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Résumé: La question que cet article cherche à résoudre est de savoir si le fait d'avoir un 
équilibre unique (ou un nombre donné d'équilibre) est une propriété robuste à la 
perturbation des paiements. Cette question est étudiée pour des jeux sous forme 
normale, et à la fois pour le concept d'équilibre de Nash et pour celui d'équibre 
corrélé. Nous montrons que l'ensemble des jeux finis à n-joueurs ayant un unique 
équilibre corrélé est ouvert, ce qui n'est pas vrai pour l'équilibre de Nash quand 
n>2. Le lemme crucial est qu'un équilibre corrélé unique est un équilibre de Nash 
quasi-strict. Des résultats liés sont également présentés. Nous montrons 
notamment que les jeux à deux joueurs et à somme nulle génériques ont un 
unique équilibre corrélé, et étudions le caractère ouvert de divers ensembles de 
jeux définis par le nombre et les propriétés de leurs équilibres (équilibres stricts, 
quasi-strict, symétriques, etc.).  

 
Abstract: We investigate whether having a unique equilibrium (or a given number of 

equilibria) is robust to perturbation of the payoffs, both for Nash equilibrium and 
correlated equilibrium. We show that the set of n-player finite normal form 
games with a unique correlated equilibrium is open, while this is not true of 
Nash equilibrium for n>2. The crucial lemma is that a unique correlated 
equilibrium is a quasi-strict Nash equilibrium. Related results are studied. For 
instance, we show that generic two-person zero-sum games have a unique 
correlated equilibrium and that, while the set of symmetric bimatrix games with 
a unique symmetric Nash equilibrium is not open, the set of symmetric bimatrix 
games with a unique and quasi-strict symmetric Nash equilibrium is.  
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The relevance of a phenomenon arising in a game often hinges upon this

phenomenon being robust to perturbation of the payoffs of the game. To

establish such robustness results typically requires proving that some of the

properties of the game we initially considered are themselves robust; that

is, that the set of games having these properties is open. We investigate

here whether the set of finite normal-form games with a unique equilibrium

is open, for Nash equilibrium, correlated equilibrium, and variants of Nash

equilibrium such as symmetric Nash equilibrium in symmetric games.

For two-player games, the question has been solved by Jansen (1981),

who showed that the set of bimatrix games with a unique Nash equilibrium

is open. However, this result does not extend to three-player games nor

to symmetric equilibria of symmetric bimatrix games: counterexamples are

given in section 3. Our main result is that, by contrast, for any number of

players n, the set of n-player finite games with a unique correlated equilibrium

is open. This generalizes an earlier result of Noa Nitzan (2005).

An intuitive explanation of the discrepancy between the results on Nash

equilibrium and those on correlated equilibrium is as follows: the proof of the

openness of the set of bimatrix games with a unique Nash equilibrium uses

three ingredients : upper-semi-continuity of the equilibrium correspondence,

an element of linearity in the structure of the set of equilibria (the set of

Nash equilibria of a bimatrix game is a finite union of convex polytopes) and

the fact that in bimatrix games, a unique Nash equilibrium is quasi-strict

(Jansen, 1981); that is, for each player, no pure best response to the strategy

of the other player is outside the support of her own strategy.

For Nash equilibrium, the last two ingredients are specific to two-player

games, and the last one is also lacking for symmetric Nash equilibria of sym-

metric bimatrix games. This accounts for our negative results. By contrast,

for any number of players, there is strong element of linearity in the struc-

ture of the set of correlated equilibria (this is a polytope). Furthermore, and

this is the crucial lemma, it may be shown that for any number of players,

a unique correlated equilibrium is a quasi-strict Nash equilibrium. This fol-

lows from the strong complementary property of linear programs and dual

reduction arguments (Myerson, 1997).

