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Abstract 

We examine the distributional impact of major dams on cropland productivity in Africa.  
As our unit of analysis we use a scientifically based spatial breakdown of the continent 
that allows one to exactly define regions in terms of their upstream/downstream 
relationship at a highly disaggregated level.  We then use satellite data to derive 
measures of cropland productivity within these areas.   Our econometric analysis shows 
that while regions downstream benefit from large dams, cropland within the vicinity 
tends to suffer productivity losses during droughts. Overall our results suggest that 
because of rainfall shortages dams in Africa caused a net loss of 0.96 per cent in 
productivity over our sample period (1981-2000).  However, further dam construction in 
appropriate areas could potentially lead to large increases in productivity even if 
rainfall is not plenty.   
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“One day every last drop of water which drains into the whole valley of the Nile…shall 

be equally and amicably divided between the river people, and the Nile…shall perish 

gloriously and never reach the sea” 

         Winston Churchville, 1908 

 

Section I: Introduction 

It is well known that many African economies are heavily reliant on rainfed rather 

than irrigated agriculture as a source of income.1 However, Africa is also one of the 

driest continents, characterized by a rainfall regime that is notably erratic, thus making 

drought and desertification a regular phenomena in the region. As a matter of fact, 

Barrios et al (200?) have shown that a lack of rainfall may have lowered agricultural 

production in Africa in the latter half of the 20th century by as much as 32 per cent 

relative to the rest of the developing world.2  Additionally alarming in this regard is that 

some climatologists predict that water scarcity on the continent is in the future likely to 

further increase.   It is important to note, however, that at least in terms of relative levels 

of overall freshwater resources Africa is actually not particularly bad off. As a matter of 

fact, its global share of freshwater is roughly equal to its global share of population 

(UNECA, 2005).  What makes Africa different to most other continents, though, is that 

due to its great geographical and climatic diversity water as a scarce natural resource 

is spatially relatively unevenly distributed. For example, there are large portions of the 

                                                 
1 For instance, the percentage of agricultural land irrigated in Africa is only about one eight of 
that of the rest of the world.  

2 Barrios et al (2009) find that indeed rainfall shortages have translated into gap between African 
growth and those in other developing countries by as much as 35 per cent.   
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region, such as along the central forest rainforest belt, which are particularly rich in 

precipitation, whereas others receive little or only very sporadic rainfall.3 Similarly, while 

Africa is home to some of the largest river systems and lakes in the world, these occupy 

only parts of Africa.  It is not surprising then that the construction of dams has had a long 

history of being promoted as a relatively affordable means to spatially re-distribute 

water across Africa from places of abundance to those in need.   More precisely, by 

storing freshwater resources during seasons and years of abundance, dams are seen as 

an attractive means to address the scarcity and unreliability of water on the continent 

and generate a dependable water supply.   

Despite the ability of dams to reduce relative water scarcity, Africa as a 

continent is generally viewed as still being far from its potential in this regard.4  For 

instance, there is about one dam to every 683,000 persons in Africa, where the 

equivalent figure for the rest of the world is 168,000.  Part of the reason for the relatively 

low level of dam infrastructure in Africa today is of course that the original enthusiasm 

for funding large dam projects by international donors has over time somewhat faded.  

More specifically, while early dam construction of the 20th century was undertaken by 

the former colonial powers, much of the financing for such projects since political 

independence has relied heavily on international donors; see Hathaway and Pottinger 

(2008). However, in the 1990s there emerged considerable concern about the fact that 

much of the actual distributional environmental and economic impacts of large dams 

                                                 
3 For instance, the Congo basin contains 30 per cent of total freshwater resources while 
harboring only 10 per cent of the continent’s population. 

4 UNECA (2005) argue that in Africa only about 5 per cent of its water management potential 
has been exploited.   
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had largely been ignored.  For example, in terms of agriculture, while large dams can 

clearly be beneficial in downstream regions by enabling irrigation, agricultural areas in 

the vicinity of dams may, in contrast, suffer due to displacement, flooding, increased 

salinity, waterlogging, and water restrictions.  This growing criticism eventually 

cumulated into the creation of the World Commission of Dams, which set up a 

committee to undertake a global review of their impact, and its judgment was in 

general rather damning.  For instance, it stated that “…a lack of equity in the 

distribution of benefits has called into question the value of many dams in meeting 

water and energy development needs when compared to alternatives” (WCD, 2000, p. 

XXVIII).    Nevertheless, while such harsh criticism resulted originally in many international 

donors, such as the World Bank, retreating from large dam financing, there appears 

more recently to have been a return in the interest in such large scale infrastructure 

projects.5   

Arguably one of the most important reasons behind the unresolved controversy 

of how desirable large dams really are is that the evidence on their distributional 

impacts is scant at best.  That is, while there are a number of case studies, the only 

comprehensive quantitative analysis is the innovative study by Duflo and Pander (2007).   

More specifically, Duflo and Pander (2007) set out to examine the distributional effect of 

large dams across districts in India.  Importantly, their results suggest that while 

downstream districts can benefit in terms of increased agricultural production from 

dams located upstream, dams appear to have no net effect on agriculture in the 

                                                 
5 For example, the World Bank launched its re-entry with its 2003 ‘high-reward/high-risk’ water 
sector strategy; see Hathaway and Pottinger (2008). 
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districts they are constructed in, but do amplify the effects of rainfall shocks.6  The 

authors thus argue that neither markets nor institutions have alleviated the adverse 

distributional impacts of dam construction in India. 

Given the differences in geography and policy contexts, it is of course not clear 

whether Duflo and Pander’s (2007) findings can be generalized to African agriculture. In 

this paper we thus explicitly set out to provide a first study of the impact of large dams 

in Africa, focusing specifically on the distributional effect in terms of cropland 

productivity.7  However, our contribution to the literature is not just limited to this aspect.  

More specifically, we also make a number of methodological contributions.  Firstly, 

Duflo and Pander (2007) examine the effect of dams only in terms of administratively 

defined regions. As we show here, these can at best only roughly provide a 

classification of upstream/downstream relationships of areas. We thus instead use a 

spatial breakdown of the African continent into upstream/downstream areas based on 

scientific elevation and river network data that is independent of any ‘administrative’ 

classification.   One problem of course with using a fairly disaggregated spatial unit of 

analysis, even if it were in terms administration units, is that particularly for developing 

countries consistent agricultural data tends to be sparse.  Our second contribution 

hence lies in using spatially detailed satellite derived information to identify cropland 

and proxy changes in its productivity over time.  Overall this provides us with annual 

                                                 
6 They  also find that dams generally increase poverty in the vincinity. 

7 One should note that dams may have many other purposes, such as generating hydropower, 
that need to be taken into consideration when assessing their overall potential benefits.  Our 
paper should thus be evaluated in terms agricultural production.   
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data of over 3,600 local areas covering a twenty year period (1981-2000) for which we  

can evaluate the distributional impact of large dams on cropland productivity in Africa.    

The results from our econometric analysis show that downstream areas in Africa 

can indeed benefited from large dams in terms of cropland productivity, while there is 

no similar effect on cropland located in the vicinity of the dam.   Moreover, one 

discovers that upstream dams can aid cropland in dampening the effects of a drought, 

particularly so if the upstream area is not experiencing a rainfall shortage as well. 

Croplands within the vicinity of the dam, in contrast, suffer productivity losses during a 

drought, possibly due to water restrictions.  Thus overall in Africa, and similarly to India, 

there appear to be clear winners and losers as a result of large dam construction, at 

least in terms of agricultural crops.    Some simple calculations reveal that, because our 

sample period was characterized by particularly stark water shortages, large dams 

have in net decreased annual cropland production by about 1 per cent, but that 

further construction of large dams in appropriate areas could potentially even in similar 

periods of drought increased productivity substantially.             

