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 11

Let 

( ) ( ) ( )( ), 1= −Q H Qτ θ π φ θ  

and 

( )
( ) ( )( )

( )( )
0= − >

Q ' Q h Q
Q,

H Q
φ φ θ

η θ
φ θ

. 

τ (Q,θ ) is the fraud rate, i.e. the average number of fraudulent claims for a type-

θ  insured, when the probability of being detected is equal to Q. Note in particular that 

τ (Q, 0θ ) <  τ (Q, 1θ ) for all Q, if moving from 1θ  to 0θ , shifts the distribution of ω 

in the first-order stochastic dominance direction. η(Q, 1θ ) is the elasticity of the fraud 

rate (in absolute value), i.e. the percentage decrease in the fraud rate following a one 

percent increase in the probability of detection. 

 

Proposition 2 :  Assume that ( ) ( )( )1 Q H Qφ θ−  is convex in Q. If  τ (Q, 1θ ) ≥ τ (Q, 

θ 0) and η(Q, 1θ ) ≥  η(Q, θ 0) , with at least one strong inequality, then Qf( 1θ ) > 

Qf(θ 0), Qn( 1θ ) > Qn(θ 0)  and  ( ) ( )1 0* *≤i iθ θ . 

 

( ) ( )( )1 Q H Qφ θ−  is the rate of undetected fraud among the type-θ  individuals 

who have not suffered any accident. It is decreasing from ( )( )0H φ θ  > 0 to 0 when 

Q goes from 0 to p0 : in words, the larger the probability for a defrauder to be 

detected, the lower the residual fraud. The convexity assumption made in Proposition 

2 conveys the decrease in the marginal deterrence effect when the fraud detection 

probability is increasing. Auditing will cut fraud costs all the more efficiently if the 

insured belongs to a group with a high fraud and/or elasticity rate, hence the statement 

in Propostion 2. Indeed, the higher the fraud rate, the greater the direct benefits 

auditing provides by detecting fraudulent claims, and the greater the elasticity of 

fraud, the greater the indirect deterrence effect. If the rate and elasticity of fraud are 
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 12

higher for 1θ  than for 0θ , then claims should receive more scrutiny when they are 

filed by type- 1θ  rather than by type- 0θ  individuals. 

The conditional probability of fraud ( ),iP F σ θ  is given by (1) with 

 ( ) ( ) ( )( )( )
( ) ( )( )( )θθφππ

θθφπ
θ f

f

QH
QH

FP
−+

−
=

1
1

. (7) 

When signal σi is perceived, the expected benefit of an SIU investigation is: 

( ), −iP F t cσ θ . 

Proposition 3 shows that the optimal investigation strategy involves transmitting 

suspicious claims to the SIU in cases where the expected benefit of such a special 

investigation may be negative and consequently it highlights the importance of the 

insurer’s commitment. 

 

Proposition 3 : The optimal investigation strategy is such that: 

( )( )* ,iP F θσ θ t < c  for all θ  in Θ. 

 

Since ( ),iP F σ θ  is increasing in i, Proposition 3 means that there exists i**(θ ) 

larger than i*(θ ) such that: 

( )( ) ( )( )tFPctFP ii θσθσ θθ ,, 1**** +<< . 

Forwarding the claim to the SIU is profitable only if the suspicion index i is 

larger than i**(θ ). Hence, it is optimal to channel the claim to the SIU when 

*( ) **( )≤ ≤i i iθ θ , although in such a case the expected profit drawn from 

investigation is negative. Indeed the investigation strategy acts as a deterrent: It 

dissuades some insureds (those with the highest moral costs) from defrauding. Such a 

strategy involves a stronger investigation policy than the one that would consist in 

transferring a claim to the SIU when the direct monetary benefits expected from 

investigation are positive. A consequence of this result is that the SIU should not be 
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organized as a profit center of the insurance company, for otherwise its objective 

would be in conflict with the implementation of the optimal auditing strategy. 

In practice, when l  is large, n
ip  and f

ip  are very small and we can write Qf(θ ) 

= λ (i*(θ )) and Qn(θ ) = µ(i*(θ )), where14  

 ( )
=

= ∑
l f

j
j i

i pλ  (8) 

 ( )
=

= ∑
l n

j
j i

i pµ . (9) 

λ(i) and µ(i) respectively denote the probability of channeling a fraudulent claim 

and a non-fraudulent claim to the SIU when the critical index of suspicion is i. λ(i) 

and µ(i) are decreasing functions: In other words, the higher the index-of-suspicion 

threshold, the lower the probability of subjecting a claim (be it fraudulent or not) to 

special investigation by an SIU. Using Proposition 1 allows us to reduce the insurer’s 

optimization problem to the choice of the type-dependent suspicion threshold: i*(θ ) 

minimizes the expected cost of fraud 

 ( ) ( ) ( )( )( ) ( ) ( )( )( )1 1+ − + −c i H i c i t iπµ π φ λ θ λ λ  (10) 

with respect to i ∈ {1,...,ℓ}. For a type-θ  individual, the expected cost attributable to 

fraud is the sum of Cn(i) ≡ cπµ(i) which is the expected investigation cost of non-

fraudulent claims that are incorrectly referred to the SIU (i.e. the cost of type-2 errors) 

and of 

( ) ( ) ( )( )( ) ( ) ( )( )( )iticiHiC f λλθλφπθ −+−= 11,  

which is the expected cost of fraudulent claims. This cost includes the investigation 

cost of the claim channeled to the SIU and the cost of paying out unwarranted 

insurance indemnities. λ(i) and µ(i) are decreasing functions, which implies that Cn(i) 

and Cf(θ ,i) are respectively decreasing and increasing with respect to i. The optimal 

investigation strategy trades off excessive auditing of non-fraudulent claims against 
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inadequate deterrence and detection of fraudulent claims. The optimal critical 

suspicion index i*(θ ) minimizes Cn(i) + Cf(θ ,i) as represented in Figure 1. 

 

(Figure 1 about here) 

 

The optimal auditing policy is also illustrated in Figure 2. When i* goes from ℓ 

to 1, µ(i*) and λ(i*) are both increasing: µ(i*) is the probability of transmitting a non-

fraudulent claim to the SIU and may thus be considered as a false alarm rate. λ(i*) is a 

true alarm rate since it corresponds to the probability of transmitting a fraudulent 

claim to an SIU. In the literature on classification techniques, the locus 

( ) ( )( ){ }* , * , * 1, ...= li i iµ λ  is known as the Receiver Operating Characteristic 

(ROC) curve; see Viaene, Derrig, Baesens and Dedene (2002). It allows us to 

visualize the performance of the signals in terms of fraud detection. Using the 

monotonicity of n
i

f
i pp /  with respect to i shows that the ROC curve is concave. The 

optimal auditing procedure minimizes the expected cost of fraud with respect to (µ, λ), 

under the constraint that (µ, λ) is on the ROC curve. Figure 2 shows the dependence of 

the optimal solution on the agent's type. 