The material is organized as follows: Definitions and notations are intro-

duced in section 1. Openness of the set of games with a unique correlated

equilibrium is proved in section 2. Section 3 groups remarks and related

1

ha
l-0

02
43

01
6,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



results: We first show that generic zero-sum games have a unique correlated

equilibrium and discuss the connections of our work with Nitzan’s (2005). It

is then shown that the set of 3-player games with a unique Nash equilibrium

and the set of symmetric bimatrix games with a unique symmetric Nash equi-

librium are not open, but that the set of symmetric bimatrix games with a

unique and quasi-strict symmetric Nash equilibrium is. It is also shown that

for any n, k ≥ 2, the set of n-player games with k equilibria (or k extreme

points to the set of correlated equilibria) is not open, though for almost ev-

ery game G, every game in a neighborhood of G has the same number of

equilibria as G. We then study the structure of the set of Nash equilib-

ria for bimatrix games at the relative boundary of the set of games with a

unique correlated equilibrium. Finally, we show that the set of two-player

zero-sum games in which one of the players has a unique optimal strategy is

not open. This explains that the openness of the set of games with a unique

correlated equilibrium cannot be deduced easily from Hart and Schmeidler’s

(1989) proof of existence of correlated equilibria.

1 Definitions and main result

Let G be a finite n-player game. I = {1, 2, ..., n} is the set of players, Si the

set of pure strategies of player i and S−i := ×j∈I\{i}S
j. The utility function

of player i is U i : S = ×i∈IS
i → R. As usual, U i is extended multilinearly to

the set of probability distributions over S. A pure strategy profile is denoted

by s = (si, s−i) and a mixed strategy profile by σ = (σi, σ−i). The support

of σi is denoted by

Supp(σi) := {si ∈ Si : σi(si) > 0}

and the set of pure best-responses to σ−i by

PBR(σ−i) := {si ∈ Si,∀ti ∈ Si, U i(si, σ−i) ≥ U i(ti, σ−i)}

Finally, for any finite set T , the simplex of probability distributions over T

is denoted by ∆(T ).

A correlated strategy of the players in I is a probability distribution over

the set S of pure strategy profiles. Thus µ = (µ(s))s∈S is a correlated strategy

if:

µ(s) ≥ 0 ∀s ∈ S (1)

2
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∑
s∈S

µ(s) = 1 (2)

Henceforth, the conditions in (1) will be called nonnegativity constraints. For

si, ti in Si and µ in ∆(S), let

hsi,ti(µ) :=
∑

s−i∈S−i

µ(s)[U i(s)− U i(ti, s−i)]

where, as throughout, s = (si, s−i).

Definition. A correlated strategy µ is a correlated equilibrium (Aumann,

1974) if it satisfies the following incentive constraints:

hsi,ti(µ) ≥ 0, ∀i ∈ I, ∀si ∈ Si,∀ti ∈ Si (3)

Since conditions (1), (2) and (3) are all linear in µ, it follows that the set of

correlated equilibria of any finite game is a polytope.

A n-player finite game has size m1×m2× ...×mn if, for every i in I, the

pure strategy set of player i has cardinal mi. Assimilating a game and its

payoff matrices, a n-player game of size m1 ×m2 × ...×mn may be seen as

a point in (Rm1m2...mn)n, hence the notions of a neighborhood of a game and

of an open set of games. The main result of this paper is that:

Proposition 1. The set of n-player games of size m1 ×m2 × ...×mn with

a unique correlated equilibrium is an open subset of the set of games of size

m1 × m2 × .... × mn. Furthermore, if a n-player finite game has a unique

correlated equilibrium σ, then the (unique) correlated equilibrium of every

nearby game has the same support as σ.

2 Proof

Let G be a game with a unique correlated equilibrium and (Gn) a sequence

of games converging towards G. We need to show that, for n large enough,

the game Gn has a unique correlated equilibrium. The proof runs as follows:

Let σ denote the unique correlated equilibrium of G. A dual reduction ar-

gument shows that σ is a quasi-strict Nash equilibrium (lemma 3). Together

with the upper semi-continuity of the Nash equilibrium correspondence this

implies that, for n large enough, Gn has a quasi-strict Nash equilibrium with

3
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the same support as σ (lemma 5). Since two quasi-strict Nash equilibria with

the same support satisfy the same nonnegativity and incentive constraints

with equality (lemma 6), it follows that, for n large enough, Gn has a cor-

related equilibrium satisfying with equality the same constraints as σ. Due

to a general result on polytopes (lemma 2), this implies that, for n suffi-

ciently large, the correlated equilibrium polytope of Gn is a singleton. This

completes the proof.