 The remainder of the paper is organized as follows.  In the following section we 

outline the general framework and challenges involved in estimating the distributional 

impact of dams on cropland productivity.   In Section III we introduce and describe our 

data sources.  Our instrumental variable strategy is outlined in Section IV.   Econometric 

results are provided in Section V. Section VI provides some simple back of the envelope 

calculations regarding the actual and potential aggregate impact of dams in Africa. 

Finally, the last section contains concluding remarks.   
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Section II: Empirical Framework 

Our main goal is to investigate the distributional impact of dams on cropland 

productivity in Africa, a task which inherently entails a number of conceptual, data, 

and estimation challenges.  For illustrative purposes of the underlying framework of the 

empirical approach we use to tackle these, we postulate the hypothetical case of a 

region consisting of agricultural plots and a river network, as shown in Figure 1.   In this 

context we then consider the potential impact of the construction of a dam on the 

main river in the location as shown.   

As can be seen our hypothetical region consists of 6 different agricultural plots, 

for each of which the nature of dam engineering and features particular to African 

cropland production imply a priori expectations regarding the impact of the dam.  

More specifically, Plot #1, is assumed to be located entirely within what is to become 

the dam’s catchment area.  In this regard, Duflo and Pande (2007) argue that one 

should expect that it is likely to lose productivity due to the dam.   This arises because 

water seepage from the reservoir and canal increases water logging and soil salinity.  

Moreover, there may be water restrictions in the catchment area to ensure maximum 

water storage in the reservoir.   

In contrast, in the command area agricultural land, Plots #2 and #3 in our graph, 

would be more likely to be able to enjoy the productivity benefits of irrigation, since the 

fixed costs of accessing irrigation within the canal network of the command area is 

generally cheaper than for other forms of water harvesting.  While we assume that 
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downstream Plots #5 and #6 are too far away to avail of the benefits of an irrigation 

canal network, this does not necessarily mean that they are unaffected.  As a matter of 

fact, Duflo and Pande (2007) note that potentially the beneficial effects of a dam may 

extend much further downstream from its command area if it is explicitly used to 

prevent floods and droughts by regulating the flow of water downstream, although 

there is a trade-off between these two goals.  In the African context, there is another 

important aspect to consider with regard to agriculture further downstream from the 

command area. More specifically, about half of Africa’s total wetland area is of the 

floodplain type8, and due to their extremely fertile soils9 these areas play an important 

role in local agriculture. 10  For example, most of the areas around major rivers in the 

Sahel region of West Africa, where a large part of African cropland is located, consist of 

extensive floodplains. In this regard, upstream dams can, by influencing the transfer of 

water and sediment downstream drastically, affect the inundation area and soil fertility 

of a floodplain; see Barbier (2002).  For example, Thompson and Polet (2000) have 

estimated that in part due to upstream water development the maximum extent of 

flooding in the Hadejia-Jama’are area in Nigeria has declined by about 60 per cent 

since the 1960s.  Thus in the context of our hypothetical example we postulate that the 

dam may very well also have a negative effect on plots #5 and #6.  Finally, one should 

                                                 
8 Floodplains are relatively flat areas adjacent to rivers created by sedimentary deposits of 
meandering channels as well as periodic flooding.  

9 As a matter of fact, Marchand (1987) finds that both in terms of water use and financial costs 
traditional African floodplain exploitation compares very well with modern irrigation schemes.  

10 Some cover several thousand squared kilometers in area, such as, for instance, the Inner Niger 
Delta in Mali and the Kafue Flats in Zambia, amongst many others. 
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expect plot #7, which is not downstream to the dam, to experience no change in 

productivity.      

Our simple example makes it clear that in order to completely disentangle the 

distributional effect of a dams on cropland productivity one would ideally like to know 

the location of dams, the spatial extent of its catchment and command areas, as well 

as what agricultural plots lie further downstream.  Unfortunately, detailed 

comprehensive spatial data on dams’ catchment and command areas do not 

actually exist in the African context.11  Nevertheless, one can still investigate 

distributional effects if one knows the location of a dam and the location of croplands 

in terms of their downstream relationship to dam, and then makes some reasonable 

assumptions with regard to the likely spatial extent of the command and catchment 

areas.  In terms of our hypothetical example we can illustrate this by assuming a spatial 

breakdown of our area in terms of a upstream/downstream relationship of sub-regions 

according to the river network, as shown in Figure 2.  Accordingly, Quadrant I lies 

immediately upstream to Quadrant III (and hence Quadrant III immediately 

downstream to Quadrant I).  Similarly, Quadrant IV, although not neighboring on 

Quadrant I, lies (further) downstream from it.   In contrast, while Quadrant II neighbors 

on Quadrant I it lies neither down- nor upstream from it, but is instead upstream from 

Quadrant IV.  One should note that here we have also made the assumption that the 

command area lies completely within the area that the dam is located in.  We also are 

postulating that both the dam’s own as well as a downstream region may contain 
                                                 
11 As a matter of fact, we know of no other country, let alone continent, where such 
comprehensive spatial data would be available for all dams.  This problem was similarly faced 
by Duflo and Pande (2007). 
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some of its command area.  In other words dams are not necessarily always located on 

the border of where one area is downstream to another.  We shall address these two 

aspects in the next section.   

What would one then expect the net impact of a dam constructed in Quadrant 

I on agriculture in all quadrants to be?  Clearly Quadrant II, which although neighboring 

is neither up- nor downstream, should be unaffected.   For the dam’s own quadrant the 

net a priori effect would be ambiguous since we assume that it contains all of the 

catchment as well as part of the command area.  In the immediately downstream 

Quadrant III there are again two opposing effects. First, there is the productivity boost 

for land located within the command area.  However, whether the overall a priori 

expected effect is positive will depend on whether other agricultural land that is not 

part of the command area is negatively affected – as, for instance, when it is of the 

floodplain type.  Thus even for the area immediately downstream, i.e., Quadrant III, the 

net effect is a priori be ambiguous.   Finally, even in the further downstream Quadrant 

IV, the effect will be ambiguous since dams may be used to prevent floods and 

droughts in these areas, but changes in the river flow may also negatively affect the 

productivity of floodplain cropland.12 

From the discussion thus far it becomes clear that our task, in the face of no 

exact spatial information dams’ command and catchment areas, reduces to 

disentangling the effect on cropland productivity of dams located both within its 

                                                 
12 One should note that Duflo and Pande (2007) argue that net effect of the downstream area 
will be unambiguously positive, while they do not consider any impact further downstream from 
dams.  The key difference is that they do not consider floodplain agriculture as would be 
important in Africa.  
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vicinity and upstream from it.   This translates into the following econometric 

specification: 

Pit = α + β1DAMSit + β2UDAMSit + β3Xit + εit        (1) 

where P is region i’s cropland productivity, DAMS refer to the number of dams within the 

region, UDAMS are the number of dams that are located upstream from i, X is a vector 

of other explanatory variables, and ε is the unexplained error term.  As noted above, a 

priori the expected signs of the coefficients β1 and β2 are ambiguous and an empirical 

matter.   

