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Abstract

We propose an evaluation of the main empirical approaches used in the liter-
ature to estimate the contribution of public capital stock to growth and private
factors�productivity. Our analysis is based on the replication of these approaches
on pseudo-samples generated using a stochastic general equilibrium model, built as
to reproduce the main long-run relations observed in US post-war historical data.
The results suggest that the production function approach may not be reliable to
estimate this contribution. In our model, this approach largely overestimates the
public capital elasticity, given the presence of a common stochastic trend shared
by all non-stationary inputs
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1 Introduction

Economists and political leaders generally consider public infrastructure investments

as a way of sparking economic development over the forthcoming decades. The basic

idea is that these investments may enhance the productivity of private factors, and,

thereby, stimulate private investment expenditure and production. However, if this idea

seems to be broadly accepted, the conclusions are not so clear-cut when it comes to

measure these e¤ects. Two methodological approaches have been used to estimate the

productive contribution of infrastructures. The �rst consists estimating an expanded

production function including the public capital stock as input. Applied to aggre-

gate series (Aschauer 1989, Munnell 1990), this method generally leads to strikingly

high estimates of public capital elasticity, and consequently to implicit rates of return

much higher than those observed on the private capital. The second approach consists

estimating the same kind of production function, but with a speci�cation in �rst di¤er-

ences. Indeed, several empirical studies on American data (Aaron 1990, Tatom 1991,

Sturm and Haan 1995, Crowder and Himarios 1997), have highlighted the absence of

a cointegrating relationship between output and (public and private) inputs. Such ob-

servation implies that the total productivity of private factors is non stationary, like

most macroeconomic series. Thus, the technological function can not be considered

as a long term relationship. However, when the production function is estimated in

�rst di¤erences, the estimated elasticity of public capital is generally not signi�cantly

di¤erent from zero. Such results not only challenge the validity of Aschauers�results,

but also cast doubt on the existence of a macroeconomic productive contribution of

public infrastructures (Tatom 1991).
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This large range observed in empirical results leads us to suggest a sensitivity analy-

sis of these alternative approaches. The aim of this paper is to identify precisely the

bias sources which could a¤ect the estimates and to assess the magnitude of these bi-

ases. Our analysis is based on the replication of these approaches on pseudo samples

generated by a stochastic general equilibrium model with endogenous public capital.

From these results, it is possible to evaluate the ability of alternative approaches to

correct these biases and to provide more precise estimates of public capital elasticities.

The theoretical model used as a data generating process is a standard stochastic

growth model derived from Barro�s model (1990). We adopt functional forms which

allow an analysis of the equilibrium path decision rules. This model is designed to re-

produce the main long run relations observed in US postwar historical data. We assume

that the production function can not be considered as a cointegrating relationship. But,

at the same time we assume that there is at least one stochastic common trend between

private and public inputs, as observed by Crowder and Himarios (1997). Using the data

generated by this model, we implement the standard econometric approaches used in

the empirical literature. Firstly, given the dynamic equilibrium path of the model, we

derive the asymptotic distributions of the main estimators of public capital elasticity.

Secondly, we compute the �nite distance distributions for some speci�cations by using

Monte Carlo simulations.

It �rst appears that the standard approach, relying on the direct estimate of the

production function speci�ed in levels, leads an overestimation of the productive con-
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tribution of public infrastructures. In some cases, given the long run properties of the

theoretical model, the asymptotic bias is due to the presence of a stochastic common

trend between private and public capital stocks. We show that there is a fallacious

asymptotic constraint which forces the public capital elasticity to be equal to the labor

elasticity. The second bias source is the traditional endogeneity bias due to the simul-

taneous determination of public capital stock and private factor productivity. Besides,

Monte Carlo experiments show that �rst di¤erencing the data could destroy all the

long run relations of variables and could lead to a reduction in in power of standard

tests. Consequently, in our model, this transformation of the data leads to a spurious

inferences about the estimators of public capital elasticity.

These conclusions imply that cointegrating relations may contain no direct informa-

tion about structural parameters of the production function, but that such information

may be deduced from short run �uctuations. Thus, the de�nition and the identi�ca-

tion of the short run components is essential to get a good estimate of public capital

productive contribution. In our model, �rst di¤erencing the data does not constitute

the suitable approach. We recommend using alternative methods based on a theoret-

ical model (structural inference), or on the estimate of common trends of production

function variables, in order to identify the short run components accurately.

The paper is organized as follows. In section 2, we survey the empirical puzzle on

the infrastructure returns. In section 3, the benchmark theoretical model is presented.

In section 4 and 5 we characterize the asymptotic properties of the main estimators

used in the empirical literature. Section 6 is devoted to �nite sample properties. A last
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section concludes.

2 The empirical puzzle

During the late 1980�s and the 1990�s, a huge empirical literature has been devoted to

the estimation of the rate of return on public capital (see Gramlich 1994 for a survey).

If we consider studies based on times series only, two methodological approaches have

been used. The direct estimate of a production function expanded to the stock of public

capital is a �rst empirical way to measure these e¤ects. This has the advantage of great

simplicity. Applied to aggregate data, with a speci�cation in level of the production

function, this method generally tends to prove the existence of an important productive

contribution of public infrastructures. Indeed, since the seminal article of Aschauer

(1989), many empirical studies, based on this methodology, have yielded very high

estimated elasticities (see Table 1), on American data as well as on OECD data sets.

However, it should be noticed that in these estimates the productive contributions

of private factors are generally lower than the share of their respective remuneration

in added value. Besides, in Aschauer (1989), Eisner (1994), Vijverberg et al. (1997) or

Sturm and De Haan (1995) the elasticity of private capital is lower than that of public

capital or equal to it. The elasticity of labor is even negative under some speci�cations

in Munnell (1990) or Sturm and De Haan (1995). Further, if we accept such estimates as

relevant, the implied annual marginal yields of public capital are then extremely high.

Tatom (1991) or Gramlich (1994) thus calculated, starting from elasticities estimated

by Aschauer (1989), that the annual marginal productivity of public infrastructures
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would lie between 75% in 1970 and more than 100% in 1991. Thus, these results �mean

that one unit of government capital pays for itself in terms of higher output in a year

or less, which does strike one as implausible�(Gramlich 1994, page 1186).

Then, several authors, such as Tatom (1991) or Gramlich (1994), highlighted two

bias sources which could partly explain these results. First, the potential presence of an

endogeneity bias stems from the simultaneous determination of the level of production

factors and the total productivity of these factors (Gramlich 1994). The second source

of mispeci�cation could come from the absence of cointegrating relationship. Indeed, it

seems widely agreed that the aggregate production function, extended to public capital,

can not be represented as a cointegrating relationship. Three empirical studies based on

American data do �nd no cointegrating relationship (Tatom 1991, Sturm and De Haan

1995, Crowder and Himarios 1997). Only Lau and Sin (1997) highlight the existence

of such a long term relationship. It is well known that this �spurious regression�

con�guration can lead to a fallacious inference about the estimated parameters of the

production function and particularly about the estimate of public capital elasticity.