We begin with the result on polytopes: Let (An) be a sequence of p× q

real matrices, (bn) a sequence of column vectors of size p, and J = {1, ..., p}.
Let

Cn = {x ∈ Rq,Anx ≥ bn}

(Anx ≥ bn means that the weak inequality holds for each coordinate). Make

the following assumptions: first, Cn is uniformly bounded:

∃M ∈ R,∀n ∈ N,∀x ∈ Cn, max
j∈J

|(Anx)j| ≤ M (4)

In particular, Cn is a polytope. Second, (An) and (bn) converge respectively

towards the matrix A and the vector b. Third, the “limit polytope”

C = {x ∈ Rq,Ax ≥ b}

is a singleton: C = {x̄}. Let J ′ := {j ∈ J, (Ax̄)j = bj} denote the set of

constraints binding at x̄, and let J” = J\J ′. Finally, let bn,j denote the jth

component of bn.

Lemma 2. If there exists N ∈ N such that, for all n ≥ N , there exists xn in

Cn with

∀j ∈ J ′, (Anxn)j = bn,j (5)

then for n large enough, Cn is a singleton.

Proof. We begin by showing that, for n large enough, all constraints satisfied

with strict inequality by x̄ are satisfied with strict inequality by every x in

Cn:

∃N ′ ∈ N,∀n ≥ N ′,∀x ∈ Cn,∀j ∈ J”, (Anx)j > bn,j (6)

For all n in N , let zn ∈ Cn. To establish (6), it suffices to show that for n

large enough,

∀j ∈ J”, (Anzn)i > bn,j (7)

4
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Due to (4), the sequence (zn) is bounded. Furthermore, since An → A and

bn → b, any accumulation point z̄ of (zn) satisfies z̄ ∈ C, hence z̄ = x̄. It

follows that (zn) converges to x̄. Therefore Anzn − bn converges to Ax− b.

Since (Ax)j − bj > 0 for every j in J”, it follows that,for n large enough,

(7) is satisfied. This completes the proof of (6).

We now prove the lemma: let n ≥ max(N, N ′) and let xn satisfy (5).

If Cn is not a singleton, then Cn has an extreme point zn 6= xn. By basic

properties of extreme points, one of the constraints defining Cn is binding at

zn but not at xn. Since (Anxn)j = 0 for all j in J ′, this implies that there

exists j in J” such that (Anzn)j = bn,j. This contradicts (6). Therefore Cn

is a singleton.

Lemma 3. If a n-player finite game has a unique correlated equilibrium σ

then this correlated equilibrium is a quasi-strict Nash equilibrium.

Proof. The fact that σ is a Nash equilibrium follows from the existence of

Nash equilibria and the fact that Nash equilibria are correlated equilibria.

What we really need to show is that σ is quasi-strict.

For each player i in I, let αi be a transition probability over the set of

pure strategies of player i:

αi : Si → ∆(Si)

si → αi ∗ si

A mixed strategy τ i of player i is αi-invariant if αi ∗ τ i = τ i where the

mixed strategy αi ∗ τ i is defined by[
αi ∗ τ i

]
(ti) =

∑
si∈Si

τ i(si)
([

αi ∗ si
]
(ti)
)

∀ti ∈ Si

It follows from (Nau and McCardle, 1990, last paragraph of section 2 and

proposition 2) that there exists a vector of transition probabilities α such

that, for every pure strategy profile s in S,∑
i∈I

[U i(αi ∗ si, s−i)− U i(s)] ≥ 0 (8)

with strict inequality if s has probability zero in all correlated equilibria. Fix

such a vector α = (αi)i∈I . We claim that:

Claim 4. For every i in I, the mixed strategy σi is αi-invariant.