While at first look simple, estimation of (1) in the African context, however, 

requires a considerable number of challenges.  Firstly, one requires geo-referenced 

data of African dam location.  Secondly, one needs to be able to correctly classify 

Africa into regions with reference to their upstream/downstream relationship.  Within this 

spatial breakdown on then needs to identify areas of interest, namely those used for 

cropland production and find some proxy of productivity for these.  Finally, from an 

estimation point of issue, it is unlikely that dams were randomly allocated across the 

African content. Rather dams are likely to have been strategically placed according to 

cost-benefit considerations, as well as influenced by political factors.   In this regard, a 

simple OLS regression of (1) is likely to produce biased and inconsistent estimates of β1 

and β2 unless one has enough information to include all relevant factors in X.  Our 

strategy in overcoming the all data challenges is the subject of the next section, while 

we outline our instrumental variable strategy in Section IV.   
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Section III: Data 

A. Dams 

In order to identify and geographically place dams on the African continent we 

use FAO’s African Dams Database, which is a geo-referenced data base of large 

dams13, providing the exact latitude and longitude of location, and is based on 

information taken from the World Register of Dams, national reports, national experts, 

and the internet.  Dams are considered to be ‘large’ according to the ICOLD definition, 

i.e., with a height of at least 15 meters or, if smaller, with a reservoir capacity of at least 

3 million m3.  The raw database consists of a total of 1138 geo-referenced dams, but for 

145 these there was no recorded date of construction/completion.  Where possible we 

completed the missing information from updated ICOLD data and internet searches, 

leaving us with a total of 1032 dams for our analysis.  The database also contains 

information on the major purpose(s) of the dams for 75 % of our sample.  In this regard, 

65% have irrigation listed as at least one of their major purposes, while for 15% 

hydropower is one of the major purposes.  One may want to note, however, that even 

for those dams that did not have irrigation listed as one of their major purposes, for the 

ones for which we could find additional information on the internet, irrigation always 

was an additional side product.  There was also similar evidence for those dams that 

did not have a major purpose listed in the FAO database.  We will thus operate under 

the assumption that all dams are likely to fixed costs of an irrigation system in their 

                                                 
13 In order to identify dams the FAO resorted to The World Register of Dams, national reports, 
information obtained from national experts, and the internet. 
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command areas, although we do investigate this further using the information in the 

database on their major purpose(s). 

We depict the location of the 1032 dams in Figure 3. As can be seen, these are 

not equally spatially distributed, with most located in the western-southern, central-west 

or eastern-north parts. One may want to also note that there are many areas 

containing larger rivers and lakes in which there are no dams in proximity. 

B. Spatial Unit of Analysis 

As outlined earlier, being able to properly quantify the distributional effect of 

dams crucially depends on being able to identify how areas are interlinked in terms of 

the flow of water, i.e., that is being able to denote which areas are up- and which are 

downstream from each other.  One possibility is to simply use an administrative areas 

and classify these accordingly.  This is exactly what Duflo and Pande (2007) do for their 

Indian study under the justification that visual inspection of available dam command 

and catchment maps revealed that most catchment areas of are contained within 

Indian districts they are located in.  However, there is no a guarantee that one can 

apply a similar classification by administrative areas in the African case. For instance, 

visual inspection of administrative regions in Africa at the same level as Indian districts14 

reveal that many borders of regions run at least partially along rivers – see, for example, 

the case of the southern African tip in Figure 4.15 If one considers such a case in terms of 

our hypothetical example of Figure 1 where the area would be broken up into two 

                                                 
14 Administrative Level 2 of the GAUL system.  

15 This is true at both national and sub-national levels. 
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regions along the main river, then it becomes clear that it would be difficult to say 

anything about a priori expectations regarding distributional effects or what any found 

effects would mean in terms of identifying losers and winners. More specifically, in our 

case both areas contain parts of both the catchment and the command area, as well 

as the potentially affected plots of floodplain agriculture downstream.  Moreover, plot 

7, which is neither up- nor downstream, i.e., no part of the river network in question, 

would be included as a potentially affected in the analysis. 

As an arguably superior alternative we thus here use a spatial breakdown in 

terms of upstream/downstream relationships that is based on actual river flow data. 

More precisely, we use information from the HYDRO1K data set, which was developed 

by the U.S. Geological Survey’s Data Center and is a geographical database providing 

a number of derivative products commonly used for hydrological analysis and is 

derived from 30-arc second digital elevation model.  For our purposes we use the 

drainage basin boundaries data, which breaks each continent into individual drainage 

basins as derived from the vector stream networks and flow direction data.  At its most 

disaggregated level this involves dividing the African continent into 7131 6-digit 

drainage basins, with an average area of 4,200 km2.  Each basin also assigned a 

Pfafstetter 6-digit code which allows one to determine whether it is upstream, 

downstream or not related to another basin in the data set. 

We depict the spatial breakdown of the African continent according to our 6-

digit basins in Figure 5.  Accordingly, basins vary greatly in shape and size.  Moreover, 

many basins cross national borders.   As a comparison, we depict these also jointly with 

the outline of the administrative units in the Southern African tip, as shown in Figure 6.  
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As can be seen, there is little correspondence between the two.   This of course may just 

be a feature of Africa and we hence in Figure 7 also depict the comparison of a 6-digit 

Pfaffstetter code breakdown of Southern India in conjunction with the district spatial 

disaggregation used by Duflo and Pande (2007).  As with Africa a similar picture 

emerges, where at least visually there appears to be no obvious correspondence 

between the two spatial classifications.   

Finally, in terms of the a priori expectations regarding the impact of dams within 

our empirical framework we made the assumptions that dams were generally not 

located exactly on the border of basins and that the catchment area was usually 

contained within a dam’s own vicinity. With regard to the former, while not shown here, 

a closer look at our sub-basins in conjunction with the plots of dams revealed this almost 

always to be the case.  For the latter assumption we examined specifically South Africa 

which, as far as we know, has the only available spatial data of reservoirs for some 

large dams.  For these we found that in most cases the catchment area was indeed 

generally the case.16    

C. Cropland Productivity 

Given our spatial regions we need to find proxies of cropland productivity with 

these.  Unsurprisingly, agricultural measures of cropland productivity, such as crop 

yields, collected by statistical agencies or independent surveys to such a fine spatial 

extent with any meaningfully large coverage and over any sufficiently long time scale 

                                                 
16 Detailed plots of these checks for both assumptions are available from the authors upon 
request. 
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are essentially non-existent for Africa.  We thus proceed to construct a proxy for local 

cropland productivity by using two satellite data sources.  The first is the Global Land 

Cover 2000 data set (GLC 2000) which allows us to identify cropland locally within 

Africa.  This data classifies land cover across the globe into 22 distinct land cover 

categories based on 14 months (1 Nov. 1999 - 31 Dec. 200) of daily 1-km resolution 

satellite data acquired over the whole globe by the VEGETATION instrument on-board 

the SPOT 4 satellite and delivered as multi-channel daily mosaics ("S1" format).  We used 

land cover categories (i) cropland (upland cropland or inundated/flooded crops), (ii) 

mosaic of cropland / shrub or herbaceous cover, and (iii) mosaic of cropland / tree 

cover / other natural vegetation to identify cropland area within our river basin 

breakdown.  One should note in this regard that 49% of the 6-digit code basins did not, 

according to the GLC2000, contain any cropland.    

We depict the cropland areas in Figure 8.   It becomes apparent that much of the 

cropland lies within the semi-arid belt just outside the equator, where rainfall is known to 

be erratic.  This is mostly due to the fact that in the more rainfall plenty zones humidity is 

high and hence would make agriculture extremely susceptible to diseases, while in the 

arid zones rainfall is too scarce; see Barrios et al (2009).  One may also want to note that 

most dams are located near areas designated as cropland.  