But, it could also induce second order biases when innovations of integrated processes

are correlated.

At the same time, we observe that the use of �rst di¤erenced data (see Table 2),

justi�ed in the case of non-stationary and non-cointegrated series, generally leads to re-

jection of the hypothesis of positive e¤ects of public infrastructures on the productivity

of private factors (Tatom 1991, Sturm and De Haan 1995). Thus, the use of this spec-
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i�cation seems to clearly indicate important biases in Aschauer�s estimates. Hiowver,

Munnell (1992) suggested that �rst di¤erencing is not, in this case, the suitable method

because it destroys all long term relations that may exist among the production function

variables.

These observations lead us to question the speci�cation of the production function.

If the production function is a cointegrating relationship, thus the total factor produc-

tivity (TFP) is, by de�nition, covariance stationary. However, there is no reason to

believe a priori that the component of Solow�s residual which is orthogonal to public

infrastructures can be represented as a stationary process, contrary to most macroeco-

nomic series. Conversely, the standard models of stochastic growth typically attribute

the non-stationarity of the economy to the exogenous process of Solow�s residual. In

these models, the cointegration between factors and output results from the balanced

growth hypothesis and does not coincide with the production function. Besides, from

the empirical point of view, the production function may be represented as a coin-

tegrating relationship only if it is properly speci�ed and if it explicitly integrates all

the potential explanatory variables of productivity, like human capital or education,

research and development, measurements of organizational capital, etc.. Then, leaving

out one or more of these factors can consequently lead to a fallacious measurement of

Solow�s residual. Consequently, some authors, like Crowder and Himarios (1997), are

convinced that the production function can not be represented as a long term relation-

ship. On the contrary, for them it is a technological constraint which, date by date,

links the short run components of these variables.
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However, the rejection of the stationarity hypothesis of the TFP does not neces-

sarily imply the absence of any cointegrating relationship between production function

variables. In particular, Crowder and Himarios show that American postwar data sat-

isfy the main long run implications of the stochastic balanced growth models. In their

study, the cointegration tests show that output as well as stocks of private and public

capital share the same stochastic trend over the period. The existence of these long

term relations, in particular between the regressors of the equations estimated by As-

chauer (1989), can thus lead to an over-estimation of public infrastructure elasticity.

Conversely, the �rst di¤erences speci�cation can constitute too �radical� a method

(Munnell 1992) which too frequently leads to incorrectly accept the null hypothesis

eg = 0, since it does not take into account the long term relations of the system.

Then, in order to analyze these issues more precisely, we now propose a replication of

these estimation methods on pseudo samples generated from a theoretical model. This

model, used as a data generating process in our exercise, is built so as to reproduce the

main long run relationships observed from postwar American data between production

function variables.

3 The data generating process

In order to assess the bias size in reported estimates of public capital elasticity, we

consider a stochastic growth model derived from Barro (1990). Let us consider a single-

good economy, with a representative agent who maximizes his lifetime expected utility
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under his budget constraint as follows:

max
fCt;Ntg1t=0

U = E0

" 1X
t=0

�t log
�
Ct �BAtN�

t

�#
(1)

where Ct and Nt respectively denote consumption and labor at time t; and where

� 2 ]0; 1[ is a discount factor. The � parameter, with � > 1; controls the wage

elasticity of labor supply. Parameter B is a scale parameter which determines the

marginal disutility of labor, with B > 0. This speci�cation of preferences implies that

the choices of consumption and leisure are not independent. Consequently, in order to

get a balanced growth path, the marginal disutility of labor must grow at the same rate

as the marginal utility of consumption. Such a condition is satis�ed when the disutility

of labor is multiplied by a term At; which is proportional to the growth, as we will see

later. The budget constraint is as follows, 8t � 0 :

Ct + It � (1� �)wtNt + (1� �) rtKt + (1� �)�t (2)

where wt; rt; � ; It and �t respectively denote real wage, real interest, tax rate, private

investments and pro�ts.

The production Yt is determined by the levels of private inputs, capital Kt and

labor Nt. The stock of public capital Kg;t is considered as given by the �rm and is

assumed to have a positive externality on private factors�productivity (Barro 1990).

The production function, with private factors constant returns to scale, is de�ned as:

Yt = A
1�ek�eg
t N en

t Kek
t K

eg
g;t (3)

with 8 (ek; eg) 2 ]0; 1[2 ; ek+eg < 1 and en+ek = 1. We assume that the TFP, denoted
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At; follows a random walk.

log (At) = log (At�1) + �a;t 8t � 1 (4)

where A0 > 0 is given and where the innovations �a;t are i:i:d: (0; �2�a): So, in this model,

all increasing variables are non stationary. The exogenous growth factor is determined

by At; the component of Solow�s residual which is orthogonal to public services. This

speci�cation implies that the aggregate production function, extended to public capital,

can not be speci�ed as a long run relationship. This hypothesis corresponds to the

empirical �ndings generally obtained from US postwar data. Finally, we consider log-

linear law of depreciation for private capital:

Kt+1 = AkK
1��k
t I�kt Ak > 0 �k 2 ]0; 1[ (5)

This hypothesis allows us to obtain analytical rules of decisions at the equilibrium with

a strictly positive depreciation rate (Cassou and Lansing, 1998).

Given the aim of our exercise, the only constraint on the theoretical model concerns

its stochastic dimension. Indeed, as will be seen later, it is necessary to introduce

at least as many exogenous shocks in the theoretical model as stochastic regressors

used in empirical models, in order to avoid multicolinearity. Since the estimation of

a production function with public capital requires at least two stochastic regressors,

the data generating process of our pseudo samples must contain at least two stochastic

components. Consequently, we suppose that public investment is a¤ected by a speci�c

shock of productivity as speci�ed in Greenwood, Hercowitz and Hu¤man (1988). As

for private capital, we consider a log-linear speci�cation of the law of accumulation of
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public capital:

Kg;t+1 = AgK
1��g
g;t (Ig;tVg;t)

�g (6)

with Ag > 0, �g 2 ]0; 1[ and where Vg;t denotes the speci�c shock on public investment.

This shock follows a stationary AR (1) process:

log (Vg;t) = �g log (Vg;t�1) + �g;t 8t � 1 (7)

with Vg;0 > 0,
���g�� < 1 and where innovations �g;t are i:i:d:(0; �2g) and can be correlated

to �a;t: As done in this kind of models (Barro 1990, Glomm and Ravikumar 1997 etc..),

we assume that public investment is completely �nanced by the proportional income

tax, Ig;t = �Yt.

