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Résumé: Ce papier remet en question l'hypothèse d'équidistribution des effets aléatoires 
dans un modèle de risque fréquence. Deux modèles sont présentés, qui utilisent 
des liens paramétriques et non paramétriques entre la variance de l'effet 
aléatoire et le risque fréquence. Ils sont estimés sur un portefeuille de contrats 
espagnols d'assurance automobile, pour lesquels le lien précité est décroissant. 
Des conclusions en sont tirées pour la crédibilité et les coefficients bonus-malus.  

 
Abstract: This paper questions the equidistribution assumption for the random effects in a 

frequency risk model. Two models are presented, which use parametric and 
nonparametric links between the variance of the random effect and frequency 
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1 Introduction

Usual actuarial models assume that random effects used in distributions of the num-

ber of claims are identically distributed. In this framework, the credibility granted to

the history of the policyholder increases with frequency premium. Credibility is the

no-claim discount for a claimless history, and the increasing relationship between an

actuarial bonus and an estimated risk level is quoted in various papers (e.g. Dionne

and Vanasse, 1989).

There is however empirical evidence of a decreasing link between the variance

of the random effect and frequency risk for automobile insurance data (see Sections

3 and 4 with results obtained from a Spanish portfolio). In other words, residual

relative heterogeneity on claims number distributions is more important for low

risks.

In this paper, the variance of the random effect applied to Poisson distributions

is conditioned on frequency risk and hence on the rating factors. First, we retain

a local estimation approach of a nonparametric link between the variance and the

frequency.1 Section 2 summarizes the main properties of kernel-based estimators

in generalized linear models. This approach is used in Section 3 to estimate the

nonparametric link. Second, a parametric power link is specified and estimated in

Section 4 from the negative binomial model. Consequences on credibility derivation

are drawn in Section 5. Section 6 concludes and a mathematical appendix contains

some mathematical details.

The main empirical finding is that the link between credibility (or no-claim

discount) and frequency premium is lower when the equidistribution assumption of

the random effect is relaxed than in the usual model. An opposite result is obtained

for the increase in premium after a claim.

1Local estimation techniques can also be used for prediction on time series (see Qian, 2000, for

applications to insurance).
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2 Kernel estimators in generalized linear models:

The index model

Generalized linear models for a response variable Y and a vector of regressors X

(X ∈ Rk) assume that

E(Y |X = x) = f(x0β), β ∈ Rk. (1)

The function f is a link between an index x0β (i.e. a scalar product between regres-

sors and parameters) and the expectation of the response variable. In the literature

on generalized linear models, the link usually refers to the reciprocal of f , but we

retain here the function which is estimated in the first place. For identifiability pur-

poses detailed afterwards, we suppose that the intercept is not included as a regressor

in (1) and that the distribution of X is nondegenerate in Rk. For basic generalized

linear models, f is given and then an intercept must be included in the regression.

For a count data model, f is usually the exponential function. If f is unknown in

the specification so that an estimation is required, equation (1) is referred to as an

index model (see Härdle et al., 1997). In that case, there is an obvious identifiability

conflict between β and f in equation (1). Only the line Rβ can be identified from

the data. In other words, what is identified is the conditional expectation, assumed

to be constant on affine hyperplanes of Rk which are orthogonal to a given vector.

For a given value of β, a nonparametric estimation of f(s) can be based on local

weighted averages of the response variable, with weights which decrease with the

distance between s and the individual values of the index.

A first estimation of indexmodels can be obtained from a parametric specification

of the distribution of Y defined conditionally on X. Let us assume that we have in

that case

E(Y |X = x) = f0(c+ x0b); c ∈ R, b ∈ Rk, (2)

2
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with f0 a given link function. Let bb be the maximum likelihood estimator of b. The

conditional expectation defined in (1) can be estimated with a kernel estimator.