It is of course important to point out the possible drawbacks of using this satellite 

data to identify cropland in our analysis.  For one, given that the classification is at a 

1km resolution, it is likely that one is only capturing larger cropland areas and not small 

farming.  Moreover, the fact that this data is only available for 2000 means we cannot 

capture any changes in cropland area over our sample period.   It would be difficult a 
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prior to determine what kind of bias this might create in our estimated distributional 

impact.  In some areas farmers may cease to plant crops if a dam had reduced crop 

land productivity enough, which would tend to underestimate the negative impact of 

cropland productivity captured using the time invariant 2000 classification.  In other 

areas, in contrast, the access to irrigation may induce an expansion of area used for 

crop production. However, whether this would tend to over- or underestimate the 

positive impact of a dam will depend on what the use of the expanded area was prior 

to its agricultural cropland classification in 2000. 17          

Given our identification of land as cropland we next need to find some measure 

of its change in productivity over time.  In this regard we resort to the concept of ‘net 

primary production’ (NPP).   More specifically, ‘production’ here refers to the creation 

of new organic matter. For example, when a crop of wheat grows, new organic matter 

is created by the process of photosynthesis, where light energy is converted to energy 

stored in plants, in turn spurning plant growth. ‘Gross primary production’ (GPP) then is 

the rate at which an ecosystem’s producers convert solar energy into chemical energy 

as biomass.  Since plants use some of their energy for respiration, the amount of energy 

available for energy consumption by consumers is just gross primary production minus 

respirations costs, i.e., ‘net primary production’, usually measured in terms of 

kcal/m2/year.  In essence NPP quantifies the conversion of atmospheric CO2 into plant 

                                                 
17 If, for example, the area was forested land beforehand, which tends to have higher NPP 
values than cropland areas, then this would induce a downward bias.  
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biomass and the resultant values can then serve as a proxy of cropland productivity.18 

As noted by Hicke et al. (2004), one of the advantages for using NPP to proxy cropland 

productivity over large areas and over time is that it, unlike economic data, provides a 

common metric among different crop types, thereby facilitating comparisons and 

aggregation over all crop types.  One may also want to note that NPP can change in 

response to shifts in different crops, changes in crop management practices (ex: 

fertilization, irrigation, pest management etc.), and climate (ex: precipitation, 

temperature, solar radiation). 

With no ground level measurements available we here use NPP values derived 

from satellite images on spectral reflectance of terrestrial vegetation.  The physical basis 

for the observed correlation between spectral reflectance and NPP is the existence of 

a relationship between spectral reflectance and the absorption of solar radiation by 

vegetation canopies, and in turn the link between the amount of absorbed 

photosynthetically active radiation and its utilization for NPP.19, 20 Our source of data are 

the MOD17A2 annual NPP measures derived from observations of the Moderate 

Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System 

(ES) Terra satellite.   More precisely, the Earth Observing System Data Information System 

                                                 
18 Examples include Heinsch et al (2005) and Hick et al (2000a, 2000b).  One should note that 
there are also numerous studies have used actual crop yield data to derive NPP estimates; see, 
for instance, Monfreda et al (2008) and Veron (2002) to name a few.   

19 This relationship was first noted by Monteith (1972). 

20 It is of course of interest to know how well satellite derived measures of NPP are able to 
approximate their from ground data computed alternatives.   In this regard, Lobell et al. (2002), 
for instance, have shown that there is good agreement between yield and satellite derived 
estimates of NPP for the US. 
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(EOSDIS) computes calibrated and atmospherically corrected reflectances from each 

spectral channel of the MODIS sensor for each cloud free pixel.  The conversion of these 

to NPP values then rests on annual estimates of the biome type, weekly information on 

the fraction of photosynthetically absorbed radiation, daily surface climate conditions 

and the complex ecosystem model BIOME-BGC.  Global data at the 1 km spatial level 

for NPP is available on annual basis for the period 1981 to 2000. 

We provide a graphical depiction of NPP on the African continent in 2000 as 

derived MODIS in Figure 9.  Unsurprisingly, the relative level of NPP corresponds fairly well 

to the aridity distribution shown in Figure 10.  As a sample of the temporal variation of 

NPP in terms of using it as our measure of cropland productivity we also show its 

distribution in these areas for the Central Western Aridity belt for the years 1988 and 

2000.   As can be seen, the values of NPP where in the relatively dry years of the late 

1980s visibly lower than in the rainfall plenty year of 2000.   

D. Other Explanatory Variables (X) 

Given the lack of regional data and our particular spatial classification the 

control variable that we can include in X in (1) we were able to calculate on a 

consistent and time varying basis was population density.  The population data used in 

the analysis is derived from the African Population Database (APD), which provides 

data on the spatial distribution of population of the region for 2.5 minute grid cells for 

1960, 1970, 1980, 1990, and 2000.  Using these cells we calculate population densities 

within each of our spatial 6-digit Pfaffstetter coce units for 1980, 1990, and 2000, and 

then interpolate these linearly to arrive at annual figures.     

ha
l-0

03
92

38
1,

 v
er

si
on

 1
 - 

7 
Ju

n 
20

09



19 

 

E. Summary Statistics 

The data restrictions given above imply that we have a total of 3619 spatial units for 

which we were able to identify at least some cropland and for which we could 

calculate annual cropland productivity over the 1981 to 2000 period.  Summary 

statistics for the variables described above for this sample are given in Table 1.  As can 

be seen the NPP of cropland has a mean of 1287, but is characterized by considerable 

variation.  One also finds that on average 21% of regions with cropland have at least 

one dam within their area, while 7% have a dam upstream.   Finally, population density 

is on average about 21 per km2, although the fact that the standard deviation is four 

times the size of the mean suggests that this varies substantially across space.   

 In Table 2 we also provide summary statistics for the value of NPP of regions, 

classified according to whether they have dams in their own area and areas upstream.   

As can be seen, the lowest average NPP is found in regions that have both own area 

dams as well as dams located upstream, whereas highest average values are found in 

areas with local dams, but none upstream.  In all cases, however, the large standard 

deviation relative to the mean suggests considerable variation.    

 

Section IV: Instrumental Variable Strategy 

As noted earlier one of the problems in estimating the effect of dams on 

cropland  productivity is that dams are unlikely to be randomly allocated across 

regions, hence creating a potential endogeneity problem.  While in a panel context, as 

we have here, regional fixed effects will allow one to take care of any time invariant 
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observables, we have, except for a local population proxy, no other control variables 

that might determine dam location.  In their study of Indian districts Duflo And Pande 

(2007) address this endogeneity problem by using the share of dams located in a state 

(which is at a more aggregate level than districts) prior to their sample period and 

multiplying this by the total dams in India. They then regress the district level of dams on 

this state level variable interacted with district level river gradient indicators to predict 

arguably ‘exogenous’ district level dam construction proxies.   One should note in this 

regard that they use the river gradient proxies on the grounds that certain river 

gradients are more appropriate to dam construction than others.  In contrast, the use of 

state share of dams implicitly assumes a state level variation in the policy of dam 

allocation, that this can be proxied by the ex-ante state share interacted with time 

dummies.   

A. Policy Context 

In contrast to Duflo and Pande (2007), we in this paper take advantage of an 

explicit policy context driving local major dam construction on the African continent to 

build an instrument for dam location.  More specifically, it is well known that water as a 

resource in Africa is of a transboundary nature.   For example, every country on the 

African continent has territory in at least one transboundary river basin21 and these 

basins cover over 60 per cent of Africa’s total land area.  It also appears to be a stylized 

fact that “internal water is a resource whose characteristics tend to induce 

                                                 
21 Transboundary river basins are equivalent to one and two digit Pfaffstetter code classifications 
in the HYDRO1K data set. 
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cooperation” (Wolf and Hammer, p. 66), and Africa, despite its well known high 

incidence of civil and international conflict, is no exception in this regard.22   

Focusing specifically on dam construction, arguably a substantial proportion of 

this was  preceded by the establishment of transboundary river basin treaties and 

authorities.  This arises, as noted earlier, from the very nature of water as a 

transboundary resource in Africa.23  As such the earliest such water related 

transboundary agreements coincided with the period of European colonization of the 

continent,.  For example, the Exchange of Notes between the British and Italian 

Governments respecting the Regulation and Utilization of the Waters of the River Gash 

explicitly focused on water sharing for irrigation projects.24  The use of treaties to deal 

with the management of water resources then carried on into and accelerated with 

the beginning of political independence for many African countries in the late 1950s.   