Given the functional forms of the model, we can analytically derive the dynamics

of the production function variables. If we note the logarithm in lower case, we get (see

Appendix A) the following dynamic system:

yt = by +
�ek

�� 1 + ek
kt +

�eg
�� 1 + ek

kg;t +
� (1� ek � eg)� (1� ek)

�� 1 + ek
at (8)

kt = bk +

�
1 + �k

� (ek � 1) + 1� ek
�� 1 + ek

�
kt�1 +

�k�eg
�� 1 + ek

kg;t�1

+�k

�
� (1� ek � eg)� (1� ek)

�� 1 + ek

�
at�1 (9)

kg;t = bg +
�g�ek

�� 1 + ek
kt�1 +

�
1 + �g

� (eg � 1) + 1� ek
�� 1 + ek

�
kg;t�1

+�g

�
� (1� ek � eg)� (1� ek)

�� 1 + ek

�
at�1 + �gvg;t�1 (10)

nt = bn +
ek

�� 1 + ek
kt +

eg
�� 1 + ek

kg;t �
[ek + eg]

�� 1 + ek
at (11)
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where by; bk, bg and bn are constant and where the exogenous processes at and vg;t are

respectively de�ned as at = at�1 + �a;t and vg;t = bv + �gvg;t�1 + �g;t:

4 Stationarity, cointegrating relations and Wold�s repre-
sentations

If we consider this theoretical model as a data generating process, it is now necessary

to study the stationary properties of our variables and to identify the cointegrating

relations. We show that all factors, except employment, are integrated process and that

there exists a fundamental cointegrating relationship between private and public capital

stocks. All the remaining cointegrating vectors can be deduced from this relationship.

Let us consider the V ARIMA representation of the vectorial process xt = (kt kg;t)
0.

We assume that this representation is de�ned as A (L) (1� L)xt = B (L) "t where

�t = (�a;t �g;t)
0 and L denotes the lag operator. Given equations (9) and (10), we can

express the matrix polynomial A (L) and B (L) as:

A (L) =

0B@ 1� (1 + �k)L � eg
ek
(�k + �k)L

� ek
eg
(�g + �g)L 1� (1 + �g)L

1CA (12)

B (L) =

0BB@
�
h
�k

�
eg
ek
+ 1
�
+ �k

eg
ek

i
L 0

�
h
�g

�
ek
eg
+ 1
�
+ �g

ek
eg

i
L �gL (1� L)

�
1� �gL

��1
1CCA (13)

where �k and �g are two negative constants as soon as � > 1:

�k = �k

�
� (ek � 1) + 1� ek

�� 1 + ek

�
�g = �g

�
� (eg � 1) + 1� ek

�� 1 + ek

�
(14)

In this model, the integrated component is induced by the non stationarity hypoth-

esis imposed on TFP at: Given the balanced growth assumption, the non stationarity of
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at leads to the presence of a unit root in the dynamics of both types of stocks of capital.

Then, in this V ARIMA representation, we must identify the conditions on structural

parameters which ensure the stability of polynomial A (:) ; since this autoregressive

component controls the dynamics of capital stock growth rates.

Proposition 1 Let us note �i 2 C, i = 1; 2 the roots of the polynomial detA (L). The

process associated with the growth rates of private and public capital stocks is covariance

stationary (j�ij > 1) if and only if the inverse of the wage elasticity of labor supply

veri�es the condition � > (1� ek) = (1� ek � eg) :

The proof of this proposition is reported in Appendix B. Under the condition of

proposition 1, we can apply the Wold�s (1954) theorem to the process (1� L)xt and

express it as a VMA (1):

(1� L)
�
kt
kg;t

�
=

"
A� (L)B (L)�

1� ��11 L
� �
1� ��12 L

�#� "a;t
"g;t

�
=

�
Hk (L)
Hg (L)

�
"t = H (L) �t

(15)

with A� (L)A (L) = detA (L) =
�
1� ��11 L

� �
1� ��12 L

�
: The (2; 2) matrix polynomial

H (L) can be expressed as a function of the structural parameters with:

Hk (L) =
L

detA (L)

0B@
eg
ek
	g (�k + �k)L+	k [1� (1 + �g)L]

eg
ek
�g (�k + �k)L

(1�L)
(1��gL)

1CA
0

(16)

Hg (L) =
L

detA (L)

0B@
ek
eg
	k (�g + �g)L+	g [1� (1 + �k)L]

�g [1� (1 + �k)L] (1�L)
(1��gL)

1CA
0

(17)

where 	k and 	g denote two negative constants, corresponding to linear combinations

of parameters �k and �g.

	k = ��k
�
eg
ek
+ 1

�
� �k

eg
ek

	g = ��g
�
ek
eg
+ 1

�
� �g

ek
eg

(18)
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Under the condition of proposition 1, public and private capital stocks are cointe-

grated when H (1) is a singular matrix. This result is ensured since:

Hk (1) = Hg (1) =
�
1 0

�
(19)

Then, the normalized cointegrating vector is given by a basis of the kernel of the

linear application H (1) and corresponds to (1;�1) : The other cointegrating relations

of the model can be worked out from it. Particularly, we show that private and public

capital stocks are both cointegrated with TFP at: This property is due to the balanced

growth assumption of the theoretical model. In the same way, we can demonstrate

that employment level nt is a stationary variable, since it can be expressed as a linear

function of stationary processes fkt � atg and fkg;t � atg (cf. equation 11). Therefore,

we have the following long-run properties:

Proposition 2 For this data generating process, processes fntg and fvg;tg are covari-

ance stationary, whereas processes fytg ; fktg ; fkg;tg and fatg are integrated of order 1

and share the same common stochastic trend determined by fatg :

Then, the main long term properties of this simple balanced growth model match

the American historical observations previously mentioned. There is no cointegration

between output and inputs as reported in Aaron (1990), Tatom (1991), Munnell (1992),

Sturm and De Haan (1995), Otto and Voss (1997) or in Sturm (1998). As observed by

Crowder and Himarios (1997) private capital, public capital and output share the same

stochastic common trend and are cointegrated with vector (1;�1). In this background,

it is particularly interesting to notice that cointegrating vectors of the model do not
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disclose any information on rates of return on public or private factors. More generally,

the estimated cointegrating relationships contain no direct information on structural

parameters, and particularly on production technology. It implies that such information

may be deduced only from short run �uctuations. These preliminary conclusions are

similar to those obtained in another context by Soderlind and Vredin (1996), from a

monetary business cycle model where the authors studied the cointegrating relations

between money, output, prices and interest rates.

Finaly, in order to calculate the asymptotic distributions of the empirical moments

of the production function variables, we consider the Wold decompositions associated

to processes fntg ; f�ktg and fkg;tg. The last two are provided by equations (16) and

(17). As mentioned above, the employment dynamics (equation 11) only depends on

stationary processes fkt � atg and fkg;t � atg. Since the common trend of both capital

stocks is determined by at, the VMA (1) representation associated to fntg depends on

the stationary component, denoted eH (L) ; issued from Beveridge and Nelson�s (1981)

decomposition of matrix polynomial H (L) : This stationary component is de�ned as:

eH (L) "t = " eHk (L)eHg (L)
#
"t =

�
H (L)�H (1)
(1� L)

�
"t =

�
kt � at
kg;t � at

�
(20)

since (1� L) at = "a;t = H (1) "t. Then, the dynamics of nt is:

nt = bn +
ek

�� 1 + ek
eHk (L) �t + eg

�� 1 + ek
eHg (L) �t (21)

We can observe from these Wold representations, that all the increasing endogenous

variables, yt; kt and kg;t; follow an ARIMA (3; 1; 3) process, whereas employment nt

follows an ARMA (3; 2) : In the rest of the paper, in order to simplify calculus, we
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assume that constant terms are null bn = bk = bg = 0:

5 Asymptotic distributions

Using this theoretical model as data generating process, we implement the standard

econometric approaches used in the empirical literature. More precisely, given the dy-

namic equilibrium path of the model, we derive the asymptotic distributions of the

main estimators of public capital elasticity. We limit our analysis to the OLS estima-

tors applied to speci�cations in level or in �rst di¤erences of the production function.