5
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This will be proved in the end. Assume that the pure strategy si does not

belong to the support of σi and let τ = (si, σ−i). Since σ is the unique

correlated equilibrium of G, it follows that every pure strategy profile s in

the support of τ has probability zero in all correlated equilibria. Therefore,

by definition of α,

τ(s) > 0 ⇒
∑
k∈I

[
Uk(αk ∗ sk, s−k)− Uk(s)

]
> 0

It follows that∑
k∈I

[
Uk(αk ∗ τ k, τ−k)− Uk(τ)

]
=
∑
s∈S

τ(s)
∑
k∈I

[
Uk(αk ∗ sk, s−k)− Uk(s)

]
> 0

(9)

For every k 6= i, τ k = σk hence, by claim 4, τ k is αk-invariant. Therefore,

(9) boils down to U i(αi ∗ τ i, τ−i) > U i(τ); that is,

U i(αi ∗ si, σ−i) > U i(si, σ−i)

This implies that si is not a best-response to σ−i. Since si was an arbitrary

strategy not in the support of σi, it follows that σ is quasi-strict.

It only remains to prove claim 4. The proof is based on dual reduction

(Myerson, 1997). Fix α as above. Note that, due to (8), α is a dual vector in

the sense of Myerson (1997). Define the α-reduced game G/α as in (Myerson,

1997). That is, in G/α, the set of players and the payoffs are as in G, but

the mixed strategies available to player i are only those mixed strategies σi

of player i in G that are αi-invariant. Myerson (1997) shows that G/α is a

finite game, hence it has a Nash equilibrium. Let σ̃ be a Nash equilibrium of

G/α. By definition of G/α, we may see σ̃ as a mixed strategy profile of G,

with σ̃i αi-invariant. Since σ̃ is a Nash equilibrium of G/α, it follows from

theorem 1 of Myerson (1997) that σ̃ is a Nash equilibrium of G. Therefore

σ̃ = σ. Since σ̃i is αi-invariant, this implies that σi is αi-invariant too. This

completes the proof.

The following lemma is a version of lemma 4.1 of Jansen (1981).

Lemma 5. If the n-player game G has a unique Nash equilibrium σ and that

this Nash equilibrium is quasi-strict, then there exists a neighbourhood ΩG of

G such that, for every game Ĝ in ΩG and every Nash equilibrium σ̂ of Ĝ, the

support of σ̂ is equal to the support of σ and σ̂ is quasi-strict.

6
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Proof. Let (Gn)n∈N be a sequence of games converging to G and σn a Nash

equilibrium of Gn. To prove lemma 5, it is enough to show that, for n large

enough, the support of σn is equal to the support of σ and σn is quasi-

strict. Since the Nash equilibrium correspondence is upper semi-continuous

and since G has a unique Nash equilibrium, it follows that σn converges to

σ. Therefore,

∃N ∈ N,∀n ≥ N, ∀i ∈ I, Supp(σi) ⊆ Supp(σi
n) (10)

Furthermore, if U i(si, σ−i) < U i(σ) then for n large enough, U i
n(si, σ−i

n ) <

U i
n(σn), where U i

n denotes the utility function of player i in the game Gn.

Therefore,

∃N ′ ∈ N,∀n ≥ N ′,∀i ∈ I, PBR(σ−i
n ) ⊆ PBR(σ−i) (11)

Finally, since the Nash equilibrium σ is quasi-strict, it follows that PBR(σ−i) =

Supp(σ−i). Together with (10) and (11), this implies that for n large enough:

Supp(σi
n) ⊆ PBR(σ−i

n ) ⊆ PBR(σ−i) = Supp(σi) ⊆ Supp(σi
n)

Since the beginning and the end of this chain of inclusion are equal, this is

a chain of equality. In particular, Supp(σi
n) = PBR(σ−i

n ) = Supp(σi). The

result follows.