One may want to note that, in contrast to the treaties signed in the colonial period, 

where most focused on the division of water resources or encouraged construction of 

dams, those of the early independence period tended to emphasize more general joint 

management and water development by establishing specific water management 

institutions, general known as river or basin authorities/commissions/organizations. 

However, even within these more general terms dam construction tended to an 

                                                 
22 For example, if one uses data from the International Water Events Database, which has 
meticulously compiled all water related international ‘events’ and classified these on a ‘good’ 
and ‘bad’ scale since 1950, then in Africa those that are positive events clearly outnumber those 
that are negative in essentially every year. 

23 See Lautze and Giordano (2005) for a more detailed account of the history of transboundary 
water agreements in Africa. 

24 See Lautze and Giordano (2005) 
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important component. For example, in their review of the evolution of transboundary 

agreements Lautze and Giordano (2005) note that about three quarter of the treaties 

explicitly cited dam construction to facilitate hydropower development and/or 

expansions in the area of irrigated land as a goal.  The post-colonial period also 

coincided with a considerable geographic expansion of the agreements.25        

Of course one may ask oneself what the incentives were for using transboundary 

agreements to predate dam construction in Africa.  As argued by Dinar (2008), there 

are a number of reasons rationalizing cross-national cooperation through the use of 

transboundary agreements in terms of managing water resources.  Firstly, there is often 

no clear division even within river basins of one country as upstream or downstream to 

another if they share more than one river.  However, even if a state is more or less 

upstream to another it may have an incentive to cooperate with its downstream 

neighbor in dam construction.  For instance, landlocked countries, as many are in 

Africa, may be able to gain navigational rights to offset the upstream advantage.  

Treaties and organization may also ensure that an upstream state can guarantee side 

payments for the benefits of dams that accrue to the downstream nation.26 

Furthermore, dam construction as a result of cooperation can resolve funding 

problems. For instance, downstream nations may be willing to share a large burden of 

                                                 
25 As noted by Lautze and Giordano (2005), the treaties in the colonial period covered only 7 
transboundary basins, with more than half specifically dealing with the Nile river basin. 

26 For instance, under the Lesotho Highland Water Proejct South Africa (LHWP) bears the full cost 
relating to water delivery while Lesotho pays of the cost of the hydropower component, which is 
about 5 per cent of the total cost of the LHWP.   
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the costs if they are the ones to benefit the most.27    Perhaps even more importantly in 

this regard, transboundary cooperation generally served as a prerequisite for funding 

from multilateral organizations for dam construction.  As a matter of fact, in early 

periods of dam construction, the big dams in Africa were primarily financed by the 

World Bank which viewed transboundary cooperation generally as a prerequisite for 

receiving funds; see Hathaway and Pottinger () and Lautze et al (2005).28  29  Finally, as 

shown by Bhaduri and Barbier (2008) in a political altruism model, that an upstream 

country may be willing to participate in transboundary water sharing with a 

downstream country of this ensures a good political relationship between the two. 

B. Construction of Instruments 

In order to construct a quantitative measure of the policy context of 

transboundary water related agreements we avail of two databases that have 

specifically compiled more or less comprehensive information on water agreements 

and the establishment of river basin authorities with regard to Africa. The first is the 

International Freshwaters Treaties Database, which provides a collection of international 

freshwater related agreements since 1820, providing summaries of these, as well as 

                                                 
27 Again, the LHWP serves as a prime example of such a case. 

28 The first dam to be officially financed by the World Bank was the Kariba Dam in Zimbabwe in 
1959.  While the World Bank continues to play an important part in financing of dams in Africa, 
there are now also a number of other multilateral donor organization actively involved. 

29 For example, the World Bank (1995) has explicitly state as a policy objective that “…(it) 
attaches the utmost to having riparians enter into appropriate agreements” and that “..(a 
country) proposing to execute any project which will regulate, abstract or otherwise change 
river flows must notify co-riparian states of its intentions so that each state may consider whether 
it wishes to lodge an objection”.   
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coding them according to the year signed and the river basin and countries involved.30    

We additionally use information from the database on the historical agreements of the 

formation of transboundary river basin organizations in Africa compiled by Bakker 

(2006).   Combining these two data sources reveals a total of 98 treaties/agreements 

involving 53 countries and 59 basins since 1884.   We depict the 59 basins that are 

involved in these in Figure 11.  There are two noteworthy features in this regard.  Firstly, 

as emphasized earlier, the river basins are clearly transnational, cutting generally across 

several countries.  Secondly, their size, and hence their potential extent of coverage, is 

at a substantially larger scale than the individual regions that we use as our 

geographical unit analysis to identify up- and downstream relationships. With regard to 

the latter one may want to note that examination of the individual agreements shows, 

as mentioned earlier, that most only cover a sub-portion of countries that have at least 

some part of their territory within a basin. Moreover, the group of countries involved in 

any agreement pertaining to a particular river basin varies considerably over time.   

Within our constructed database, an agreement on average 245 Pfaffstetter 6-digit 

code regions, where the minimum and maximum number are 2 and 1054, respectively.   

We depict the historical evolution of the number of agreements and dams 

constructed since 1920 in Figure 12.  As can be seen, both the number of agreements 

signed and dams constructed have increased in a roughly similar pattern over this 

period.  Moreover, it is appears that at least in aggregate for many segments of time a 

rise in the number of dams constructed is preceeded by the number of treaties signed.   

                                                 
30 See http://www.transboundarywaters.orst.edu/database/interfreshtreatdata.html 
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As an indicator of relevant agreements in place for a specific spatial unit we use 

a five year moving average of the total number of agreements covering it.   We use a 

moving average since it is not a priori clear how quick of an effect a transboundary 

agreement might have on local dam construction.  Our choice of five years in this 

regard is based on the fact that in general the construction of a dam is generally 

completed within five years, although we do experiment with longer moving averages.    

As argued and shown by Duflo and Pande (2007), the river gradient of an area is 

an important determinant of its suitability for dam construction.   Specifically, the 

authors note that there is a non-monotonic relationship between the river gradient and 

the likelihood of irrigation dam construction, where low gradients are best for purely 

irrigation dams and higher gradients more conducive to hydroelectric dams.  Such 

engineering considerations are of course also likely to have played an important role in 

Africa.  As in Duflo and Pande (2007), we use gridded elevation data31 or each spatial 

unit we isolate the cells through which rivers flow and calculate the fraction flows whose 

gradient is flat (1.5 per cent), moderate (1.5-3 per cent), steep (3-6 per cent), and very 

steep (above 6 per cent).    

 

Section V: Econometric Results 

A. First Stage Regressions 

                                                 
31 We use the elevation data from the HYDRO1K data set which provides elevation data in terms 
of mapping Africa into 1km*1km cells. 
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As argued earlier, the location of dams is unlikely to be random and we hence 

instrument for this using the African policy context and geographic features.  The results 

of various specifications of regressing local dam construction on transboundary 

agreements are given in Table 3.32  One should note that given the spatial nature of our 

data we calculate standard errors using the nonparametric covariance matrix 

estimator proposed by Driscoll and Kray (1998), which produces heteroskedasticity 

consistent standard errors that are robust to very general forms of spatial and temporal 

dependence.33  In the first column we first only include the five year moving average of 

the cumulative number of treaties which cover the region.   Reassuringly, the 

coefficient on this variable is positive and significant, suggesting that treaties at the 

basin level increase the number of dams constructed in our spatial regions.  In the 

second column we then interact the treaties coverage proxy with our three river 

gradient dummies, where the excluded category pertains to regions whose average 

gradient is below 1.5 per cent.  Accordingly, all interaction terms are significant, 

indicating that the effect of treaty coverage has a greater effect on regions with 

gradients that are not very flat.  If one compares the coefficients across interaction 

terms, their size shows that this additional effect is more than twice than for the low and 

medium river gradient interaction terms.  This latter result may not be surprising given 

that most of the major dams in Africa appear to be multi-purpose and that, as noted 

                                                 
32 One should note that we use the full sample of 6 digit level areas in this first stage regression 
since many of the dams are multi-purpose rather than just solely meant for irrigation for 
agricultural land.  However, doing so for the restricted sample of areas with cropland, as 
determined by the GLC data set, provides similar results.    