We consider the two following speci�cations in which the endogenous variable is the

productivity of private capital stock yt � kt :

yt � kt = en (nt � kt) + egkg;t + �1;t (22)

yt � kt = en (nt � kt) + eg (kg;t � kt) + �2;t (23)

This normalization, used by Aschauer (1989), makes it possible to consider various

assumptions on the nature of the scale returns. The �rst equation (22) corresponds to

the assumption of private factors�constant returns to scale (PFCRS). This assumption

is identical to that used in the theoretical model. The second equation (23) corresponds

to the assumption of overall constant returns to scale (OCRS). This speci�cation

corresponds to one of Aschauers�speci�cations in which he obtained a public capital

elasticity of 39%, i.e. higher than the estimated private capital elasticity (26%). We

now derive the asymptotic distributions of the OLS estimators ben and beg obtained from
speci�cations (22) and (23).
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5.1 The private factors�constant returns to scale (PFCRS) speci�ca-
tion

In the �rst empirical model (22), the endogenous variable yt � kt is stationary and the

stochastic regressors, nt � kt and kg;t; follow integrated processes of order one. But

as we will see, these regressors are cointegrated. Indeed, given our theoretical data

generating process, we can show (cf. Appendix C) that the sum of the two regressors

nt � kt + kg;t is proportional to the stationary component of Beveridge and Nelson�s

decomposition of the vectorial process (�kt �kg;t)
0 ; which is stationary by de�nition.

This is easily seen from the expression:

(nt � kt) + kg;t = �1 eH (L) �t (24)

where the matrix polynomial eH (L) is de�ned by equation (20) and where vector �1 is
de�ned as:

�1 =

�
1

�� 1 + ek

��
(1� �) ek + eg � 1 + �

�
(25)

One is in a particular case where the two stochastic regressors follow an integrated

process and are cointegrated with a vector (1; 1). This property implies the singularity

of the asymptotic variance covariance matrix of the corresponding empirical second

order moments. More precisely, we have the following result.

Proposition 3 In the speci�cation (22), the matrix of the empirical second order mo-

ments of the vectorial process st = [(nt � kt) kg;t]
0 converges toward a distribution with

a singular variance covariance matrix.

This proposition is a direct consequence of proposition 2. Indeed, since processes

fnt�ktg and fkg;tg share the same common stochastic trend, it is easy to prove that
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the associated empirical second order moments converge toward the same distribution

(cf. appendix C). Then, the empirical second order moments used to build beg and ben,
converge toward a distribution characterized by a singular variance covariance matrix.

In other words, this result means that a common trend shared by the two stochastic

regressors of the speci�cation (22) leads to a degenerated asymptotic distribution of beg
and ben, since the denominator of these estimators converges toward zero. Consequently,
the derivation of the asymptotic distributions of beg and ben can not be done directly
starting from the speci�cation (22). It is necessary to transform the model before

determining these asymptotic distributions.

A solution to this problem is to use a transformation of the speci�cation (22) reveal-

ing the residual of the cointegrating relationship of the regressors and a non stationary

combination of these variables (Park and Phillips 1989).

Proposition 4 The model (22) can be transformed as a triangular representation

(Phillips 1991) as follows:

yt � kt = A0 z0;t + A1 z1;t + �1;t (26)

zi;t = S0ist Ai = ASi i = 0; 1 (27)

where A = (en eg) ; st = [(nt � kt) kg;t]0 and where scalars z0;t and z1;t are two linear

combinations of the elements of st which are respectively stationary and integrated order

1 and where S = (S0 : S1) is an orthogonal (2; 2) matrix.

From this transformed model, it is then possible to determine the asymptotic dis-

tribution of ben and beg: The intuition is as follows. Considering a transformed model
18
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including the residual of the cointegrating relationship between (nt � kt) and kg;t, the

corresponding matrix of variance covariance is non singular. So, the asymptotic dis-

tributions of the OLS estimators of the parameters of the transformed model can be

de�ned. We then just have to express the parameters of the basic model in the form

of combinations of the transformed model parameters. While controlling them by the

corresponding convergence speeds, one �nally obtains the asymptotic distributions of

the OLS estimators of the initial model.

The triangular representation of proposition 4 imposes some restrictions on S0 and

S1. These restrictions correspond to assumptions in A1.

Assumptions (A1) We suppose that vectors S0 and S1 satisfy the two following con-

ditions (i) S0S00 + S1S
0
1 = I2 (ii) Vector S0 corresponds to a normalized basis of

the cointegrating space of the vectorial process fstg :

The �rst condition (i) is necessary to insure the equivalence between the trans-

formed model (26) and the initial speci�cation (22), since:

yt � kt = A0z0;t + A1z1;t + �1;t = A
�
S0S

0
0 + S1S

0
1

�
st + �1;t = Ast + �1;t (28)

The second condition (ii) imposes that the linear combination z0;t = S00st should

correspond to the cointegrating residual of the long term relationship between (nt �

kt) and kg;t (except for a scalar) and is thus stationary by de�nition. The choice

of a normalized basis of the cointegrated space is however not essential, since any

monotonous transformation of the cointegrating vector would have allowed us to get

representation (26), but it simpli�es calculations. In this model, a normalized basis
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of the cointegrated space of the regressors st is given by the vector S0 = 2�1=2 (1 1)
0.

Then, we deduce the expression of S1 which is equal to S0 = S1 = 2
�1=2 (1 1)0 : Under

the assumptions A1, the transformed model is thus written in the form:

yt � kt =
A0p
2
(nt � kt + kg;t) +

A1p
2
(nt � kt � kg;t) + e�1;t (29)

where e�1;t = (en � eg) at; z0;t = 2�1=2 (nt � kt + kg;t) ; z1;t = 2�1=2 (nt � kt � kg;t) and
parameters A0 and A1 are:

A0 =

�
en + egp

2

�
A1 =

�
en � egp

2

�
(30)

Given the properties of the speci�cation (29), the asymptotic distribution of bA0
(which is associated to the residual of the cointegrating relationship between regressors

of the initial speci�cation 22) is su¢ cient to establish the asymptotic distributions of

bA = (ben beg)0 of the initial parameters. The intuition is as follows. The estimator bA can
be expressed as:

bA = bA0S00 + bA1S01 = bA0S00 + 1

T

�
T bA1S01� = bA0S00 + 1

T
Op
�
T�1

�
(31)

Let us assume that bA0 L�!
T!1

eh0 and T bA1 L�!
T!1

eh1 where eh0 and eh1 are two non
degenerated distributions with �nite variance, then:

bA = � benbeg
�

L�!
T!1

eh0S00 (32)

Immediately, given the de�nition of S0, we observe that ben and beg converge toward
the same asymptotic limit. This result indicates the presence of a fallacious constraint

induced by the cointegrating relationship of the regressors. We now characterize eh1; and
especially eh0; which enters the de�nition of the asymptotic distributions of transformed
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estimators bA0 and bA1. Once established the asymptotic distribution of bA0, we will be
able to determine those of beg and ben.