 

(Figure 2 about here) 

 

In practice (and particularly for the calibration of real data), we may assume that 

the activity of the SIU is budget-constrained: Antifraud expenditures should be less 

than some (exogenously given) upper limit K, which gives the following additional 

constraint: 

 ( ) ( ) ( ) ( )( )( ) KQHQEcQEc ffn ≤−+ θθφθπθπ θθ 1 . (11) 

An optimal investigation strategy then minimizes TC with respect to              

q(·): Θ × Σ → [0,1] subject to (6) and (11). Proposition 4 shows that the qualitative 
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characterization of the antifraud policy is not affected by the addition of this upper 

limit on possible investigation expenditures. 

 

Proposition 4 : Propositions 1 and 2 are still valid when the investigation policy is 

budget constrained. 

 

Constraint (11) may also be interpreted as the consequence of a fixed number of 

investigators at SIU, each of them being able to audit at most a certain number of 

claims. K/c then corresponds to the maximum number of audits per policyholder. 

Under the optimal decision rule, a claim with signal iσ  is audited when 

( )*≥i i θ . For type-θ individuals, the hit rate (i.e. the proportion of successful audits 

for each investigator at SIU) is then: 

( ) ( )
( ) ( ) ( ) ( )1⎡ ⎤+ −⎣ ⎦

f

f n

P F Q

P F Q P F Q

θ θ

θ θ θ θ
. 

We may check that this hit rate varies with θ. In other words, the optimal 

investigation policy does not equalize the probability of success (i.e. of catching 

defrauders) across individuals’ types. 

This can be illustrated through an example which is a simplified version of our 

model. Assume that there is a proportion ( )q θ  of potential defrauders among type-θ 

individuals and a proportion ( )1− q θ  of honest persons. Honest policyholders never 

defraud because their moral cost of fraud is very large. Potential defrauders incur a 

moral cost of fraud ω, which is distributed according to the (type independent) 

cumulated distribution function ( )G ω , with density ( ) ( )'=g Gω ω .15 We then have 

( ) ( ) ( )=H q Gω θ θ ω  and ( ) ( ) ( )=h q gω θ θ ω . 

Let ( )( )*≡ iθλ λ θ  and ( )( )*≡ iθµ µ θ . We may write the equation of the ROC 

curve as ( )= fµ λ , with ( )0 0=f , ( )1 1=f , ' 0>f , '' 0>f . 
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When (11) is binding, the optimal audit strategy minimizes the expected cost of 

residual fraud subject to the constraint on the maximum number of audits. This is 

written as: 

Minimize ( ) ( )( ) ( ){ }1−E tq Gθ θ θθ φ λ λ  

with respect to θλ , ∈θ Θ , subject to: 

 ( ) ( ) ( ) ( )( ){ }1+ − ≤
KE f q G
cθ θ θ θπ λ π θ φ λ λ  (12) 

and ( )= fθ θµ λ . The first-order optimality condition for this problem is written as: 

 ( ) ( )( ) ( ) ( ) ( )( )' 1⎡ ⎤− −⎣ ⎦tp g Gθ θ θ θθ φ λ φ λ λ φ λ  

 ( ) ( ) ( ) ( )( ) ( ) ( )( )' 1 ' 0⎡ ⎤+ + − + =⎣ ⎦f q g Gθ θ θ θ θξ π λ π θ φ λ φ λ λ φ λ  (13) 

where ξ  is a Lagrange multiplier associated to constraint (12). 

For type-θ policyholder, the hit rate is 
( )

1
1+ Xθ

 with: 

 
( ) ( )

( ) ( )
( )

( ) ( ) ( )( )
1

1

⎡ ⎤−⎣ ⎦= =
−

n

f

P F Q f
X

q GP F Q
θ

θ
θ θ

θ θ π λ

π θ φ λ λθ θ
 (14) 

After some simple calculations, (13) and (14) give: 

 
( )

( )( ) ( )1 1 1 1
1

⎡ ⎤
= − − − +⎢ ⎥− ⎣ ⎦

X θ
θ θ

θ θ

η
ξ π η

ξ π γ λ
 

where 

 ( ),≡θ θη η λ θ  

and 

 ( )
( )

'
=

f
f

θ θ
θ

θ

λ λ
γ

λ
. 

θη  is the fraud elasticity for type-θ individuals and θλ  is the elasticity of the 

ROC curve, i.e. it is the increase in the number of false alarms, following a one-

percent increase in the number of true alarms. 
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Assume ( ) =f αλ λ  with 1>α , which gives =θγ α  for all θ . Assume also 

=θη η  for all θ . In other words, the fraud rate and the ROC curve have constant 

elasticity. We then have: 

 
( )

( )( ) ( )1 1 1 1
1

⎡ ⎤
= − − − +⎢ ⎥− ⎣ ⎦

X
Xθ

θ

η
ξ π η

ξ π α
 (15) 

for all θ . 

For all 0θ , 1θ  in Θ  such that ( ) ( )1 0>q qθ θ , we have 
1 0

>θ θλ λ  from Proposition 

2, and thus 
1 0

<X Xθ θ  from (15). The hit rate is then larger for type 1θ  than for type 

0θ . 

The fact that the optimal hit rate is type-dependent affects the incentive 

mechanism that should be used by the insurance company to stimulate the activity of 

its staffs at SIU. In particular, paying a constant bonus each time SIU staffs catch a 

defrauder whatever his type is not an optimal incentive mechanism. Indeed, such an 

incentive scheme would lead investigators to concentrate on the claims with the 

highest hit rates and to neglect the other claims. At equilibrium, the hit rate would be 

the same for all audited claims and it would be lower for non-audited claims, which 

would not be optimal. On the contrary, if SIU staffs receive a bonus ( )1= +b k Xθ θ  

for any type-θ hit, with k > 0, and if they are risk neutral with respect to their global 

earnings, then their own financial interest will not be in conflict with the optimal audit 

policy of the insurance company. In other words, the lower the probability of success, 

the larger must be the bonus to the auditor when a defrauder is caught.  

 

4. Regression Analysis 
 

Data are drawn from the automobile claims (theft and collision) of a large 

European insurer. Some of these claims had been spotted as fraudulent by the 

investigators of the company, while other ones could be reasonably considered as 
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truthful. The econometric analysis allowed us to identify relevant fraud indicators that 

are correlated with the frequency of fraudulent claiming, i.e. signals or individual 

characteristics. For that purpose, we used the standard Logit model for binary choice. 

In our modeling, an explanatory variable takes the value +1 when the indicator is 

present and the value –1 otherwise. There is no clear evidence that the Logit model is 

more appropriate than the Probit model for our purpose. Our choice was explained 

only by mathematical convenience (See Green, 1997, for a longer discussion). 

Table 1 reports the regression results. A detailed description of the data and the 

variables are presented in the appendix. The first column (without θ  variables) in 

Table 1 is limited to variables identifying fraud indicators (the so-called red flags). 