33 We allow for an autocorrelation structure for up to 4 lags, although altering this made no 
qualitative difference in our results. 
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earlier, high gradient areas may be most suited for purely hydropower dams. For 

example, when one re-runs this specification only for dams for which hydropower was 

listed as one of the major purposes, one finds that the interaction term with the high 

category gradient is more than twice that of the low gradient category.34    In the third 

colum we also experimented with using a 10 year moving average of our treaties proxy.   

As can be seen, although the resultant coefficients are qualitatively similar, their size is 

noticeably smaller.   This provides support for using a rather short-term effect of treaties 

on dam construction.       

B. Second Stage Results 

Results for estimating our main equation (1) are given in Table 4.35  We first use the 

actual own area dam and upstream dam numbers under OLS, as shown in the first 

column.  Accordingly, both own area dams and upstream dams have a positive and 

significant effect on cropland productivity, although the coefficient on the latter is 

nearly six times larger than the former.  Introducing fixed effects, as shown in the second 

column renders the effect of own area dams insignificant, however.  Moreover, the 

coefficient on UDAM is reduced by nearly 40 per cent.  This suggests that time invariant 

unobservables that determine both dam location as well as crop productivity are likely 

to be important.  We next proceeded in using our predicted values of DAM and UDAM 

as obtained from the second column of Table 3.  While using the predicted own area 

and upstream dam numbers under a fixed effects estimation, as generated from the 

                                                 
34 Detailed results are available on request. 

35 As for the first stage regressions we use the Driscoll and Kray (1998) adjusted standard errors. 
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estimation in the second column of our second stage results shown in Table 3,  

produces qualitatively similar results to the simple fixed effects estimations, notably the 

coefficient on UDAM is more than twelve times larger. This suggests that not controlling 

for other time varying factors that are correlated with both dam location and cropland 

productivity will tend to produce a substantial downward bias in the effect of upstream 

dams.   One may want to note that our results in line to those of Duflo and Panda (2007) 

in that we find that a net zero own area effect, but that dams located upstream can 

aid local agriculture.    

C. Robustness Checks 

We next proceed to undertake a number of robustness checks as shown in Table 5.  

First we experiment with using values for DAM and UDAM predicted from the 10 year 

moving average of cumulative treaties and gradient interaction terms taken from the 

third column of Table 3.  Accordingly, the results are very similar, producing a slightly 

lower coefficient for UDAM, suggesting again that our T(5) measure provides a better fit 

for explaining dam location.   In the second column of Table 5 we additionally included 

the predicted number of dams of neighboring non-downstream, non-upstream regions 

into our base specification, which, in terms of our hypothetical example shown in Figure 

would constitute examining the effect of the dam on agricultural productivity in 

Quadrant II.   Accordingly and as would be expected, it is only dams in upstream areas, 
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that is areas from which rivers provide water to the area in question, that have an effect 

on local cropland productivity. 36    

Thus far we have restricted our analysis to the effect of dams located immediately 

upstream, i.e., in neighboring upstream areas.   As argued earlier, a dam may feasibly 

have much more fareaching impact.  To investigate this we additionally include in the 

subsequent column the number of (predicted) dams in areas that are immediately 

upstream to the upstream areas.  However, as can be seen, unless cropland is 

immediately downstream, it is not affected by upstream dams.37    

Finally, we also attempted to indirectly explore whether our identification of 

cropland from the GLC 2000 database is appropriate for our purposes by re-estimating 

our base specification for the mean NPP value of all other non-cropland areas within a 

spatial unit.  One should note that a significant positive coefficient on the UDAM 

variable could in two, not necessarily mutually exclusive, ways.   Firstly, it might imply 

that cropland as capture by the GLC 2000 data does not sufficiently capture all 

cropland affected within a region.  Secondly, one should note that we are implicitly 

assuming that cropland is potentially affected by upstream dams via improved 

irrigation.  Assuming that our cropland designation is relatively accurate, then a positive 

effect of upstream dams on local non-cropland areas would suggest that upstream 

dams may have a more general effect on NPP regardless of whether the land is used 

                                                 
36 Including dams from downstream areas did not change the insignificance of the 
corresponding coefficient on this variable. 

37 Proceeding to include dams located even further the upstream ‘chain’ of areas similarly only 
produced insignificant effects – detailed results are available upon request. 
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for cropland or not.   In contrast, a negative coefficient on UDAM might imply that 

upstream dams disrupt the natural water flow system enough to have detrimental 

environmental effects on non-cropland areas.   A similar line of reasoning could be 

employed for the interpretation of a significant coefficient on DAM.   However, as 

shown by the last column in Table 5, using values NPP of non-cropland areas as the 

dependent variable for regions shows no significant effect of dams, either own region 

and upstream. 

D. Droughts 

An important argument for constructing dams in Africa is that Africa as a continent is 

particularly prone to spells of drought.  Dams may in this regard through their water 

storage capacity ensure the supply of water to those areas of need.  In order to assess 

whether major dams in Africa have been successful in doing so over our sample period 

we first need to identify drought events.  Our data source for this is the Inter-

Governmental Panel on Climate Change (IPCC) data climatic set, which provides local 

monthly precipitation measures at the 0.5 times 0.5 degree level since 1901 and allows 

us to calculate mean monthly values for our hydrological regions.  In order to define 

periods of local drought we first calculate the standardized precipitation index (SPI), 

which is argued to be particularly good at capturing the cumulative effect of reduced 

rainfall over time in chosen locality.38, 39    Following McKee et al. (1993) we define a 

                                                 
38 The calculation of the SPI is based on modeling the probability distribution of precipitation as 
derived from long term records by fitting these to a gamma distribution via maximum likelihood.  
An important component in this regard is the chosen time scale.  Since we are interested 
cropland productivity and soil moisture conditions are known to respond to precipitation 
anamolies over a relatively short time period we use a 12 month scale.  See 
http://www.drought.unl.edu/whatis/indices.htm.   
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drought event as starting when the SPI reaches an intensity of -1.0 or less and as ending 

once the index become positive again.   As the summary statistics in Table 1 show, on 

average over our sample period the hydrological regions with cropland were in a 

period of drought 68 per cent of the time.40   

In the first column of Table 6 we include a dummy taking a value of one when a 

region is in drought and zero otherwise into our base specification.  As would be 

expected, the negative and significant coefficient suggests that droughts reduce net 

primary productivity.   Taken at face value, in a period of drought the log of NPP 

reduces by 3.3 per cent.  We next interacted our predicted dam variables with the 

drought dummy in order to see if dams can help alleviate the negative effects of water 

shortage during such periods.  As can be seen from the second column, while there is 

no additional positive effect of upstream dams during times of drought, own area dams 

act to decrease cropland productivity when a drought occurs.  This latter effect might 

potentially be due to the possibility that dams place particularly severe water 

restrictions in areas near the dam.    

One problem of course in trying to disentangle the potential role of upstream dams 

in alleviating the negative effects of drought cropland is that although precipitation 

varies regionally, there still tends to be a strong regional correlation of precipitation 

                                                                                                                                                          
39 One may want to note that the SPI is now used widely to identify droughts in Africa as, for 
instance, by the South African Weather Service. 