Lemma 6. Let G and Ĝ be two games with the same set of players and

strategies. Let σ and σ̂ be Nash equilibria of, respectively, G and Ĝ. Assume

that σ and σ̂ have the same support and are both quasi-strict. Then, among

the nonnegativity and incentive constraints defining correlated equilibria, σ

and σ̂ satisfy the same constraints with equality.

Proof. Since, by assumption, σ and σ̂ have the same support, the nonnega-

tivity constraints they satisfy with equality are the same. We now show that

the incentive constraints they satisfy with equality are also the same. Since

σ is a product distribution, it follows that

hsi,ti(σ) = σi(si)
[
U i(si, σ−i)− U i(ti, σ−i)

]
∀i,∀si,∀ti

Let S̃ = ×iS̃
i denote the support of both σ and σ̂. If si /∈ S̃i, then σi(si) = 0

hence hsi,ti(σ) = 0 for every ti in Si. If si ∈ S̃i and ti ∈ S̃i, then, since σ is

a Nash equilibrium, U i(si, σ−i) = U i(ti, σ−i) hence hsi,ti(σ) = 0. Finally, if

7
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si ∈ S̃i and ti /∈ S̃i then σi(si) > 0 and, since σ is quasi-strict, U i(si, σ−i)−
U i(ti, σ−i) > 0. Therefore, hsi,ti(σ) > 0. Grouping these observations we

obtain that hsi,ti(σ) > 0 if and only if si ∈ S̃i and ti /∈ S̃i. The same result

holds for σ̂ so that, letting (ĥsi,ti)si∈Si,ti∈Si denote the linear forms associated

with the correlated equilibrium incentive constraints of Ĝ, we have:

hsi,ti(σ) = 0 ⇔ ĥsi,ti(σ̂) = 0

This completes the proof.

We now conclude. Let G be a game with a unique correlated equilibrium

σ and (Gn) be a sequence of games converging towards G. Let Cn be the

correlated equilibrium polytope of Gn. Combining lemmas 3, 5 and 6, we

obtain that, for n large enough, Gn has a correlated equilibrium σn satisfying

with equality the same constraints as σ. By lemma 2, this implies that for n

large enough, Cn is a singleton. This completes the proof of proposition 1.

3 Remarks and related results

1. The fact that the set of m1 × m2 × ... × mn games with a unique

correlated equilibrium is nonempty is obvious: any dominance solvable game

has a unique correlated equilibrium. Note also that generic two-player zero-

sum games have a unique correlated equilibrium. This follows from the

observation that: (i) a zero-sum game has a unique correlated equilibrium

if and only if it has a unique Nash equilibrium (Forges, 1990); (ii) generic

zero-sum games have a unique Nash equilibrium (Bohnenblust et al, 1950).

2. Nitzan (2005) proved independently and earlier a weaker version of

proposition 1. More precisely, she proved that if a two-player m ×m game

has a unique correlated equilibrium and that this correlated equilibrium has

full support, then every nearby game has a unique correlated equilibrium

and this correlated equilibrium has full support. To prove this result with

our method, it suffices to note that if a game has a unique and completely

mixed Nash equilibrium, then every nearby game has a completely mixed

Nash equilibrium, and then to apply lemma 2. This illustrates a difference

between our arguments and Nitzan’s: while she uses a theorem of the alter-

native, we do not need any theorem of the alternative to prove her results.

(We do however use a theorem of the alternative to prove proposition 1. In-

deed, the proof of lemma 3 uses Nau and McCardle’s (1990) characterization

8
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of strategy profiles with positive probability in at least one correlated equi-

librium, which itself relies on a theorem of the alternative.)