The notation d
jq  refers to variables j  that were directly available in the data 

warehouse of the insurer. The notation p
jq  corresponds to variables j  that required 

some searching in the paper files. All these variables are significant in explaining 

(positively) the probability that a file may contain either suspected or established 

fraud at a level of at least 95% (with one exception at 90%). The second column (with 

θ  variables that represent characteristics of policyholders) yields similar results but 

takes into account two additional variables affecting the probability that a file is 

fraudulent. In connection with the theoretical part of the paper, these variables are 

used to approximate the individual private cost of fraud which includes a pure moral 

cost component but also a monetary cost component. For the sake of brevity, we here 

restrict attention to two significant variables: pq7 and pq16  respectively indicate owners 

of vehicles whose value does not match the policyholder’s income and which are not 

covered by damage insurance. Implicitly, it is suggested either that such people have a 

lower moral cost or that they draw a larger monetary benefit from fraud, hence a 

higher probability for filing a fraudulent claim. 

 

(Table 1 about here) 
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5. Model Calibration 
 

Methodology 

Our sample didn’t include a realistic proportion of fraudulent claims. Having the 

true proportion of fraudulent claims is not important for regression analysis but it is 

essential for the calibration of the optimal auditing model. We used bootstrapping 

techniques  in order to obtain a final sample representing the estimated proportion of 

fraudulent claims in the company’s portfolio (8%). Details are in Appendix A2.  

Figure 3 presents the Gain Chart corresponding to the econometric model without 

the θ  variables and with 8,400 files, each of them corresponding to a claim which 

may be fraudulent or non-fraudulent. The chart gives the percentage of detected fraud 

as a function of the audit probability, according to three different methods. The first 

one corresponds to a random sampling of the files and is illustrated by the 45º degree 

line: n% of the fraudulent claims will be captured if n% of the files are randomly 

sampled. The upper line corresponds to the performance of a “perfect expert” who 

would capture 100% of the fraudulent claims without any mistake. Such an expert 

would need to channel 8% of the files to the SIU in order to capture all the fraudulent 

claims. The line in the middle corresponds to the econometric model without the θ  

variables, where the fraud probabilities are estimated by the model. This method 

allows the insurer to transmit a small number of suspicious files to the SIU and to 

detect a significant number of fraudulent claims. For instance, about 55% of the 

fraudulent claims are captured by the model, if we use the 8th percentile (i.e. 8% of 

files with the highest fraud probability) as a reference percentile. This may be 

considered a very good outcome, given that we used only thirteen variables. The score 

can be improved easily by adding variables in the θ  vector. Of course, it is not 

necessarily optimal to stop at the 8th percentile. The decision must trade off the 
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benefits and the costs of investigating the files. We now tackle the innovative part of 

the empirical analysis related to the calibration of the theoretical model. 

 

(Figure 3 about here) 

 

Let ( )π̂ θ  be the probability that a type-θ individual  files a claim during a one-

year time period when there is no auditing (which is supposed to correspond to the 

status quo situation in the insurance company) and let t be the average cost of a claim 

for the insurer (average amount paid above the deductible). Since in our model all the 

heterogeneity between insureds is related to the attitude toward fraud (i.e. to their 

moral costs), t does not depend on θ. For the time being, we do not distinguish the 

groups of insureds: a type-θ  individual is thus a representative policyholder of the 

company. Data from the company give ( )π̂ θ  = 22% and t = €1,284. The audit cost c 

of a claim is equal to €280 (including investigation costs, lawyers fees, SIU 

overheads, …) and we take the insurer’s opinion for granted that the current 

proportion of claims with fraud is z(θ) = P(F | θ ) = 8%. 

Since ( )π̂ θ  contains fraudulent claims, the true loss (theft and accident) 

probability π  is given by ( ) ( )( )ˆ 1 0.2024= − =zπ π θ θ . From the above data 

( ) ( )ˆ0, =τ θ τ θ  can be approximated by ( ) ( ) ( )ˆ ˆ 0.0176= =zτ θ π θ θ , which 

amounts to assuming that the observed current anti-fraud policy of the company does 

not entail any deterrence effect. 

Estimating the elasticity of fraud with respect to the audit probability can only be 

a matter of approximation: Indeed, the elasticity ( ),Qη θ  depends on the distribution 

of moral costs in the population of policyholders as well as on the relationship 

between the audit probability, the moral cost, and the decision to file a fraudulent 

claim. In short, the elasticity of fraud with respect to Q depends on ( )( )H Qφ θ  and 
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θ . Such information is obviously unobservable. This is why we will content ourselves 

with an approximation of ( ),Qτ θ . We will assume: 

 ( ) ( ) ( ) ( )θγθτθτ QQ −= 1ˆ,  (16) 

where ( )γ θ  is a parameter used to define η = γ(θ) Q / (1 – Q), the elasticity of the 

fraud rate with respect to Q . The expected cost of fraud can then be rewritten as: 

 ( ) ( ) ( )( ) ( ) ( )( )( )ctitiic −−−+ λλθτπµ θγ1ˆ  (17) 

where ( )iλ  and ( )iµ  are given by (8) and (9). 

As previously mentioned, in this part of our analysis θ  corresponds to an 

average policyholder in the portfolio of the company. Of course, the analysis can be 

replicated for different values of θ , as we shall see in the last part of the article. 

The optimal threshold *i  is obtained by minimizing (17) with respect to i. For 

that purpose, we must first compute the values of ( )iλ  and ( )iµ  and thus f
ip  and 

n
ip  for all i. They are given by: 

 
( ) ( )

( )
= i if

i
P F P

p
P F
σ σ

  

and 

 
( ) ( )

( )
( )( ) ( )

( )( )FP
PFP

NP
PNP

p iiiin
i −

−
==

1
1 σσσσ

.  

The conditional probability ( )iP F σ  could be computed directly from the 

econometric model. Unfortunately, ( )iP σ  is much more difficult to obtain directly: 

Indeed the econometric analysis yielded 13 significant binary fraud indicators and, 

consequently, 8,192 values for iσ . Since our data set is limited to 8,400 observations 

or files, many potential values for iσ  should be nil. Using the econometric analysis to 

estimate f
ip  and n

ip  would then come to a deadlock. An indirect procedure can help 

us to escape from this difficulty. The procedure below is known in the literature as the 
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simple Bayes classifier method (Viaene et al., 2002) which is equivalent to the Bayes 

optimal classifier only when all predictors are independent in a given class. It has 

been shown that this simple Bayes classifier often outperforms more powerful 

classifiers (Duda et al., 2001). 