From the triangular representation (29), we now derive the asymptotic distributions

of bA0 and bA1:We prove in Appendix D that bA0 converges toward a punctual mass
corresponding to the correlation between z0;t and (yt � kt) : Estimator bA1 converges at
speed T toward a distribution of �nite variance: Then, we get the following results:

bA0 p�!
T!1

E [z0;t (yt � kt)]
E
�
z20;t

� (33)

T bA1 L�!
T!1

E [z0;t (yt � kt)] e	1 � E �z20;t� e	0
p
2E
�
z20;t

�
�2a

1R
0

W 2
1 (r) dr

(34)

where stochastic variables e	0 and e	1 are de�ned as:
e	0 = Hg (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�00 + 1X
v=0

E [�kg;t (yt�v � kt�v)] (35)

e	1 = Hg (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�01 + 1X
v=0

E (�kg;tz0;t�v) (36)

where E ("t"0t) = 
 = PP 0 and where fW (:) = [W1 (:) W2 (:)]
0 denotes a standard

Brownian vectorial motion: The vector �1 has been previously de�ned (equation 25)

and �0 is �0 =
�

1
��1+ek

� �
(1� ek) (1� �) �eg

�
.

Given the distributions obtained from the transformed model, we can derive the

distributions of ben and beg corresponding to the initial speci�cation (22). As it was
previously mentioned, under assumptions (A1), it is possible to rewrite ben and beg as
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linear combinations of bA0 and bA1 (equation 31). Then, we get:
� benbeg

�
p�!

T!1

E [z0;t (yt � kt)]
E
�
z20;t

� S00 =
E [z0;t (yt � kt)]

E
�
z20;t

�  
1p
2
1p
2

!
(37)

Given the de�nition of z0;t; we immediately get the asymptotic distributions of ben
and beg:
Proposition 5 The asymptotic distribution of the OLS estimator beg of public capi-
tal elasticity, based on the speci�cation (22), is identical to those obtained under the

constraint eg = en:

beg p�!
T!1

E [(yt � kt) (nt + kg;t � kt)]
E [nt + kg;t � kt]2

(38)

Correspondingly:

ben p�!
T!1

E [(yt � kt) (nt + kg;t � kt)]
E [nt + kg;t � kt]2

(39)

Thus, the application of the OLS on speci�cation (22), used notably by Aschauer

(1989), leads to a fallacious constraint . This constraint implies that the estimated

elasticities of public capital and employment are asymptotically identical. This result

stems from the presence of a cointegrating relationship between non-stationary regres-

sors fnt � ktg and fkg;tg : Intuitively, in this speci�cation the minimization of the vari-

ance of the residuals imposes that the right member of the equation, ben (nt � kt)+begkg;t;
is homogeneous in degree 0 in the I (1) terms. This condition is satis�ed only if the

vector (ben; beg) is proportional to the cointegrating vector (1; 1) : In other words, the
estimators of public capital elasticity and labor elasticity asymptotically converge, as

if we have a constraint en = eg: This conclusion can not be extended to �nite sample,
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however we can observe that in Aschauer the OLS estimates of eg and en; are very

similar (see Table 1).

This constraint makes the identi�cation of the public capital elasticity impossible.

Thus in this exercise, the asymptotic limit beg cannot be expressed in an additive form
as a simple function of the true value of eg and a term of covariance of the innovations,

as in the case of a standard endogeneity bias. Indeed, if we consider the de�nition of

processes fktg ; fkg;tg and fyt � ktg, we show that:

E [(yt � kt) (nt + kg;t � kt)]
E (nt + kg;t � kt)2

=

�
en + eg
2

�
+	(en; eg)

�
en � eg
2

�
(40)

with

	(en; eg) =
E f(nt + kg;t � kt) [nt � (kt � at)� (kg;t � at)]g

E (nt + kg;t � kt)2
(41)

Then, if en 6= eg (or ek+eg 6= 1), the asymptotic limit of beg is a non linear combination
of parameters en and eg; and thus does not enable to identify the true parameter eg.

From the Wold�s decompositions of processes fyt � ktg and fnt + kg;t � ktg, it is

possible to evaluate the correlation (38). For that, we consider the Wold decom-

positions of these two variables (equations 71 and 72, Appendix D) which are lin-

ear functions of the matrix polynomial eH (L). Let us note eHv the matrix de�ned
as eH (L) = P1

v=0
eHvLv. Then, the theoretical moments of variables (yt � kt) and

(nt + kg;t � kt) are directly obtained from the following expression:

E [(yt � kt) (nt + kg;t � kt)]
E
h
(nt + kg;t � kt)2

i =

�0

� 1P
v=0

eHv
 eH 0
v

�
�01

�1

� 1P
v=0

eHv
 eH 0
v

�
�01

(42)
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Since this expression is a particularly complex function of the structural parameters,

on �gure 1 we o¤er a numerical evaluation of this correlation for various values of the

correlation of shocks �ag and of the inverse of the elasticity of labor supply � (these

values satisfy the conditions of proposition 1). In order to compare our results to

those of Aschauer (1989), the other structural parameters of the model are calibrated

on American data (� = 0:98; ek = 0:42; � = 0:016; �g = 0:012; �a = 1; �g = 0:88;

�a = 0:011 et �g = 0:088). In particular, the public capital stock elasticity is set

at 5% (represented by a horizontal bar on the graph). This value corresponds to the

empirical mean of the public investment ratio obtained from postwar data (Baxter and

King 1993).

When the correlation between the two shocks is null or negative, beg converges to-
wards a negative quantity. When this correlation is high enough, this quantity becomes

positive. We observe that for values of � higher than the calibrated value of 3:65, the

estimator beg tends to over-estimate the public capital elasticity. More over, there are
several values of the couple (�; �ag) for which the OLS estimator converges towards val-

ues over 40%, identical to those estimated by Aschauer (1989) from US data, whereas

the calibrated value of elasticity is only 5% in our theoretical model.

More generally, there is a high probability that the constrained OLS with en = eg,

over-estimate the rate of return on public infrastructures. In our model, this fallacious

constraint appears given the two independent variables share the same stochastic trend.