40 One should note that particularly the 1980s constituted a period in which continental wide 
rainfall was at its all time low compared to the rest of the 20th century.    
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patters.41  In other words, if there is a simultaneous water shortage in areas upstream, 

any additional water stored may already be at a low value or needed for alternative 

uses, such as for the generation of hydropower.   To investigate this we summed the 

number predicted dams in regions upstream only if these were not in a period of 

drought as defined above.  The results of including this variable, UDAM(NDR), are given 

in the third column of Table 6.   Accordingly, upstream dams located in regions that are 

not experiencing a drought induce a significant additional (to the average) 47 per cent 

effect on cropland productivity.   In the last column of the table we then interacted 

UDAM(NDR) with our drought dummy of the region.   As can be seen, while the 

coefficient on UDAM and the interaction of DAM and DROUGHT remain significant, the 

coefficient on the interaction between DROUGHT and UDAM(NDR) is also significant.  

This suggest that when a region experiences a drought, upstream dams can only help 

buffer the negative shock when they are themselves in a region that is not experiencing 

rainfall shortage.    

E. Dam Purpose 

Thus far we have considered dams as a homogenous group, in part because 

information on their main purpose(s)as provided in the data is less than complete, and 

in part because the data available and internet searches indicated that most are multi-

purpose dams enabling at least some sort of irrigation.   Nevertheless one might expect 

dams whose explicit major purpose (although possibly among several) is for irrigation to 

have a greater impact on cropland productivity.  To explore this we divided all dams in 

                                                 
41 See, for instance, Barrios et al (2009). 
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our data into those which have irrigation listed as a major purpose and those that do 

not, and then re-ran the first stage separately for both groups.42 The results in the fourth 

column of Table 3 show that, in line with a priori expectations, high gradient rivers are 

not as suitable for irrigation dams in that the interaction term between our treaties 

variable and a the high river gradient category is insignificant, while the other two 

interaction terms remain significantly positive as in the full sample.  One may also want 

to note that for this subsample treaties only have an effect on dam construction 

through the two gradient variables rather than on their own.  For the remaining group, 

denoted as OTHER, one discovers that all three interaction terms, including the one with 

HIGH, remain statistically significant, denoting perhaps the variety of major purposes 

represented.   

To generate predicted variables for our second stage regressions we then re-ran the 

two specifications for the IRRIG and OTHER samples with only the significant variables 

and time dummies.  The results of including these in our base specification are given in 

columns (1) and (2) of Table 7, respectively.  For both groups of dams we find that dams 

located in the region itself have not net impact on cropland productivity.  While both 

types of dams have, as when introducing them as a homogenous group, a positive 

impact if they are located upstream, in line with a priori expectations, dams for which 

at least one major purpose listed was for irrigation, have a greater quantitative effect.    

In the final two columns of Table 7 we-ran the specification in the last column of 

Table 6, but alternatively considering the IRRIG and the OTHER sample of dams.  As can 

                                                 
42 This includes those that had no major purpose listed. 
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be seen, for dams which are listed as being intended for irrigation, there is a positive 

effect of upstream dams, where this effect is amplified when there is a drought but no 

such water shortage in the upstream area.  In contrast, while similar effects exist for the 

OTHER group of dams, the average effect of upstream dams is considerably smaller 

than for the IRRIG sample.   Moreover, the  negative effect of being located in a region 

itself during a drought found for the homogenous sample seems entirely driven by this 

group.       

 

Section VI: Economic Significance 

Thus far we have only addressed the statistical significance of dams in terms of 

affecting cropland productivity.  Ideally, however, one would like to know what role 

they may have actually played in terms of aiding aggregate cropland production on 

the African continent over our sample period.  To this end we first calculated mean 

cropland NPP at the country level over our sample period and then merged these data 

with actual annual cropland production figures taken from FAO’s FAOSTAT database.  

We then regressed the log of cropland production as taken from FAOSTAT on country 

level log cropland NPP values, controlling additionally for country level fixed effects and 

time dummies.  This produced a statistically significant positive coefficient of 0.197 on 

log cropland NPP43, confirming that NPP indeed plays an important role in determining 

the level of cropland production. Using this coefficient, the coefficient on UDAM from 

the fourth column in Table 4, and the mean number of actual upstream dams for all 

                                                 
43 Detailed results available from the authors. 
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regions within a country44 then suggests that major dams increased annual cropland 

production by 2.88 per cent.  If one then incorporates the effect of dams in times of 

drought by using the coefficients of the significant variables from the last column of 

Table 6 and their country level averages, one finds that the overall effect on cropland 

production was an average drop of 0.96 per cent.  This is due to the fact that although 

upstream dams, particularly in that those located in regions not experiencing a 

drought, increase cropland productivity, importantly in times of water shortage dams in 

a region’s own area have a negative effect.        

Our results from decomposing dams according to their major purposes in Table 7 

suggested that there are important differences in their impact on cropland 

productivity, in particular that there was no negative own area dam effect for major 

irrigation dams. Performing similar calculations as above across these two dam groups 

using the estimated coefficients reveals that ‘non-irrgation’ dams have increased 

annual cropland production by 5.04 per cent, but that this effect changes to a 

negative 5.68 per cent effect once one takes into account periods of drought.   In 

contrast, dams with a listed major purpose of irrigation increased cropland production 

by an average annual 6.11 per cent, where this effect rises in times of water shortage 

periods rises marginally to 6.12 per cent.    

As a final exercise we use our results to roughly estimate what the potential 

increase in cropland production would be if further dams were constructed. To this end 

we calculated the potential increase in number of upstream dams by classifying our 

                                                 
44 Whenever a region crossed national borders we assigned it to the country which contained 
most of its area. 
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regions as low, medium, or high river gradient regions, depending on what gradient 

types was most prominently represented within a region.  For each category we then 

set the number of ‘potential’ dams as either the mean number of dams found in 

regions with dams of that category or the actual number located there if the former 

was smaller than the latter.  The potential increase is then just due the different 

between the total potential number of dams upstream to a region relative to the 

actual observed number.   Using our coefficients assuming no drought as above, our 

simple calculation reveals that annual cropland production could increase by a further 

20 percentage points under a no-drought scenario and otherwise 17.8 per cent.45 This, 

according to our very simply calculations, could be achieved by building a further 1382 

in appropriate areas.  One should note that the large potential increase is in large part 

due to the fact that dams can be upstream to several regions at the sane time and 

hence in this manner counteract the negative effect they have in their own vicinity.  If 

one considers only irrigation dams, and assume that only low and medium gradient 

areas are suitable for these, then our simple rule suggests room for construction of a 

further 1143 dams.  These would then increase, using the estimated coefficients, 

cropland production by a further 49 percentage points in times of drought, and 38 

percentage points otherwise.    

 

 Section VII: Concluding Remarks 

                                                 
45 We assumed that the drought was evenly probable across all regions and equal to the mean 
over our 1981-2000 sample period.   
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In this paper we provide the first comprehensive study of the distributional 

impact of large dams on agricultural productivity in Africa.   Using a scientifically based 

disaggregation of the continent into local hydrological regions and satellite derived 

measures of cropland productivity we find that while dams benefit regions 

downstream, they have a negative impact within their own vicinity during periods of 

drought.  Given that a large part of sample period constituted relatively severe rainfall 

shortages, our results imply that overall dams had a small net negative impact of 

annual productivity losses of 0.96 per cent.   Some rough back of the envelope 

calculations however indicate that further dam construction in Africa could provide 

considerable benefits.     

Finally, one should note that our study only refers to one of a number of 

distributional aspects of large dams that have been highlighted, for instance, by the 

World Commission of Dams (2000).  For example, we have not addressed such 

important issues as the displacement of people, the impact on fishing, energy provision, 

and riverline erosion, amongst other things.  A comprehensive assessment of the total 

benefits and costs of dams in Africa clearly necessitates a credible quantitative analysis 

of all these factors.    
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Appendix: Tables and Figures 

Table 1: Summary Statistics 

Variable Mean St. Dev. 