From the regression analysis, we know that 13 fraud indicators are significant. qj, 

j = 1… k, designates the presence ( )1=jq  or absence ( )0=jq  of indicator j in a given 

file. So we can write 1=ijσ  if 1=jq  and 0=ijσ  if 0=jq . Let =f
jα  P ( )1=jq F  

and =n
jα  P ( )1=jq N  for j = 1… k, where n

j
f
j αα >  by definition of fraud 

indicators. Let us assume that the jq  are independent conditional on the fact that the 

file is F or N16. This conditional independence assumption allows us to write: 

 ( ) ( )
/ 1 / 0

1
= =

= = Π Π −
ij ij

f f f
ii j jj j

p P F
σ σ

σ α α  (18) 

 ( ) ( )
/ 1 / 0

1
= =

= = Π Π −
ij ij

n n n
i i j j

j j
p P N

σ σ
σ α α  (19) 

which allows us to compute ( )iλ  and ( )iµ  for all i. We are now in a position to 

get a full calibration of our model. 

 

Results 

The calibration results are summarized in Table 2. Column 1 presents the 

identification numbers of the observed σi. They can simply be denoted by index i. 

One of them will also be the i*. Table 2 has 213 = 8,192 lines because the regression 

analysis identified 13 significant binary indicators. So we obtain 8,192 values for iσ  

in Column 2 resulting from different combinations of N and Y where N indicates that 

an indicator is not present and Y indicates that an indicator is present for that line. For 

example, the first line in Column 2 indicates that no significant fraud indicator is 

present. Line 2 indicates that only the 9th fraud indicator is present. According to 
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Proposition 1, the optimal investigation strategy consists in ranking the observations i 

by using the values n
i

f
i pp /  in an increasing manner, which is done in Column 3. 

 

(Table 2 about here) 

 

Column 4 yields the value of λ(i), the probability of channeling a fraudulent 

claim to the SIU when the critical index of suspicion is i. In line 1, λ(i) = µ(i) = 1 and 

all claims are audited, be they fraudulent or not. Of course, this strategy would be 

very costly and as we shall see, it is not optimal. The optimal critical suspicion index, 

denoted i*, trades off the benefits and the costs of auditing. If i* were equal to 10, 

then all files with a ratio n
i

f
i pp /  higher than 0.20 would be audited: 94% of the 

fraudulent claims would be audited and 44% of the non-fraudulent claims would also 

be audited (see λ(10) and µ(10) in columns 4 and 5). 

Column 6 presents the expected investigation cost of a non-fraudulent claim 

− Cn(i) − for different values of µ(i), the probability that a non-fraudulent claim will 

be channeled to the SIU. So for line one, we have Cn(1) = €280 × 0.2024 = €56.67, 

since π = 0.2024 is the accident probability, c = €280 is the audit cost and µ(i) = 1. 

For i = 10, this cost is reduced to €24.73 because µ(10) = 0.4364. Column 7 yields the 

average cost of fraudulent claims for different values of λ(i) and column 8 computes 

the expected cost of a fraudulent claim      − C f(θ,i) − for η = 0 and τ̂ (θ) = 0.0176. In 

line 1, this expected cost is very low because it is reduced to €280 × τ̂ (θ). Moreover, 

here γ(θ) = 0 which means that there is no deterrence effect associated with a variation 

in λ(i). Column 9 computes Cn(i) + Cf(θ,i). The optimal ( )*i θ  is obtained by 

minimizing this expected cost. Finally, Columns 10, 11, and 12 respectively give 

information on the audit probability, on the expected audit cost and on the probability 

of fraud for audited claims. Again, if i* were equal to 1, then all claims would be 

audited and the probability of fraud among audited claims would be equal to the 
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average fraud rate in the sample. If i* were equal to 10, then the auditing strategy 

would be more focused on claims with suspected fraud (λ(10) = 0.94 and µ(10) = 

0.44) and the probability of fraud in audited claims would be equal to 0.1575. 

The optimal solution is at line 194 = i*(θ) (the corresponding values for the full 

random sampling are at the bottom of the table). We then have λ(i*) = 0.6672, which 

means that 67% of the fraudulent claims are audited. So the optimal expected cost of a 

fraudulent claim in the total insurer portfolio (Column 8) is €10.81. We also have 

µ(i*) = 0.04, which means that only 4% of the non-fraudulent claims are audited. The 

corresponding optimal expected cost of a non-fraudulent claim in the insurer portfolio 

is equal to €2.40. So the optimal expected total cost of fraud reaches its minimal value 

at €13.20. The optimal strategy entails auditing 9.23% of the files (column 10) and the 

optimal audit cost per claim is €25.85. Finally, the hit rate is 

P(F⎪i > i*) = ( )
( ) ( )( )

( *)
( *) 1 ( *)+ −

z i
z i z i

θ λ
θ λ θ µ

 = 57.8% 

which means that 57.8% of audited claims prove to be fraudulent, which can also be 

illustrated in Figure 3 at the 9.23% value. 

Tables 3 and 4 present sensitivity analyses with respect to the parameters ( )γ θ  

and ( )z θ . In Table 2, we have indeed assumed that ( )z θ  is the fraud rate in the 

whole portfolio of the insurer and we have neglected the deterrence effect of the 

auditing policy, i.e. we have assumed ( )γ θ =0. Table 3 gives four different values of 

( )z θ  computed by using the observable characteristics which have been highlighted 

in Table 1. In other words, pq7 and pq16  approximate different values of θ . 

 

(Table 3 about here) 

 

( )z θ  = 5.83% corresponds to the case were pq7  = pq16  = 0 which yields the lowest 

fraud rate in the portfolio. The other value of interest for the sensibility analysis is that 
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obtained when pq16  = 1 and pq7  = 0. The corresponding value for ( )z θ  is then 

10.01%. The two other cases are not considered because their respective frequency is 

too low.  Table 4 clearly shows that fraud auditing intensifies (i*(θ) decreases and 

λ(i*(θ)) increases) as the fraud rate ( )z θ  increases, which is an illustration of 

Proportion 2.  

 

(Table 4 about here) 

 

Parameter ( )γ θ  measures the incentive effect of the optimal audit policy: the 

higher ( )γ θ , the higher the elasticity of fraud with respect to the detection probability 

and hence the more powerful the deterrence effect of auditing. In Table 4, we observe, 

for the three different values of the fraud rate ( )z θ , that i*(θ) decreases (audit 

increases) when ( )γ θ  increases, which also illustrates Proportion 2. 

Table 5 presents the monetary gains of auditing. As already mentioned, the 

claims rate (over the whole portfolio) of the insurer is 22%, which represents about 

500,000 claims for the corresponding time period. Without the optimal audit policy, 

the fraud rate is 8%. So €51 million are paid for fraudulent claims and the total claim 

cost is €642 million. Let us now consider the optimal auditing policy of Table 2. First, 

we know that 9.23% of the files will be audited at a cost of €280. Secondly, we also 

know that 67% of the fraudulent claims will be audited and will not receive any 

insurance coverage. However, 33% of the fraudulent claims would not be audited. 