However, such a con�guration is not speci�c to our problem and could occur in many

economic issues (estimated rates of return on human capital, trade openness etc..). Be-
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sides, our results imply that long run relations may not be su¢ cient to get information

about structural parameters of the economy (Soderlind and Vredin 1996).

5.2 The overall constant returns to scale (OCRS) speci�cation

The second speci�cation of the production function (43), used notably by Aschauer

(1989), corresponds to the hypothesis of overall constant returns to scale (OCRS):

yt � kt = en (nt � kt) + eg (kg;t � kt) + �2;t (43)

In this speci�cation, one of the two explicative variables, kg;t � kt, is stationary

whereas the second, nt � kt; follows an I (1) process. Given our theoretical data

generating process, the residual population �2;t is non stationary and is de�ned as

�2;t = (en � eg) at+ egkt: Then, the residual population can be expressed as the sum of

two components respectively stationary and non stationary, since �2;t is cointegrated

with the regressor nt � kt with a vector (1; en). The stationary component e�2;t corre-
sponds to the residual of the cointegrating relationship between nt � kt and �2;t. This

process is a linear combination of the elements of polynomial matrix eH (L) issued from
Beveridge and Nelson�s decomposition of (�kt;�kg;t) : The non stationary component

of �2;t is proportional to the regressor nt � kt: Thus, the population residual can be

expressed as:

�2;t = e�2;t � en (nt � kt) (44)

where the cointegrating residual e�2;t is I (0) by de�nition and can be expressed as:
e�2;t = ennt + (eg � en) (kt � at) = �2 eH (L) "t (45)

with �2 =
h �

enek
��en

�
+ eg � en

�
eneg
��en

� i
. Given this decomposition, we will show

that OLS leads to a biased measure of the public capital stock elasticity.

25

ha
ls

hs
-0

01
56

68
4,

 v
er

si
on

 1
 - 

22
 J

un
 2

00
7



Given the cointegrating relationship between residual �2;t and nt�kt we can trans-

form the speci�cation (43) like a model where all the explanatory variables are station-

ary and in which the coe¢ cient en is not identi�ed.

yt � kt = eg (kg;t � kt) + e�2;t (46)

Then this expression indicates that (i) OLS estimate beg of parameter eg in spec-
i�cation (43) converges in probability toward the correlation between private capital

productivity and ratio kg;t�kt and (ii) the employment elasticity can not be identi�ed,

since under H0 the term nt � kt disappears.

Proposition 6 In speci�cation (43), OLS estimators ben and beg are not convergent:
(i) The OLS estimate of public capital elasticity is a¤ected by a standard endogeneity

bias owing to the correlation between kg;t� kt and the stationary component e�2;t of the
population residual.

beg � eg p�!
T!1

E
�
(kg;t � kt) e�2;t�

E
h
(kg;t � kt)2

i (47)

(ii) The OLS estimate of labor elasticity ben converges towards 0 because:
T ben L�!

T!1

E
h
(kg;t � kt)2

i e	2 � E �(kg;t � kt) e�2;t� e	3
E
h
(kg;t � kt)2

i
�2a

1R
0

W 2
1 (r) dr

(48)

where stochastic variables e	2 and e	3 are respectively de�ned as
e	2 = �Hg (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�02 + 1X
v=0

E
�
�(nt � kt) e�2;t�v� (49)

e	3 = �Hg (1)P
8<:

1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�03+ 1X
v=0

E [� (nt � kt) (kg;t�v � kt�v)]

(50)
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with �3 =
�
�1 1

�
and �2 =

h �
enek
��en

�
+ eg � en

�
eneg
��en

� i
:

The proof of proposition 6 is provided in Appendix E. These results clearly indicate

that the application ofOLS on a speci�cation in level of the production function leads to

biased estimates of public capital elasticity and to an undervaluation of labor elasticity

(since the corresponding estimate converges towards 0).

It is important to keep in mind that this same methodology has been used in

many empirical studies devoted to the measure of return rates on public capital and

notably in Aschauer (1989). Given the same speci�cation as (43), Aschauer obtained a

very high and signi�cant estimate of public capital elasticity (39%), while the estimate

of labor elasticity (35%) was largely inferior to those generally estimated in two-factor

production functions (where a contribution of labor around 2=3 is then generally found).

These observations are compatible with the conclusions of proposition 6.

Of course, we can not generalize these observations, since all our asymptotic results

are conditional to the speci�cations of our theoretical data generating process. However,

we can assert here, that if historical American data are generated by a process similar to

the V ARIMA process exposed below and verify the long run implications of a balanced

growth model, the use of OLS on speci�cation (43) leads to a biased measure of the

implicit rate of return on public capital. Since these conditions are not very restrictive,

it is highly probable that Aschauer�s results may be biased and not well grounded.

We now propose a numerical evaluations of these asymptotic biases for reasonable

values of the structural parameters. Given our theoretical model, the asymptotic bias
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can be expressed as (cf Appendix E):

E
�
(kg;t � kt) e�2;t�

E
h
(kg;t � kt)2

i =

�3

� 1P
v=0

eHv
 eH 0
v

�
�02

�3

� 1P
v=0

eHv
 eH 0
v

�
�03

(51)

with eH (L) =P1
v=0

eHvand where vectors �2 and �3 are de�ned in proposition 6. The
values of this correlation are plotted for di¤erent values of � and �ag on �gure 2. As

in the case of PFCRS; the other structural parameters are calibrated on US data. In

particular, the public capital elasticity is supposed to be 5%.

For a positive correlation between the two shocks, we can observe that the endo-

geneity bias leads to greatly over-estimate the value of public capital elasticity. For

values of � over the calibrated value of 3:65, the estimated elasticity is thus between

28% and 80%, whereas the true value is only 5%. However, when the two shocks are

independent, the utility speci�cation (particularly the absence of wealth e¤ects in the

labor supply) leads to a negative correlation between ratio kg;t � kt and the stationary

component of population residual e�2;t: Then, the OLS under-estimate the true value of
elasticity (5%). In this case, the employment level, which enters the de�nition of resid-

ual e�2;t, is negatively correlated to ratio kg;t � kt. An increase in public capital stock

implies an improvement of the private productivity that incites the agent to substitute

future labor to present labor.

6 Finite sample properties

As mentioned above, the use of �rst di¤erenced data (justi�ed in the case of non-

stationary and non-cointegrated series) generally leads to the rejection of the hypothesis

of positive e¤ects of public infrastructures on private factors productivity. We propose
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here to replicate this speci�cation on �nite pseudo samples issued from our theoret-

ical model. We consider 10,000 Monte Carlo pseudo samples, of size T = 50; which

is roughly the average size of annual samples used in the empirical literature. The

structural parameters are calibrated on US data as in previous section. In particular,

public capital elasticity eg is set at 5%.