NPPAG 1287 456 

DAMS 0.21 0.99 

UDAMS 0.07 0.38 

POPDENS 21.1 82.9 

DROUGHT 0.69 0.46 

NPPNAG 1189 435 

Notes: Summary statistics refer to all level 6 areas in which the GLC data set was able to 
identify at least some cropland. 

 

Table 2: NPP in Cropland by Dam Allocation 

DAMS UDAMS Mean St. Dev. 

No No 1288 464 

Yes No 1318 394 

Yes Yes 1105 234 

No Yes 1261 461 
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Table 3: First Stage Regression Results 

 (1) (2) (3) (4) (5) 
T(5) 0.132** 0.041**  -0.005 0.046* 
 (0.047) (0.014)  (0.006) (0.018) 
T(5)*LOW  1.213*  0.486* 0.727** 
  (0.564)  (0.284) (0.281) 
T(5)*MEDIUM  1.359**  0.770** 0.589* 
  (0.512)  (0.257) (0.314) 
T(5)*HIGH  0.567*  0.179 0.388* 
  (0.235)  (0.165) (0.184) 
T(10)   0.022***   
   (0.006)   
T(10)*LOW   0.731**   
   (0.337)   
T(10)*MEDIUM   0.751**   
   (0.316)   
T(10)*HIGH   0.413***   
   (0.137)   
DAMS: ALL ALL ALL IRRIG. OTHER 
FE Yes Yes Yes Yes Yes 
# Obs. 142620 142620 142620 142620 142620 
# Areas 7131 7131 7131 7131 7131 
F-Test 8.05** 6.37** 30.97** 3.73** 44.20** 
R2 0.014 0.017 0.017 0.010 0.011 
Notes: (1)Time dummies included; (2) Driscoll and Kraay (1998); (3) ** and * are 1 and 5 per 
cent significance levels. (4) T(5) is given in 100s. 
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Table 4: Second Stage Regression Results 

 (1) (2) (3) (4) 
DAM 0.006** 0.004 -0.027 -0.040 
 (0.001) (0.005) (0.183) (0.183) 
UDAM 0.033** 0.019** 0.243** 0.236** 
 (0.002) (0.006) (0.040) (0.041) 
log(POPDENSt-1)    -0.010 
    (0.007) 
DAMS: Actual Actual Pred. T(5) Pred. T(5) 
FE: No Yes Yes Yes 
# Obs. 72380 72380 72380 72380 
# Areas 3619 3619 3619 3619 
F-Test 186.21** 5.69** 22.75** 15.73** 
R2 0.02 0.16 0.16 0.16 
Notes: (1)Time dummies included; (2) Do & Kray () standard errors in parentheses; (3) ** and * are 1 and 5 
per cent significance levels. 
 

Table 5: Second Stage Regression Robustness Checks 

 (1) (2) (3) (4) 
DAM -0.123 0.028 -0.044 -0.068 
 (0.217) (0.146) (0.182) (0.270) 
UDAM 0.209** 0.251** 0.232** 0.126 
 (0.044) (0.047) (0.039) (0.077) 
NDAM  -0.026   
  (0.017)   
U2DAM   0.035  
   (0.039)  
log(POPDENSt-1) -0.010 -0.010 -0.010 -0.008 
 (0.007) (0.007) (0.007) (0.004) 
DAMS: Pred. T(10) Pred. T(5) Pred. T(5) Pred. T(5) 
AREA: Cropland Cropland Cropland Non-

Cropland 
FE: Yes Yes Yes Yes 
# Obs. 72380 72380 72380 68060 
# Areas 3619 3619 3619 3403 
F-Test 7.78** 13.59** 16.50** 11055.4** 
R2 0.16 0.16 0.16 0.24 
Notes: (1)Time dummies included; (2) Driscoll and Kraay (1998); (3) ** and * are 1 and 5 per cent 
significance levels. 
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Table 6: Second Stage Regression – Drought Effects 

 (1) (2) (3) (4) 
DAM 0.006 0.191 -0.056 0.186 
 (0.167) (0.198) (0.175) (0.194) 
UDAM 0.218** 0.212** 0.248** 0.205* 
 (0.034) (0.066) (0.044) (0.084) 
DROUGHT -0.033** -0.003  -0.005 
 (0.008) (0.015)  (0.013) 
DROUGHT*DAM  -0.228**  -0.214** 
  (0.071)  (0.068) 
DROUGHT*UDAM  0.013  -0.021 
  (0.041)  (0.064) 
UDAM(NDR)   0.117** -0.003 
   (0.037) (0.058) 
DROUGHT*UDAM(NDR)    0.123* 
    (0.056) 
log(POPDENSt-1) -0.011 -0.011 -0.010 -0.011 
 (0.007) (0.007) (0.007) (0.007) 
DAMS: Pred. T(5) Pred. T(5) Pred. T(5) Pred. T(5) 
AREA: Cropland Cropland Cropland Cropland 
FE: Yes Yes Yes Yes 
# Obs. 72380 72380 72380 72380 
# Areas 3619 3619 3619 3619 
F-Test 15.95** 30.27** 23.26** 37.47** 
R2 0.16 0.16 0.16 0.24 
Notes: (1)Time dummies included; (2) Driscoll and Kraay (1998); (3) ** and * are 1 and 5 per cent 
significance levels. 
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Table 7: Second Stage Regression – IRRIGATION and OTHER Dams 

 (1) (2) (3) (4) 
DAM -0.095 -0.074 0.278 0.403 
 (0.393) (0.328) (0.440) (0.338) 
UDAM 0.514** 0.425** 0.497** 0.340* 
 (0.085) (0.082) (0.162) (0.161) 
DROUGHT   -0.011 -0.003 
   (0.014) (0.012) 
DROUGHT*DAM   -0.345 -0.456** 
   (0.191) (0.100) 
DROUGHT*UDAM   -0.061 -0.026 
   (0.133) (0.121) 
UDAM(NDR)   -0.015 0.001 
   (0.123) (0.112) 
DROUGHT*UDAM(NDR)   0.263* 0.231* 
   (0.117) (0.108) 
log(POPDENSt-1) -0.010 -0.010 -0.011 -0.011 
 (0.007) (0.007) (0.007) (0.007) 
DAMS: Pred. IRRIG. Pred. OTHER Pred. IRRIG. Pred. OTHER 
AREA: Cropland Cropland Cropland Cropland 
FE: Yes Yes Yes Yes 
# Obs. 72380 72380 72380 72380 
# Areas 3619 3619 3619 3619 
F-Test 17.38** 11.15** 35.83** 45.34** 
R2 0.16 0.16 0.16 0.24 
Notes: (1)Time dummies included; (2) Driscoll and Kraay (1998) standard errors in parentheses; (3) ** and * 
are 1 and 5 per cent significance levels. 
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Figure 1: Hypothetical Example – Dam Construction 

 

 

Figure 2: Hypothetical Example – Hydrological Regions 
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Figure 3: Major Dams in Africa 
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Figure 4: Administrative Areas and Rivers: Southern Africa 
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Figure 5: Disaggregated Hydrological Regions 
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Figure 6: Administrative and Hydrological Regions – Southern Africa  

 

Notes: (1) Green lines constitute administritative areas; (2) Black lines constitute 
hydrological regions. 
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Figure 7: Adminstrative and Hydrological Regions – Southern India 

 

Notes: (1) Black lines constitute districts; (2) Brown lines constitute hydrological regions. 
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Figure 8: Cropland 
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Figure 9: Net Primary Production - 2000 
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Figure 10: NPP of the Western African Agricultural Belt – 1988 & 2000 

1988  

 

 

 

2000 
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Figure 11: Treaties’ River Basins 
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Figure 12: Trends in Treaties and Dam Construction – 1900-2000 
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