The total claim cost net of audit costs will then be equal to €621 M, a saving of €21 

M, which represents 41% of the current cost of fraudulent claims. Finally, we show 

that auditing all claims is not efficient, as suspected. Indeed, auditing all claims would 

generate a total claim and audit cost of €731 M, the total claim cost is reduced to €591 

M but the total audit cost is equal to €140 M. 

 

ha
l-0

02
43

02
6,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



 26

(Table 5 about here) 

 

The last line of Table 5 introduces the deterrence effect when ( ) 0.21η θ =  which 

corresponds to ( ) 0.10=γ θ . As shown in Proposition 4, because of this deterrence 

effect, under the optimal auditing policy, the expected benefit of an SIU investigation 

under the optimal auditing may be negative. More precisely, this expected benefit is 

negative when the suspicion index is in the neighborhood of ( )*i θ , while it is 

positive for suspicion indexes larger than ( )**i θ  with ( ) ( )** *>i iθ θ . 

This can be illustrated as follows with our data. The expected benefit of 

investigation is ( ), −iP F t cσ θ  where ( ),iP F σ θ  is given by (1), with 

( ) ( ) ( )( )[ ] ( )

( ) ( )( )[ ] ( )θγ

θγ

θλθτπ

θλθτ
θ

*1ˆ
*1ˆ
i

iFPx
−+

−
==  

For illustrative purpose, consider the case ( )ˆ 1.76%=τ θ . If 0=γ , there is no 

deterrence effect which gives ( ) ( ) 8%= =P F zθ θ . Using ( ) 194=i* θ  and equation 

(10) yields: 

( )( )
t
cFP i == 218.0,* θσ θ . 

If 0.10=γ , the elasticity of fraud with respect to the probability of being detected is 

( ) 0 21= .η θ  (line C in Table 4). We then have ( ) 183=i* θ  and 

( )( )* , 0.189= <i
cP F
tθσ θ . In that case, the fraud rate is ( ) 7.2%=P F θ  which 

illustrates the deterrence effect of the auditing policy, since the fraud rate would be 

8% if no audit were performed or if an audit were performed without a deterrent 

effect. Hence €51 M is replaced by €46.22 M (i.e. 7.2% × €642 M) in the last line of 

Table 5 and the total claim cost net of audit costs is reduced to €619 M yielding a 

supplementary benefit to the audit policy. 
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VII Conclusion 
 

This article aimed at making a bridge between the theory of optimal auditing and 

the actual claims auditing procedures used by insurers. More generally, we have 

developed an integrated approach to auditing and scoring which is much more closely 

related to the actual auditing procedures used by insurers, bankers, tax inspectors or 

governmental regulatory agencies than the abstract costly state-verification modelling. 

A complete modelling has been developed for the detection of insurance fraud, but the 

same methodology could be adapted to other hidden information problems, 

particularly those connected with banking, tax compliance or with the regulation of 

productive or financial activities by governmental or international agencies. 

On the theoretical side, we have shown that the optimal auditing strategy takes 

the form of a type dependent red flags strategy which consists in referring claims to 

the SIU when some fraud indicators are observed. The classification of fraud 

indicators corresponds to an increasing order in the probability of fraud and such a 

strategy remains optimal if the investigation policy is budget constrained. 

Furthermore, the auditing policy acts as a deterrence device and in some cases, the 

(unconstrained) optimal investigation strategy leads to an SIU referral even if the 

direct expected gain of such a decision is negative. A strong commitment of the firm 

is thus necessary for such a policy to be fully implemented. Finally the optimal hit 

rate depends on the policyholder’s type, which affects the optimal incentive 

mechanism of SIU staffs. 

On the empirical side, several significant results were tested with data from a 

large European insurance company.  We have computed a critical suspicion index for 

fraud, providing a threshold above which all claims must be audited. If the insurer 

implements this policy, 67% of the fraudulent claims are audited while only 4% of the 

non fraudulent claims are audited. We have shown that if the insurer applies this 

policy, he will save more than €21 M (net of audit costs), while he was paying €51 M 
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for fraudulent claims. These results were obtained under the conservative scenario that 

all policyholders share the same moral cost of fraud and that auditing does not involve 

any deterrence effect. 

We have shown that these results are improved by using information on 

observable variables which are correlated with the intensity of fraudulent claiming. 

The optimal expected audit probability goes from 6.7% to 12.3% when the fraud rate 

goes from 5.8% (for a low fraud type) to 10.0% (for a high fraud type) which suggests 

that strongly differentiated audit rates are actually optimal. Finally, our results show 

how the deterrence effect of the audit scheme can be taken into account and how it 

affects the optimal auditing strategy. 

ha
l-0

02
43

02
6,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



 29

References 
 
Artis, M., Ayuso, M., and Guillén, M. (2002), “Detection of Automobile Insurance 

Fraud With Discrete Choice Models and Misclassified Claims,” Journal of Risk 
and Insurance 69, 325-340. 

 
Belhadji, E.B., Dionne, G., and Tarkhani, F. (2000), “A Model for the Detection of 

Insurance Fraud,” Geneva Papers on Risk and Insurance Issues and Practice 25, 
517-538. 

 
Boyer, M.M. (2004), “Overcompensation as a Partial Solution to Commitment and 

Renegotiation Problems: The Case of Ex Post Moral Hazard,” The Journal of 
Risk and Insurance 71, 559-582. 

 
Crocker, K.J. and Morgan, R.J. (1997), “Is Honesty the Best Policy? Curtailing 

Insurance Fraud Through Optimal Incentive Contracts,” Journal of Political 
Economy 106, 355-375. 

 
Crocker, K.J. and Tennyson, S. (2002), “Insurance Fraud and Optimal Claims 

Settlement Strategies,” Journal of Law and Economics 45, 469-507. 
 
Derrig, R.A. (2002), “Insurance Fraud,” The Journal of Risk and Insurance 69, 271-

287. 
 
Derrig, R.A. and Weisberg, H.I. (2003), “Auto Bodily Injury Claim Settlement in 

Massachusetts,” Document, Automobile Insurers Bureau of Massachusetts, 36 p. 
 
Dionne, G. (2000), “The Empirical Measure of Information Problems with Emphasis 

on Insurance Fraud,” in Handbook of Insurance, G. Dionne (Ed.), Kluwer 
Academic Publishers, Boston, 395-419. 

 
Dionne, G., Artis, M., and Guillén, M. (1996), “Count Data Models For A Credit 

Scoring System,” Journal of Empirical Finance 3, 303-325. 
 
Dionne, G. and Gagné, R. (2001), “Deductible Contracts Against Fraudulent Claims: 

Evidence from Automobile Insurance,” Review of Economics and Statistics 83, 
290-301. 

 
Dionne, G. and Gagné, R. (2002), “Replacement Cost Endorsement and Opportunistic 

Fraud in Automobile Insurance,” Journal of Risk and Uncertainty 24, 213-230. 
 