Let us consider the two following regressions under PFCRS and OCRC hypotheses

8s = 1; :; S:

�eyst (�)��ekst (�) = besn h�enst (�)��ekst (�)i+ besg�eksg;t (�) + b�s1;t (52)

�eyst (�)��ekst (�) = besn h�enst (�)��ekst (�)i+ besg h�eksg;t (�)��ekst (�)i+ b�s1;t (53)

where ezst (�) ; z = fk; kg; yg ; refers to a sample of the endogenous variables issued

from a simulation s, with s 2 [1; S], conditionally to a value � of the set of structural

parameters and conditionally to a particular realisation of structural shocks.

Figure (3) reproduces the empirical distribution of the estimates besg (equation 52),
for di¤erent values of the correlation �a;g of shocks. We can point out that the OLS

applied to this �rst di¤erences speci�cation underestimate the true value of public

capital elasticity. However, the range of the bias is largely lower than the bias observed

on level speci�cations. Given the hypothesis on �a;g, the empirical mean of estimates

lies between �0:3% and �5%:

The use of �rst di¤erenced data also has implications on the results of standard

tests. Indeed, as we can see in Table 3, �rst di¤erencing leads to fail to reject the null

hypothesis besg = 0 and to high Type II errors. In this table, the empirical frequencies
29
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(built from 10 000 pseudo samples) of rejection of the null hypothesis besg = 0 (at the

5% nominal size) are reproduced. The empirical probability to wrongly accept the

hypothesis of nullity of public capital elasticity lies between 34% and 45%, given the

value of �a;g: Indeed, in one pseudo sample out of three, the Student statistic leads

to rejection of the productive contribution of public capital, whereas in our model

the public capital is one of the inputs of the production function. Besides, the null

hypothesis besg = eg = 5% is wrongly rejected in more than 60% of our pseudo samples.

It clearly indicates that �rst di¤erencing the data is not the suitable method in our

context. These results are not surprising, since we have supposed a common stochastic

trend for all growing variables. Here, one suitable method consists applying Beveridge

and Nelson�s decomposition to all increasing variables and in considering only devia-

tions from the common stochastic trend. Moreover, �rst di¤erencing the covariance

stationary input nt implies an autocorrelation of residuals and then non standard as-

ymptotic distributions for the Student statistics. As suggested by Munnell (1992),

�rst di¤erencing may be too �radical�since it destroys all the long term relations of

production function variables.
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7 Conclusion

This exercise shows that the production function approach (applied to times series at

least), commonly used in econometric studies, does not provide a reliable estimate of the

genuine rate of return on public infrastructures. Indeed, given a data generating process

built so as to match the main long-term properties of production function variables,

here we prove that two main bias sources could a¤ect the estimates of public capital

elasticity. First, there may be a standard endogeneity bias due to the simultaneous

determination of private and public inputs. The second bias source is more original

and stems from the presence of a common stochastic trend shared by all non stationary

inputs. In some cases, we show that there is a fallacious asymptotic constraint which

forces the public capital elasticity to be equal to that of labor. Thus, the production

function approach, applied to speci�cations in level could widely over-estimate the

macroeconomic returns on public capital. Given the long term properties of the model,

the traditional correction based on a speci�cation in �rst di¤erences could lead to a

fallacious inference. In particular, it generally induces a wrongly rejection of the null

hypothesis of a positive productive contribution of infrastructures.

In our study, the use of panel data with such speci�cations would not necessarily

improve the quality of estimates. Indeed if we consider a panel, the main issue is to

specify the heterogeneity of individual production functions (with individual e¤ects,

random coe¢ cients..). For instance, if we assume that regional, international or sec-

toral production functions are identical, the panel dimension will necessarily improve

the measurement of the public capital elasticity. On the contrary, if regional elastic-

ities are strictly di¤erent, the panel estimators would not improve the measure: the
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corresponding estimates are then equal to an average of regional elasticities and conse-

quently generally lie between the two extreme conclusions of time series models. With

regional or international data, one reasonably can think that public capital elasticities

are not strictly identical and that individual e¤ects are not su¢ cient to specify the

heterogeneity of production functions. That is why, the issue of the reliability of such

inferences based on panel data remains open.

Then in this study, we reach two extreme conclusions like in the empirical literature.

It is important to notice that these results are conditional to the choice of our data

generating process. However, this process is not very constrained and matches the

main empirical observations on US post-war data. Indeed, the conclusions of this

exercise may be transposed in other applied researches. For instance, the study of the

human capital macroeconomic productive contribution is one of them. Several technical

solutions could be adopted. The �rst one, consists estimating the common trends and

to evaluate the productive contribution of infrastructures only with the deviations of

data from these trends. The second one is to directly estimate the structural model

with indirect inference methods.
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Appendix A: Dynamics of production function variables

In this model, we consider the public decisions path fKg;t; Ig;tg1t=0 as given and we
determine the equilibrium conditionally to this path. The program is:

max
fCt;Nt;Kt+1g1t=0

E0

1X
t=0

�t log
�
Ct �BAtN�

t

�
(54)

under (1� �)A1�ek�egt N1�ek
t Kek

t K
eg
g;t = Ct +A

� 1
�k

k K
1
�k
t+1K

�k�1
�k

t

Ex-post, public capital stock path is determined by Kg;t+1 = AgK
1��g
g;t (�YtVg;t)

�g : The
solution of the program (54) veri�es the Bellman�s equation for an optimal path of
private capital:

V (Kt;Kg;t; At; Vg;t) = max
fCt;Nt;Kt+1g

�
U (Ct; Nt) + �EtV

�
Kt+1;Kg;t+1; At+1; Vg;t+1

�	
(55)

with Kt+1 = AkK
1��k
t

h
(1� �)A1�ek�egt N1�ek

t Kek
t K

eg
g;t � Ct

i�k
and with a transversal-

ity condition lim
t!1

�tE0 f[@V (St+1) =@Kt+1]Ktg = 0: This program is solved by the

method of undetermined coe¢ cients. Given the log-linear speci�cation of the model,
we guess a log-linear form to the value function V (:) given by:

V (:) = V0 + V1 log (Kt) + V2 log (Kg;t) + V3 log (At) + V4 log (Vg;t) (56)

By substitution of the derivative @V (:) =@K in the �rst order conditions of the rep-
resentative agent�s program, we obtain the private investment ratio and the saving
rate, denoted s: The saving rate is constant and implies a unity correlation between
production and investment, given the log-linear speci�cation of the model.