3. The set of 3-player games with a unique Nash equilibrium is not open.

The following 2× 2× 2 counter-example is adapted from (Flesch et al, 1997)

and was provided by Eilon Solan (personal communication).(
1, 1, 1 0, 1, 1

1, 1, 0 1, 0, 1

) (
1, 0, 1− ε 1, 1, 0

0, 1, 1 0, 0, 0

)
(12)

Player 1 chooses a row (Top or Bottom), player 2 a column (Left or Right)

and player 3 a matrix (West or East). For ε = 0, there is a unique Nash

equilibrium, in which all players play their first strategy (this will be proved

below). However, for ε > 0, there is a continuum of Nash equilibria. Indeed,

every (partially) mixed strategy profile in which player 1 plays Bottom with

probability less than ε/(1 + ε) and player 2 and 3 stick to their first strategy

is a Nash equilibrium. Thus, in 3-player games, there are sequences of games

with a continuum of Nash equilibria converging towards a game with a unique

Nash equilibrium.

The game (12) with ε = 0 also provides an example of a game with a

unique Nash equilibrium that is not quasi-strict. This calls for two remarks:

first, while it is well known that 3-player games need not have a quasi-strict

equilibrium, the counter-examples I found in the literature, e.g. (Raghavan,

2002), are of games with several Nash equilibria. Thus, up to my knowl-

edge, whether a unique Nash equilibrium is necessarily quasi-strict was still

open. Second, in two-player games, a unique Nash equilibrium is necessarily

quasi-strict, as shown by Jansen (1981), and as also follows from the fact

that every bimatrix game has a quasi-strict Nash equilibrium (Norde, 1999).

Proof that the game (12) with ε = 0 has a unique Nash equilibrium: for ε = 0,

the game (12) may be described as follows: player i + 1 (counted modulo 3)

wants to mismatch player i, except if all players play their first strategy.

Thus, in an hypothetical equilibrium different from Top-Left-West, if i plays

in pure strategy, then i+1 must mismatch i, i+2 mismatch i+1 and i+3 = i

mismatch i + 2; therefore, i must mismatch itself, a contradiction. It follows

that the only equilibrium in which one of the players plays in pure strategy

is Top-Left-West.

9
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It remains to show that there are no completely mixed Nash equilib-

ria. By contradiction, let x ∈]0, 1[ (resp. y, z) be the probability of Bot-

tom (resp. Right, East) in an hypothetical completely mixed Nash equi-

librium. Since player 1 is indifferent between Top and Bottom, we have

y(1 − z) = (1 − y)z + yz = z, hence y > z. Since the game is cyclically

symmetric, it follows that y > z > x > y, which cannot be. This completes

the proof.

4. A corollary of lemma 5 is that:

Corollary 7. The set of games with a unique and strict Nash equilibrium is

open.

Indeed, if a game has a unique and strict Nash equilibrium σ, then by

lemma 5, every Nash equilibrium of every nearby game has the same support

as σ, hence is equal to σ as σ is pure. I do not know whether the set of games

with a unique and quasi -strict Nash equilibrium is open.

5. The following example shows that, within the set of two-person sym-

metric games, the set of games with a unique symmetric Nash equilibrium is

not open:  −ε,−ε 1, 0 1, 0

0, 1 0, 0 −1,−1

0, 1 −1,−1 0, 0


For ε = 0, this game has a unique symmetric Nash equilibrium: Top-Left.

For ε > 0, it has 3 symmetric Nash equilibria: ( 1
1+ε

, ε
1+ε

, 0), ( 1
1+ε

, 0, ε
1+ε

),

( 3
3+2ε

, ε
3+2ε

, ε
3+2ε

). This is linked to the fact that, for ε = 0, the unique

symmetric Nash equilibrium is not quasi-strict. Indeed, the openness of

the set of bimatrix games with a unique Nash equilibrium has the following

analogue for symmetric games:

Proposition 8. Within the set of two-person symmetric games, the set of

two-person symmetric games with a unique symmetric Nash equilibrium and

such that this Nash equilibrium is quasi-strict is open.

Proof. Let G be a two-person game with a unique symmetric Nash equilib-

rium, with support S̃ = S̃1× S̃2 (To make things clear: there might be other,

asymmetric Nash equilibria). Assume that the unique symmetric equilibrium

10
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is quasi-strict. It follows from a variant of lemma 5 that, within the set of

two-person symmetric games, there exists a neighborhood ΩG of G such that,

for any game G′ in ΩG, any symmetric Nash equilibrium of G′ has support

S̃ and is quasi-strict.