Duda, R.O., Hart, P.E., and Stork, E.G. (2001), “Pattern Classification,” Wiley, New 

York. 

ha
l-0

02
43

02
6,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



 30

 
Gale, D. and Hellwig M. (1985), “Incentive-Compatible Debt Contracts: The One-

Period Problem,” Review of Economic Studies 52, 647-663. 
 
Graetz, M.J., Reinganum, J.F. and Wilde, L.L. (1986), “The Tax Compliance Game: 

Toward and Interactive Theory of Law Enforcement,” Journal of Law, 
Economics and Organization 2, 1-32. 

 
Green, W.H. (1997), Econometric Analysis, Prentice Hall, New Jersey, 1075 pages. 
 
Knowles, J., Persico N. and Todd P. (2001), “Racial Bias in Motor Vehicle Searches: 

Theory and Evidence”, Journal of Political Economy, 109, N°1, 203-229. 
 
Kofman, F. and Lawarrée, J. (1993), “Collusion in Hierarchical Agency,” 

Econometrica 61, 629-656. 
 
Melumad, M.D. and Mookherjee, D. (1989), “Delegation as Commitment: The Case 

of Income Tax Audits,” The RAND Journal of Economics 20, 139-163. 
 
Moody’s Investor Service 2000, RiskCalc For Private Companies:Moody’s Default 

Model, New York. 
 
Mookerjee, D. and Png, I.P.L. (1989), “Optimal Auditing Insurance and Distribution” 

Quarterly Journal of Economics 104, 399-415. 
 
Persico, N. (2002), “Racial Profiling, Fairness, and Effectiveness of Policing”,  The 

American Economic Review, Vol. 92, 5, 1472-1497. 
 
Picard, P. (1996), “Auditing Claims in Insurance Market with Fraud: the Credibility 

Issue,” Journal of Public Economics 63, 27-56. 
 
Picard, P. (1999), “On the Design of Optimal Insurance Contracts Under 

Manipulation of Audit Costs,” International Economic Review 41, 1049-1071. 
 
Picard, P. (2000), “Economic Analysis of Insurance Fraud,” in Handbook of 

Insurance, G. Dionne (Ed.), Kluwer Academic Publishers, Boston, 315-362. 
 
Tennyson, S. and Salmsa-Forn, P. (2002), “Claims Auditing and Automobile 

Insurance: Fraud, Detection and Deterrence Objectives,” The Journal of Risk 
and Insurance 69, 289-308. 

 
Townsend, R. (1979), “Optimal Contracts and Competitive Markets with Costly State 

Verification,” Journal of Economic Theory XXI, 265-293. 

ha
l-0

02
43

02
6,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



 31

 
Townsend, R. (1988), “Information Constrained Insurance: The Revelation Principle 

Extended,” Journal of Monetary Economics, 21, 411-450. 
 
United States General Accounting Office (2004), Aviation Security: Computer-

Assisted Passenger Prescreening System Faces Significant Implementations 
Challenges, GAO-04-385. 

 
Viaene, S., Derrig, R.A., Baesens, B. and Dedene, G. (2002), “A Comparison of 

State-of-the-Art Classification Techniques for Expert Automobile Insurance 
Claim Fraud Detection,” Journal of Risk and Insurance 69, 373-422. 

ha
l-0

02
43

02
6,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



 32

Appendices 
 

Appendix A1:  Proofs 
 

Proof of Proposition 1 

If ( ) 0
fQ pθ ≥ , there is no residual fraud (hence RC = 0) and reducing q(θ,σi) for any i 

decreases IC, hence a decrease in TC. Thus the optimal investigation strategy involves 

( ) 0
fQ pθ < , with ( )( )' 0fQφ θ < . Using equations (2) to (6), pointwise minimization of TC 

with respect to q(θ ,σ) gives: 

 ( ) ( )( )
( )

( )

( )
1

0 , 1

1 , 0 0 , 1

0 , 0

⎧≤ =
⎪⎪

+ − = < <⎨
⎪

≥ =⎪⎩

i
fn f

i ii

i

if q

c p A Q p if q

if q

θ σ

π π θ θ θ σ

θ σ

 

where A (Q, θ ) = ( )( ) ( )( )1+ −cQ t Q H Qφ θ  and 1A denotes the partial derivative of A with 

respect to Q. Note that 'φ  < 0 and t > c give 1A < 0. Consequently, we have: 

( )
( ) ( )( )1

, 1
1 ,

= > −
−

f
i

i n f
i

p cq if
p A Q

π
θ σ

π θ θ
 

and 

( )
( ) ( )( )1

, 0
1 ,

= < −
−

f
i

i n f
i

p cq if
p A Q

π
θ σ

π θ θ
 

which proves the proposition, with i*(θ ) given by: 

 ( )

( ) ( ) ( )( )
( )

( )

* 1 *

1* 1 *1 ,

−

−

−
< ≤

−

f f
i i
n nf
i i

p pc
p pA Q

θ θ

θ θ

π

π θ θ
 (20) 

Q.E.D. 
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Proof of Proposition 2 

Assume that ( ) ( )( )1 Q H Qφ θ−  is convex in Q.   Let 0θ  and 1θ  in Θ  such that  τ (Q, 

1θ ) ≥ τ (Q, θ 0) and η(Q, 1θ ) ≥  η(Q, θ 0) with at least one strong inequality. Assume 

moreover that ( )1*i θ  > ( )0i* θ , which gives: 

 Qf ( )1θ  < Qf ( )0θ . (21) 

Let i ∈{1,...ℓ} such that ( ) ( )0 1* *≤ <i i iθ θ . Writing optimality conditions as in the 

proof of Proposition 1 yields: 

 ( ) ( )( )1 0 01 , 0fn f
i ic p A Q pπ π θ θ+ − ≤  (22) 

and 

 ( ) ( )( )1 1 11 0+ − ≥fn f
i ic p A Q , pπ π θ θ  (23) 

Using (21) and the convexity of Q → A(Q,θ ) gives: 

 ( )( ) ( )( )1 0 1 1 1 1>f fA Q , A Q ,θ θ θ θ . (24) 

(23) and (24) give: 

 ( ) ( )( )1 0 11 0+ − >fn f
i ic p A Q , pπ π θ θ . (25) 

(22) and (25) then imply: 

 ( )( ) ( )( )1 0 1 1 0 0>f fA Q , A Q ,θ θ θ θ . (26) 

We have 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )1 1= − + + −A Q, c t H Q ' Q h Q cQ t Qθ φ θ φ φ θ  

which may be rewritten as: 

( ) ( ) ( ) ( )1
1

1
⎛ + − ⎞

= − − +⎜ ⎟− ⎝ ⎠

Q, cQ t Q
A Q, t c Q,

Q
τ θ

θ η θ
π

. 

The assumptions on τ (Q, θ ) and η(Q, θ ) give 

( )( ) ( )( )1 0 1 1 0 0, ,<f fA Q A Qθ θ θ θ  
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which contradicts (26). Hence, we may conclude that i*( 1θ ) ≤ i*( 0θ ), which completes the 

proof. Q.E.D. 