In a sampling model on (X,Y ) with n observations (xi, yi)i=1,...,n, an estimator

of E(Y |X) of the Nadaraya-Watson type is obtained from a kernel K (usually an

even probability density function) and a bandwidth h in the following way:

bE(Y |X) = Pn
i=1 yiKh

³
X 0bb− x

0
i
bb´Pn

i=1Kh

³
X 0bb− x

0
i
bb´ , Kh (u) =

K
¡
u
h

¢
h

. (3)

The bandwidth is a smoothing parameter. The closer it is to zero, the more estima-

tion is performed on a local basis. The estimation given in (3) exhibits an invariance

property as it only depends on bb/h.
A suitable value of h can be derived from a cross-validation method similar to

that proposed in Härdle (1990) for the Nadaraya-Watson kernel estimator. It is

equal to

argmin
h

CV (bb, h) =Xn

i=1
(yi − Ê−i(Yi))

2, (4)

where Ê−i(Yi) is the leave-one-out estimator2 defined by

Ê−i(Yi) =

P
j 6=i yjKh

³
x
0
i
bb− x

0
j
bb´P

j 6=iKh

³
x
0
i
bb− x

0
j
bb´ =

P
j 6=i yjK

³
(xi − xj)

0 b
h

´
P

j 6=iK
³
(xi − xj)

0 b
h

´ . (5)

This estimation of the conditional expectation E(Y |X) is not necessarily consistent

since it is derived from a wrong link function (f0 instead of f). Two results are worth

mentioning on this issue.

• On one hand, a consistent estimator of the conditional expectation can be

obtained from the cross-validation criterion defined in (4) and (5). Replacing

2The individual for which the non parametric expectation is derived must be withdrawed from

the computation, otherwise the bandwidth would converge towards zero in the minimization of the

cross-validation criterion.
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bb by b in (4) defines a function CV (b, h) which can be minimized with respect

to b and h. The optimal values of b and h are plugged into the expression of

the estimated conditional expectation given in (3). Sufficient conditions for

the consistency of the estimation are given in Härdle et al. (1993). However

the minimization of the cross-validation criterion is cumbersome, since it ne-

cessitates a double sum on individuals. Besides, equation (5) shows that only

b/h is identified. Hence an identifying constraint needs to be added in the

estimation.

• On the other hand, the maximum likelihood estimation of a parametric model

given in the first place can lead to consistent estimation of the conditional

expectation under conditions which are first related to the distribution of the

regressor X (see Li and Duan, 1989, and the appendix). Owing to the identi-

fication issue mentioned before, consistency means that bb converges towards a
limit b0 which belongs to the line Rβ.

3 Kernel estimators for the variance of the ran-

dom effect in a Poisson model

Let us consider cross-section data. The policyholders in the portfolio are indexed by

i = 1, . . . , p. All the risk exposure durations are supposed equal (they are equal to

one year in our empirical study). Frequency risk must be expressed for a time unit,

otherwise the results on the link investigated in this paper would not be coherent

with respect to period aggregation. We denote ni as the number of claims reported

by policyholder i and xi as the vector of regression components. If Ui is the random

effect, the distribution of Ni in the Poisson model with random effects is obtained

4
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from the expectation taken with respect to the random effect Ui

P [Ni = ni] = E [PλiUi(ni)] ; λi = exp(c+ x
0
ib); Pλ(n) = exp(−λ)

λn

n!
.

If the equidistribution assumption of the random effects is relaxed, we can link their

variance and frequency risk and write for instance

E(Ui) = 1; V (Ui) = σ2(λi), λi = E(Ni). (6)

The function σ2 must have nonnegative values. We will investigate a power link in

Section 4 but we first let the data speak from a nonparametric estimation of σ2.

The starting point is the usual moment-based estimator

V (Ui) =
V (Ni)−E(Ni)

E2(Ni)
=

E(N2
i )−E2(Ni)−E(Ni)

E2(Ni)
. (7)

The nonparametric link is then obtained with an index model strategy described

in Section 2. First, an estimation is performed from maximum likelihood estimation

of the Poisson model with regression components

Ni ∼ P (λi), λi = exp(c+ x
0
ib).

For each policyholder i, we obtain the index si = bc+x0ibb and the parametric frequency
premium bE0(Ni) = exp(si). Then the variance of the random effect is estimated

from equation (7) and from nonparametric estimators of E(Nm
i ), m = 1, 2. We use

equation (3), with Y = Nm.

In what follows, we retain a Gaussian kernel. Hence Kh is the density of a

N(0, h2) distribution. The bandwidth hm retained for the estimation ofE(Nm
i ) (m =

1, 2) is obtained with the leave-one-out approach (see equations (4) and (5)). From

equations (7) and (3), a nonparametric estimator of V (Ui) is

bV (Ui) =
bE(N2

i )− bE(Ni)− bE2(Ni)bE2(Ni)
.