Fix G′ in ΩG. Since G′ is symmetric, it has a symmetric Nash equilib-

rium σ. To establish proposition 8, it is enough to show that G′ has no

other symmetric Nash equilibrium. By contradiction, assume that G′ has a

symmetric Nash equilibrium τ 6= σ. For every λ in R, define the symmetric

mixed strategy profile σλ by σi
λ = λτ i + (1− λ)σi, for i = 1, 2.

There are five types of incentive and nonnegativity constraints that σλ

must satisfy in order to be a (symmetric) Nash equilibrium:

(i) σλ(s) ≥ 0, s ∈ S̃;

(ii) σλ(s) ≥ 0, s /∈ S̃;

(iii) hsi,ti(σλ) ≥ 0, si ∈ S̃i, ti /∈ S̃i, i = 1, 2;

(iv) hsi,ti(σλ) ≥ 0, si ∈ S̃i, ti ∈ S̃i, i = 1, 2;

(v) hsi,ti(σλ) ≥ 0, si /∈ S̃i, ti ∈ Si, i = 1, 2.

Using the fact that both σ and τ are Nash equilibria with support S̃, it is

easily checked that for every λ in R, σλ satisfies (with equality) all constraints

of types (ii), (iv) and (v).

Moreover, since σ 6= τ and since the set of Nash equilibria is compact, it

follows that there exists a maximal value of λ such that σλ is a (symmetric)

Nash equilibrium. Call this value λmax. Since all symmetric Nash equilibria

of G′ have support S̃ and are quasi-strict, they all satisfy with strict inequal-

ity all constraints of types (i) and (iii), hence so does σλmax . Therefore, there

exists λ > λmax such that σλ satisfies all constraints of type (i) and (iii).

Since, as mentioned in the previous paragraph, σλ also satisfies all other con-

straints, it follows that σλ is a (symmetric) Nash equilibrium, contradicting

the maximality of λmax.

Finally, a variant of the proof of corollary 7 shows that the set of n-player

symmetric games with a unique symmetric Nash equilibrium and such that

this equilibrium is strict is open.

6. Until now, we focused on games with a unique equilibrium, but we

might also ask whether, for k ≥ 2, having k Nash equilibria, or k extreme

points to the set of correlated equilibria, is a robust property. The answer is

negative:

11

ha
l-0

02
43

01
6,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



Proposition 9. For every n, k ≥ 2, the set of n-player games with k (≤ k,

≥ k) Nash equilibria is not open; similarly, the set of n-player games with k

(≤ k, ≥ k) extreme points of the set of correlated equilibria is not open.

We provide a counterexample for the case n = 2, k = 3. The counter-

example is easily generalized to any numbers n, k ≥ 2. For simplicity, call

extreme correlated equilibria the extreme points of the set of correlated equi-

libria. Consider the following game:

L M R

T

M

B

 0, 0 −1,−1 −1, 0

−1,−1 ε, ε −1, 0

0,−1 0,−1 0, 0

 (13)

For ε = 0, both players can guarantee 0 by playing the third strategy, and

this is the highest payoff they can get. It follows that in any correlated equi-

librium, the off-diagonal strategy profiles have probability zero. Therefore,

the three pure strategy profiles on the diagonal are the only Nash equilibria

of the game and these are also the extreme correlated equilibria. For ε < 0,

the Nash equilibrium (M, M) disappears, and only two Nash equilibria re-

main, which again are also the extreme correlated equilibria. For ε > 0, there

are 4 Nash equilibria (resp. 6 extreme correlated equilibria): (T, L) and the

Nash equilibria (resp. extreme correlated equilibria) of the 2×2 coordination

game obtained by eliminating the strategies T and L.

7. The reason why a slight perturbation of the payoffs of (13) may alter

the number of equilibria of the game is that not all equilibria are quasi-strict.

Indeed, Jansen (1981, lemma 8.3 and remark 8.8) showed that if all equilibria

of a bimatrix game are quasi-strict, then (i) the game has a finite number of

equilibria and (ii) every nearby game has the same number of equilibria.