 

Proof of Proposition 3 

We have: 

( )( ) ( )( ) ( )( )( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )

1 1= + −

+ − < −

f f f

f f

A Q , cq t Q h Q ' Q

c t H Q c t H Q .

θ θ φ θ θ φ θ

φ θ θ φ θ θ
 

Hence 

 
( ) ( )( ) ( )( ) ( )( )( )11 1

− −
<

− − −f f
c c

A Q , c t H Q

π π

π θ θ π φ θ θ
 (27) 

which gives:17 

 ( )

( ) ( )( ) ( )( )( )θθφπ

π

θ

θ
fn

i

f
i

QHtc
c

p

p

−−

−
<

1*

*  (28) 

Using (7), (28) and 

( )

( )

( )( ) ( )( )
( ) ( )( )( )θσθ

θσθ

θ

θ

θ

θ

,1

,1

*

*

*

*

i

i
n
i

f
i

FPFP

FPFP

p

p

−

−
=  

gives ( )( ) ctFP i <θσ θ ,* . Q.E.D. 

 

Proof of Proposition 4 

Let α be a (non-negative) Kuhn-Tucker multiplier associated with (11) when TC is 

minimized with respect to q(θ, σ) subject to (6) and (11). Pointwise minimization gives: 

( ) ( ) ( )( )
( )

( )

( )
1

0 , 1

1 1 , 0 0 , 1

0 , 0

i
fn f

i ii

i

if q

c p A Q p if q

if q

θ σ

π α π θ θ θ σ

θ σ

⎧≤ =
⎪⎪

+ + − = < <⎨
⎪

≥ =⎪⎩

%  
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where ( ) ( ) ( )( ) ( )( )1 1= + + −%A Q, c Q t Q H Qθ α φ θ  and 1%A  is the partial derivative of %A  

with respect to Q. Proposition 4 can then be proved in the same way as Propositions 1 and 2. 

Q.E.D. 
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Appendix A2:  Data 

Estimation 

The data come from a large insurer in Europe. We draw a sample from the automobile 

insurance claims files containing information on automobile thefts and collisions. Chart A1 

presents the parameters of the original data set. The first group of files (A) comes from the 

company’s SIU. This is the population of claims referred to this unit over a given period by 

claims handlers suspecting fraud. Of the 857 files referred to the SIU, 184 contained no fraud 

and 673 were classified as cases of either established or suspected fraud. As in Belhadji et al. 

(2000), we considered all these files as fraudulent because they all contained enough 

evidence of fraud to serve in designing a model for forwarding suspicious files to the SIU. 

Out of these 673 files, 181 were classified as suspicious because there was not enough 

evidence or proof to convince the SIU that these claims should not be paid. 

 

(Chart A1 about here) 

 

The second group of files (B) was selected from the population of claims that the 

insurer did not think contained any type of fraud during the same period of time. We first 

chose to randomly select only about 1,000 files in the reference group, because the cost of 

compiling information on fraud indicators is very high. In fact, to find significant indicators 

for fraud detection, our assistants had to read each file in groups (A and B) to search for the 

potential indicators (about 50) identified by members of the SIU. Over the 1,000 selected 

claims in group B, 945 were classified as without fraud. The 55 remaining files contained 

some indication of fraud. 

Chart A2 describes the breakdown of files chosen for the analysis: The 184 files 

without any fraud in A were transferred to B, yielding two groups of files (A’ with fraud and 

B’ without fraud) and showing that 37% of the files contained established or suspected fraud. 

The 55 files with some suspicion of fraud in B were not included in A’. 
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(Chart A2 about here) 

 

Calibration 

To obtain the estimated fraud rate of the insurer (8% according to the views of the 

company managers), we first replicated the non fraud sub-sample six times, yielding 6,774 

observations (6 × 1,129). Then we took a random sample (with replacement) from these 

6,774 observations in order to obtain the additional 953 observations needed to produce a 

fraud rate of 8%. This percentage reflects the views of the company managers about the 

importance of claims fraud in their portfolio of automobile insurance contracts. The final 

sample contains 8,400 files, 673 files with fraud and 7,727 files without fraud. For a matter 

of robustness, we did also select randomly 6,598 non-fraud files from the original population 

of 1,129 to obtain the 7,727 non-fraud files. The results are very similar and are reported at 

the bottom of Table 2. 
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Appendix A3:  Detailed Description of Variables in Regression Analysis 
 

pq19  Production of questionable or falsified documents means that the policy 
holder is submitting fraudulent invoices. The anti-fraud agent is alerted when 
the policyholder submits photocopies or duplicates of bills. 

qexp Fraud alert by expert (expert warns that damages to vehicle do not correspond 
to those claimed by policyholder). 

qext Fraud alert by ARGOS or ALFA professionals (ARGOS alerts by mail, 
telephone, or via ARVA, a telematic management link with experts). 

pq30  Description of circumstances surrounding the accident either lack clarity or 
seem  contrived (accident report is too perfect, policyholder’s descriptions of 
accident are too detailed or too vague). 

pq21  Variations in or additions to the policyholder’s initial claims (additional 
reports…). 

pq35  Too long a lag between date of purchase and date of guarantee: policyholder 
takes out insurance a week after purchasing the vehicle whereas, logically, 
this should be done the same day. 

dq36  Date of guarantee subscription and/or date of its modification too close to 
date of accident (< 1 month). 

pq7  Vehicle whose value does not match income of policyholder (ex: an 
unemployed person or a welfare recipient with a Porsche). 

pq20  Refusal or reluctance to provide original documents. 

pq16  Victim with no damage insurance and/or one who would suffer harm if found 
at fault (for example, a victim who is insured only for damages caused by a 
third party asks a friend to stage an accident in order to receive payment). 

pq22  Harassment from policyholder to obtain quick settlement of a claim 
(abnormally frequent letters or calls from the policyholder). 

dq32  Abnormally high frequency of accidents (more than 3 accidents a year). 

dq12  Retroactive effect of the contract or guarantee (when the date of guarantee 
date of accident date of accident report). 
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pq34  Claimant not the same as policyholder (this can be detected in the claim or 
police report). 

dq18  Delay in filing accident claim (refer to periods stated in contract: more than 5 
business days for all types of accidents and more than 2 days after the 
accident occurs and/ or the theft is noticed.) 
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Appendix A4:  Correlation tables 
Table A – Correlations conditional on F 