5
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Kernel-based estimation of the variance of the random effect and of the frequency premium as a function of the 
parametric frequency premium
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Figure 1:
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The estimated variance of the random effect is then a nonparametric function of the

frequency premium bE0(Ni).

Figure 1 presents the empirical link between bV (U), bE(N) and bE0(N) for a

Spanish portfolio containing 80,994 policyholders observed during one year.3 The

response variable is the number of claims at fault. The rating factors are the gender,

the geographical area, the age of the driving licence, the age of the policyholder and

her seniority as a customer of the insurance company, the coverage level and the

power of the vehicle. Figure 1 is obtained with the two step estimation approach

described after equation (7). A direct estimation of the regression parameters jointly

with the bandwidth from the cross-validation criterion led to very similar results.

For instance, the cosine between the two estimations linked to the regressors is

equal to 0.9996, which indicates almost perfect colinearity. As only b/h is identified

(see equation (5) and the following comments), this means that the estimations are

almost equivalent. This result was not obvious ex ante, as consistency with link

misspecification holds under assumptions on the distribution of regressors which are

not necessarily fulfilled with the qualitative variables used in our regressions (see

the appendix).

Figure 1 exhibits a decreasing link between the local estimation for the variance

of the random effect and the frequency premium. This result was confirmed on other

data bases. A power link between the variance of the random effect and frequency

risk is estimated in the following section.

3The bandwidths retained for the first and second order moment of the response variable from

the cross-validation criterion given in (4) are equal to h1 = h2 = 0.009. Notice that the two

estimations of the frequency are close to each other around the average value (equal to 0.07),

whereas the kernel-based estimation is lower than the fully parametric estimation for large values

of the frequency.

7
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4 Negative binomial model with a power link be-

tween the variance of the random effect and

frequency risk

In this section, we use a modified version of the negative binomial model with

regression components, in which we include a power link between the variance of

the random effect and frequency risk. Hence we have a parametric model which

can reflect the decreasing link observed in Figure 1. This model was proposed by

Winkelmann and Zimmermann (1991).

We keep the notations of Section 3, and we suppose that the random effect

follows a gamma distribution. We write

Ui ∼ γ(ai, ai); ai = aλ−ei , λi = E(Ni) = exp(c+ x
0
ib).

The gamma distribution is indexed by a shape and a scale parameter. We have

E(Ui) = 1; V (Ui) =
1

ai
=

λei
a
, (8)

and the parameter e is the elasticity of V (Ui) with respect to frequency risk. The

equidistribution assumption for the random effects means that this elasticity is null.

The variance of the random effect specified by (8) is an exponential function of

the index x
0
ib. Such a link was investigated for a linear model by Harvey (1976).

The likelihood is the usual one for the negative binomial model, hence

P [Ni = ni] = E [PλiUi(ni)] =
aaii λi

ni

(λi + ai)ni+ai
Γ(ni + ai)

Γ(ai)Γ(ni + 1)
.

The maximum likelihood estimators for the Spanish portfolio are the following.

ba = 8.05; be = −0.839; bebσe = −2.141. (9)

8
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Kernel-based vs. power link parametric estimation for the variance of the random effect as a function 
of the parametric frequency premium
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Figure 2:

The usual semiparametric estimator for a constant variance of the random effect is

equal to bσ2 = bV (U) = P
i(ni − bλi)2 − niP

i
bλi2 = 0.985.

Figure 2 plots two estimated variances of the random effects, defined as a power

or a kernel-based function of the parametric frequency premium, together with the

constant estimation.

5 Applications to credibility predictors

Linking the variance of the random effect and frequency risk raises a difficulty in a

longitudinal data analysis. Since frequency risk varies with time, the random effect

9
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cannot be supposed time-independent in the prediction. A solution is to derive the

random effects from a stochastic process defined in continuous time, and to link

the time index of the process with frequency risk. Let us detail an example from a

gamma process.