Using the fact that a finite game has a finite number of equilibrium com-

ponents and upper-semi-continuity of the Nash equilibrium correspondence,

it is easy to generalize Jansen’s result as follows: if all equilibria of a n-player

game are strongly stable (in the sense of van Damme, 1991) then (i) and (ii)

above hold. Since for bimatrix games, all equilibria are strongly stable if and

only if all equilibria are quasi-strict, this indeed generalizes Jansen’s result.

Furthermore, since for almost all games, all equilibria are strongly stable
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(see, e.g., van Damme, 1991), it follows that (i) and (ii) hold for almost all

games.

Finally, it follows from the above discussion, and it is easy to show di-

rectly that the set of n-player games with k equilibria, all strict, is open; but

for k ≥ 2, this set is actually void. Indeed, if a game has k ≥ 2 equilibria,

all strict, then it follows from an index argument that there exists at least

k − 1 mixed Nash equilibria, a contradiction. See corollary 2 and theorem 3

of Ritzberger (1994).

8. In bimatrix games, both the set of games with a unique Nash equi-

librium and the set of games with a unique correlated equilibrium are open.

Since there are games with a unique Nash equilibrium but many correlated

equilibria, the latter set is included in the former. The following examples

show that on the relative boundary of the set of bimatrix games with a unique

correlated equilibrium, there are games with a continuum of Nash equilib-

ria, games with a finite number (> 1) of Nash equilibria, and games with a

unique Nash equilibrium:

(
0

ε

) (
1, 1 0, 0

0, 0 −ε,−ε

) 
0, 0 2, 1 1, 2 −1, x

1, 2 0, 0 2, 1 −1, x

2, 1 1, 2 0, 0 −1, x

x,−1 x,−1 x,−1 0, 0


The left game is a one-person game. For ε > 0 it has a unique correlated

equilibrium. For ε = 0 it has a continuum of Nash equilibria. The middle

game has a unique correlated equilibrium (Top-Left) for ε > 0, but two Nash

equilibria for ε = 0. The game on the right is adapted from (Nau and Mc-

Cardle, 1990, example 4). The 3 × 3 game in the top-left corner is due to

Moulin and Vial (1978). This 3 × 3 game has a unique Nash equilibrium:

(1/3, 1/3, 1/3) for both players, with payoff 1; but putting probability 1/6

on every off-diagonal square yields a correlated equilibrium with payoff 3/2.

Now consider the whole 4× 4 game. For any value of x, (4,4) is a Nash equi-

librium. For 1 < x ≤ 3/2, this is the unique Nash equilibrium, but not the

unique correlated equilibrium (the correlated equilibrium with payoff 3/2 of

the 3× 3 top-left game induces a correlated equilibrium of the whole game).

For x > 3/2, this is the unique correlated equilibrium.
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9. In order to prove the existence of correlated equilibria without using

a fixed point theorem, Hart and Schmeidler (1989) associate to every finite

game G an auxiliary zero-sum game whose size depends only on the size of

G and whose payoff matrix depends continuously on the payoff matrices of

G. In this auxiliary zero-sum game, the optimal strategies of the maximizer

correspond exactly to the correlated equilibria of G, so that G has a unique

correlated equilibrium if and only if, in the auxiliary game, the maximizer

has a unique optimal strategy. Therefore, to prove the openness of the set

of games with a unique correlated equilibrium, it would have been enough

to show that: If in a two-player zero-sum game, one of the players has a

unique optimal strategy, then in every nearby zero-sum game this player has

a unique optimal strategy.

However, this turns out to be false: let Gε be the two-player zero-sum

game with payoff matrix for the row player

L R

T

M

B

 −ε 0

0 −1

0 −1


For ε = 0, the row player has a unique optimal strategy (playing T ). But for

ε > 0, the row player has an infinite number of optimal strategies: playing

T with probability 1/(1 + ε) and playing M and B with any probabilities

summing to ε/(1 + ε).
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