 12
dq  18

dq  19
pq  21

pq  30
pq  32

dq  36
dq  35

pq  pq34  pq22  20
pq  qexp qext 

12
dq  1 -0.02 -0.05 0.02 -0.04 0.02 0.05 -0.02 -0.01 -0.03 -0.00 0.01 -0.00

18
dq   1 0.04 0.02 -0.01 0.01 -0.02 0.06 0.09 0.01 -0.04 -0.11 0.04

19
pq    1 0.16 0.12 -0.02 0.02 -0.01 -0.02 0.06 0.01 0.07 0.01

21
pq     1 0.20 0.05 -0.05 -0.01 0.09 0.03 0.12 0.11 0.07

30
pq      1 0.03 0.04 -0.00 -0.01 0.03 0.12 0.08 0.02

32
dq       1 -0.06 -0.05 0.12 0.04 0.04 0.00 0.02

36
dq        1 0.19 -0.06 0.08 0.10 -0.11 0.02

35
pq         1 -0.07 0.10 0.10 -0.04 -0.00
pq34          1 0.05 -0.03 -0.06 -0.05
pq22           1 0.14 -0.02 -0.02
pq20            1 0.05 0.05

qexp            1 -0.15
qext             1 

 

Table B – Correlations conditional on N 

 12
dq  18

dq  19
pq  21

pq  30
pq  32

dq  36
dq  35

pq  pq34  pq22  20
pq  qexp qext 

12
dq  1 -0.04 0.06 -0.00 -0.02 -0.02 0.06 0.00 -0.03 0.01 0.00 0.07 -0.02 

18
dq   1 0.04 -0.02 0.06 -0.06 0.08 0.04 0.08 -0.03 0.03 0.02 0.03 

19
pq    1 0.13 0.07 -0.01 0.04 0.02 0.01 0.10 0.05 0.00 -0.01 

21
pq     1 0.03 0.00 -0.03 0.03 0.03 0.08 0.03 0.05 -0.01 

30
pq      1 -0.02 0.02 -0.04 0.02 0.01 0.05 0.01 0.01 

32
dq       1 -0.10 -0.07 0.02 -0.02 0.01 0.04 0.01 

36
dq        1 0.13 0.02 0.12 0.09 0.00 -0.03 

35
pq         1 0.04 -0.02 0.01 -0.02 -0.01 
pq34          1 -0.03 0.04 0.03 0.01 
pq22           1 0.02 0.14 -0.01 
pq20            1 0.07 -0.01 

qexp            1 -0.01 
qext             1 
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Figure 2 
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Figure 3 
Gain Chart 
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Chart A1 
Original Data Set 

 

 

Files transmitted 
to SIU 

Files

Established fraud
492 files 

Suspected fraud 
181 files 

No fraud 
184 files 

A B 

A = 857 files 
47.56% 

B = 945 files of claims
without fraud 

52.44% 

Sample of claims 
without fraud
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Chart A2 
Original Data Set (continued) 

 

 

Files

A’ B’ 

Suspected fraud Established fraud Without fraud Files B 

B’ = B + files without fraud in A 
= 1,129 files 

63% 

A’ = A – files without fraud in A 
= 673 files 

37% 
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Table 3 
z(θ) Values from Regression Results in Table 1 
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Table 5 
Monetary Values of the Results 

for the Insurer Portfolio 
 

 
Without optimal audit the total claim cost = 
 
              92% = € 591 M 
 

500,000 × € 1,284 = € 642 M 
 
              8% = € 51 M 
 
 
With optimal audit the expected total claim and audit cost (with 0=η ) = 
 

9.23% × 500,000 × € 280 + € 591 M + 33% × €51 M = € 621 M 
 
With audit of all files we obtain: 
 

500,000 × €280 + €591 M = €731 M 
 
When ( ) 0 21= .η θ , the expected total claim and audit cost becomes: 
 

9.71% × 500,000 × €280 + €591 M + 32% × €46.22 M = €619.38 M 
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Notes 
 
1 See for instance Dionne et al. (1996) on consumer credit scoring and Moody’s Investors Service (2000) on 
corporate default risk scoring. 
 
2 See United States General Accounting Office (2004). 
 
3 The papers by Knowles et al. (2001) and Persico (2002) are noteworthy  exceptions to this separation between 
the literature strands on audit and scoring. They are about auditing strategies (more specifically automobile 
control by police officers) in a setting where auditors can condition the audit probability on the agents’ 
observable particulars and they focus on the detection of possible bias in the auditors’ behavior (e.g. racial bias 
in vehicle searches). The present paper focuses on the role of signals perceived by the principal when agents can 
defraud and on the design and the practical implementation of an optimal auditing strategy. 
 
4 See Picard (2000) for an overview. 
5 Crocker and Morgan (1997) have developed a costly state falsification approach to insurance fraud which has 
conceptual similarities with the models of costly state verification with audit cost manipulation. Other 
references on this issue are Crocker and Tennyson (2002), Picard (1996, 1999), and Boyer (2004). 
6 See Dionne and Gagné (2001, 2002), Derrig and Weisberg (2003), Artis et al. (2002) and Crocker and 
Tennyson (2002) for different econometric applications, and volume 69, no 3, of the Journal of Risk and 
Insurance, September 2002, for a state-of-the-art presentation of claims fraud detection methods. There is also a 
literature on the measurement of information problems in economic activity that interprets insurance fraud as an 
ex-post moral hazard problem. See Derrig (2002) and Dionne (2000) for comprehensive surveys. 
7 A similar result is obtained by Persico (2002) in a different context. He analyses the behavior of police officers 
who choose whom to investigate when citizens of two groups may engage in crime. The equilibrium search is 
obtained when both groups have the same fractions of criminals, while maximal search effectiveness usually 
entails different hit rates between the two groups. 
 
8 The indemnity B does not play any crucial role in the model (apart from affecting the equilibrium intensity of 
fraud) and B = 0 is a possible case. 
9 Hence we assume that the red flags cannot be manipulated by the defrauders. Note that such signals used in 
auditing strategy are usually kept as confidential by insurers. Characterizing an optimal auditing strategy under 
costly signal manipulation would be an important extension of the present analysis. 
10 We then have σi = (σi1, σi2,..., σik) for all i = 1, ..., ℓ with σij ∈ {0, 1, ..., Nj-1} for all j = 1, ..., k. 

11 For notational simplicity, we assume that f
ip and  n

ip do not depend on  θ . Our analysis can be 
straightforwardly extended to the case where signals are correlated with individuals’ types. 
 
12 Of course if n

ip  = 0 and f
ip  > 0 then the optimal investigation strategy involves channeling the claim to SIU (see the 

definition and the role of SIU hereafter) when σ = σi. Indeed the claim is definitely fraudulent in such a case. 
13 The only case where a random investigation may be optimal is for i  = i*(θ). 
 
14 Hence, we here disregard the fact that we may have q(θ, σi) < 1 when i = i*(θ ). 
 
15 In this specification of the model, ω may be interpreted as reflecting the difficulty to defraud rather than a 
psychological cost. 
 
16 Tables A and B in Appendix A4 show that the conditional correlations are very small in our data set. 

17 We here assume that ( ) ( ) ( ) ( ) )/()/( 1*1***
n
i

f
i

n
i

f
i pppp −−− θθθθ  is small enough for (28) to be implied by (20) 

and (27). 
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