If data are longitudinal, we simply replace i by the pair i, t (where t indexes the

periods) in the preceding equations. For instance, the random effects are defined as

follows

Ui,t ∼ γ(ai,t, ai,t)⇔ ai,tUi,t ∼ γ(ai,t). (10)

We obtain the random effects Ui,t from a gamma process (Gi,a)a≥0, which is defined

by three properties:

1) Gi,0 ≡ 0; 2) The process has independent increments; 3) The increments

follow gamma distributions, with a parameter equal to the difference in dates (i.e.

Gi,a2 −Gi,a1 ∼ γ(a2 − a1) ∀a1, a2, a2 > a1 ≥ 0). For instance, we have Gi,a ∼ γ(a).

We have a particular type of Levy process with indefinitely divisible distributions.

This process exists from the well known property on gamma distributions

γ(a1) ∗ γ(a2) = γ(a1 + a2) (a1, a2 ≥ 0)

and from Kolmogorov’s theorem. The gamma process can also be seen as a limit of

compound Poisson processes (see Dufresne et al., 1991, for definitions and applica-

tions to ruin theory).

Suppose that we have the link V (Ui,t) = σ2(λi,t) given in equation (6) between

the variance of the random effect and the frequency risk. For the distributions given

in equation (10), we have V (Ui,t) = 1/ai,t. This leads us to define the random effects

as follows

Ui,t = σ2(λi,t)×Gi,1/σ2(λi,t). (11)

Then we have

λi,t1 = λi,t2 ⇒ Ui,t1 = Ui,t2 .

10
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We can consider for instance the power link σ2(λi,t) = a×λ−ei,t retained in Section 4.

Let us predict frequency risks with a linear credibility approach (Bühlmann,

1967). The bonus-malus coefficient for the second period of the policyholder i is

derived from an affine probabilistic regression of Ui2 with respect to Ni1. We have

bui2 = 1 + dCov(Ui2, Ni1)bV (Ni1)
(ni1 − cλi1),

with dCov(Ui2, Ni1) = cλi1dCov(Ui2, Ui1); bV (Ni1) = cλi1 + cλi12bV (Ui1).

Since the gamma process Gi,t has independent increments, we have that

Cov(Gi,a1, Gi,a2) = V (Gi,min(a1,a2)) = min(a1, a2).

From (11) and the last equation, we obtain

dCov(Ui2, Ui1) =
bσ2(cλi1)× bσ2(cλi2)

max
³ bσ2(cλi1), bσ2(cλi2)´ .

Then the linear credibility predictor is the weighted average

bui2 = 1 + credi

µ
ni1cλi1 − 1

¶
= (1− credi) +

µ
credi ×

ni1cλi1
¶
.

The credibility credi granted to the first period is equal to

credi =
cλi1 ×dCov(Ui2, Ni1)bV (Ni1)

=
cλi1 × bσ2(cλi1)

1 +
³cλi1 × bσ2(cλi1)´×

bσ2(cλi2)
max

³ bσ2(cλi1), bσ2(cλi2)´ . (12)
Let us comment equation (12). The first component of the product which defines

the credibility is the usual formula, with a variance of the random effect bσ2 which
depends on the frequency premium. As the function bσ2 decreases with the frequency
premium on our data, this component of the credibility increases less than with the

usual formula. It might even decrease if the estimated elasticity between the variance

of the random effect and frequency risk (defined globally with a power link function

11
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Credibility as a function of the frequency premium (with a constant variance for the random effect 
and with a power link between the frequency risk and the variance of the random effect)
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Figure 3:

or locally with a nonparametric link) was less than -1. The second component of

the credibility in equation (12) is less than one. Frequency premiums do not vary

much for a given policyholder from one period to the following4, and this component

remains close to one. All the policyholders of our sample stay in the portfolio at the

second period.5 On our data, the average of the second component of (12) derived

from the power link estimated in (9) is equal to 0.99.

In Figure 3, we plot two derivations of the credibility as a function of the fre-

quency premium cλi1. First, credibility is derived from the usual formula with a

4A thorough analysis of stochastic migration between risk levels during different periods is given

in Brouhns et al. (2003).
5They are actually present during seven years. See Bolancé et al. (2003) for an investigation of

the whole panel data set.
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constant variance for the random effect ( bσ2 = 0.985). Second, we use equations (9)
and (12). The credibility is not a deterministic function of cλi1, due to the second
component in equation (12). We averaged it with a Gaussian kernel. The optimal

bandwidth is small (h = 0.001) because the variations around the average are very

low. As expected, the credibility is almost constant with the power link between

the variance of the random effect and the frequency premium because the estimated

elasticity is close to -1.

6 Conclusions

The relative variations after each year for coefficients of real-world bonus-malus

scales do not depend on the frequency premium (however they depend on the loca-

tion in the scale). Relaxing the equidistribution assumption on the random effects

may allow actuarial models to get closer to real-world rating structures concern-

ing the bonus, if the estimated link between the variance of the random effect and

frequency risk is decreasing. As an actuarial malus is close to the variance of the

random effect if risk exposure is low, the malus also decreases with the frequency

premium if the aforementioned link is decreasing. Hence a real-world bonus-malus

scale is close to a usual actuarial model on the malus side, whereas on the bonus

side it can be closer to the models developed in this paper.

A Appendix: Consistency of the estimation un-

der link violation

This appendix gives the conditions which provide a consistent estimation of the

conditional expectation E(Y |X) in a misspecification context on the link between

the index and E(Y ). The reference is Li and Duan (1989).

13
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Suppose that we have a sampling model on the pair (x, y), with the nonpara-

metric link E(Y |X = x) = f(x0β). Notations are those of Section 2. In the

aforementioned reference, the distribution of Y given X = x is supposed to be that

of g(x0β, ε), where ε is a given random variable and g a given function. This im-

plicitly assumes that the distribution of Y is determined by the expectation E(Y ),

which is the case for binary or Poisson distributions.

Besides, a parametric model with a scalar parameter m and a likelihood Lm

is estimated on the data (observations are (xi, yi)i=1,...,n). The scalar parameter is

linked to the index x0b by a given function f0. We write

mi = f0(c+ x0ib); − logLmi(yi) = h(c+ x0ib, yi).

For instance, in a Poisson model the parameter is the expectation and the exponen-

tial link is usually retained for f0. In that case we have: h(s, y) = exp(s) − ys +

log(y!).

Let bc,bb = argmin
c,b

P
i h(c+ x0ib, yi) be the maximum likelihood estimators in the

parametric model. If data are generated by the sampling model given in the first

place, this estimator converges towards a limit c0, b0 usually called a pseudo-true

value (Gouriéroux et al., 1984). We have that

b0 ∈ Rβ (i.e. b0 = λβ, λ ∈ R) (13)

under the following assumptions.

1. The maps h(•, y) : s→ h(s, y) are convex for every value of y. This assumption

implies that the map c, b→ E
£
h(c+X

0
b, Y )

¤
= R(c, b) is convex.

2. The minimum of the map R defined in Assumption 1 is reached for only one

pair c0, b0.

3. We have the following property

∀b ∈ Rk, ∃ d, λ ∈ R, E(X 0b |X 0
β) = d+ (λX

0
β). (14)

14
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Let us comment the result and the assumptions. Since we have the propertybb a.e.−→

b0 = λβ, the estimation of E(Y |X) obtained from (3) and (4) will be consistent.

Indeed, it is the line Rβ which must be identified in an index model, as discussed in

Section 2. Hence the multiplicative constant λ does not matter in the estimation.

The first assumption relates to the concavity of the log-likelihood and is usu-

ally fulfilled. The consistency property of the maximum likelihood estimation and

assumption 2 lead to

bc,bb = argmin
c,b

1

n

nX
i=1

h(c+ x0ib, yi)
a.e.−→ c0, b0 = argmin

c,b
R(c, b) = E

h
h(c+X

0
b, Y )

i
.

From the strong law of large numbers, it is easily seen why assumption 2 is necessary.

The consistency result given in (13) is obtained from (14) with assumption 2 and

Jensen’s inequality applied on the functions h(•, y). Assumption 3 is generally not

fulfilled for variables X with discrete values, as it is the case in our empirical analy-

sis. Equation (14) is fulfilled if X follows a non degenerate Gaussian distribution.

Indeed, it is well known that in that case the conditional expectation defined in

(14) is obtained from the affine probabilistic regression of X 0b with respect to X
0
β.

Property (14) is more generally fulfilled for elliptically symmetric distributions.
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