It = A
� 1
�k

k K
1
�k
t+1K

�k�1
�k

t = s (1� �)Yt Ct = (1� �) (1� s)Yt (57)

with s = (�ek�k) = [1� � (1� �k)] > 0; since � < 1: By substituting these expres-
sions in the �rst order conditions of the program, we get (8), (9), (10) and (11). The
corresponding constant terms are :

bn = [log (1� �) + log (1� ek)� log (B)� log (�)] = (�� 1 + ek) (58)

bk = log (Ak) + �k [log (s) + (1� ek) bn + log (1� �)] (59)

bg = log (Ag) + �g [log (�) + (1� ek) bn] (60)

Appendix B: Stability conditions of A (L)

We consider the polynomial of order two det [A (L)] = 1 + aL + bL2 where a =
� (2 + �k + �g) and b = (1 + �k) (1 + �g) � (�k + �k) (�g + �g) : Three constraints on
parameters a and b insure that the roots of A (L), �1 and �2, are outside the unit circle
in modulus. These constraints are b < 1; 1 + a + b > 0 and 1 � a + b > 0: Given the
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de�nition of �k and �g, under the hypothesis � > 1; we can rewrite these conditions as
combinations of structural parameters as follows:

� >  1 =
(1� ek) (�k + �g � �k�g)

(1� ek) �k (1� �g) + (1� eg) �g (1� �k) + �k�g
(61)

� >  2 =
1� ek

1� ek � eg
(62)

� >  3 =
(1� ek) [2 (2� �k � �g) + �k�g]

ek�k (1� �g) + eg�g (1� �k) + 2 (2� �k � �g) + �k�g
(63)

If � > 1; the third condition (63) is always satisfy as soon as the depreciation
rates, �k and �g; are inferior to unity. The �rst condition (61) is always satis�ed if
ek > eg (1� �k) ; since then  1 < 1: In other cases, we have to compare the thresholds
 1 and  2: We show that:

 1 �  2 = �
(1� ek) (eg�g + ek�k)

(1� ek � eg) [(1� ek) �k (1� �g) + (1� eg) �g (1� �k) + �k�g]
(64)

This expression is strictly negative as soon as depreciation rates are inferior to
unity and e

k
+ eg < 1: Then, there is only one constraint on the parameter � which

insures that the dynamics of capital growth rates are covariance stationary, that is to
say j�ij > 1; 8i = 1; 2. This constraint, which corresponds to thresholds  2, is given in
proposition 1.

Appendix C: Asymptotic distributions of empirical mo-
ments

First, we can verify that the sum of the two regressors (nt � kt) + kg;t is proportional
to the stationary component of Beveridge and Nelson�s decomposition of the vector-
ial process (�kt �kg;t)

0 ; which is stationary by de�nition. Given the de�nitions of
processes fntg ; fktg and fkg;tg (equations 9, 10 and 11) we have:

nt � kt + kg;t =

�
1� �

�� 1 + ek

�
(kt � kg;t) +

�
ek + eg

�� 1 + ek

�
(kg;t � at) (65)

=

�
1� �

�� 1 + ek

�
(kt � at) +

�
ek + eg � 1 + �
�� 1 + ek

�
(kg;t � at)

Given that the stationary component of Beveridge and Nelson�s decomposition is
de�ned as eH (L) "t = [(kt � at) (kg;t � at)]0 ; we can express the sum nt � kt + kg;t as
nt � kt + kg;t = �1 eH (L) "t where the vector �1 is de�ned as in equation (25) by :

�1 =

�
1

�� 1 + ek

��
(1� �) ek + eg � 1 + �

�
(66)

It implies that the regressors (nt � kt) and kg;t share the same stochastic trend. In
an obvious way, this result implies the singularity of the asymptotic variance covariance
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matrix of the empirical second order moments of the regressors. Indeed, by identi�ca-

tion we have �(nt � kt) =
h
(1� L) �1 eH (L)�Hg (L)i "t and �kg;t = Hg (L) "t:

Now, consider the vector st = [(nt � kt) kg;t]
0 : Let us denote E ("t"0t) = 
 = PP 0

and � (L) =
h
(1� L) �n eH (L)�Hg (L) Hg (L)

i0
: By application of the functional

central limit theorem and the continuous mapping theorem, we can derive the asymp-
totic distributions of the corresponding empirical moments:

1

T 2

TX
t=1

sts
0
t

L�!
T!1

� (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0� (1)0 +
1

T 2
Op (T ) (67)

where fW (:) = [W1 (:) W2 (:)]
0 is a standard vectorial Brownian motion. Given the def-

inition of eH (L) and Hg (L), we can verify the singularity of the asymptotic covariance
matrix of the system:

1

T 2

TX
t=1

xtx
0
t

L�!
T!1

�2a

�
1 �1
�1 1

� 1Z
0

W1 (r)
2 dr (68)

Appendix D: Asymptotic distribution of beg under the PFCRS
hypothesis

In equation (22), bA0 and bA1 are respectively de�ned as:
bA0 = T�2

TP
t=1

�
z21;t
�
T�1

TP
t=1
[z0;t (yt � kt)]�

�
T�1

�
T�1

TP
t=1
(z1;tz0;t)T

�1
TP
t=1
[z1;t (yt � kt)]

T�1
TP
t=1

�
z20;t

�
T�2

TP
t=1

�
z21;t

�
�
�
T�1

TP
t=1
(z1;tz0;t)

�2
(T�1)

(69)

T bA1 = T�1
TP
t=1

�
z20;t
�
T�1

TP
t=1
[z1;t (yt � kt)]� T�1

TP
t=1
(z1;tz0;t)T

�1
TP
t=1
[z0;t (yt � kt)]

T�1
TP
t=1

�
z20;t

�
T�2

TP
t=1

�
z21;t

�
� (T�1)

�
T�1

TP
t=1
(z1;tz0;t)

�2
(70)

Given the dynamic properties of the theoretical model, Wold�s decompositions as-
sociated to processes fz0;tg ; fz1;tg and to the endogenous variable fyt � ktg of the
transformed model (29) are:

yt � kt = �0 eH (L) �t (71)
p
2z0;t = nt � kt + kg;t = �1 eH (L) �t (72)

p
2�z1;t = � [nt � kt � kg;t] = z0;t � 2kg;t (73)

=
h
(1� L) �1 eH (L)� 2Hg (L)i "t
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where the polynomial vector eH (L) corresponds to the stationary component of the
Beveridge and Nelson�s decomposition of the process (�kt�kg;t)

0 (equation 20) and
where vectors �0 and �1 have respectively de�ned in equations. Then, we can derive
the asymptotic distributions of the corresponding empirical moments:

1

T 2

TX
t=1

z21;t =
1

T 2

TX
t=1

�
z0;t �

p
2kg;t

�2
(74)

=
2

T 2

TX
t=1

k2g;t +
1

T
Op (T )

L�!
T!1

2�2a

1Z
0

W1 (r)
2 dr

1

T

TX
t=1

[z0;t (yt � kt)]
p�!

T!1
E [z0;t (yt � kt)] (75)

1

T

TX
t=1

z20;t
p�!

T!1
E
�
z20;t
�

(76)

In the same way, we show that:

1

T

TX
t=1

z0;tz1;t =
1

T

TX
t=1

z20;t �
p
2
1

T

TX
t=1

z0;tkg;t (77)

L�!
T!1

E
�
z20;t
�
�
p
2Hg (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�1 �p2�1
where fW (:) = [W1 (:) W2 (:)]

0 denotes a standard vectorial Brownian motion and where
E ("t"

0
t) = 
 = PP 0: The parameter �1 is de�ned by �1 =

P1
v=0E (�kg;tz0;t�v) :

Finally, we have:

1

T

TX
t=1

z1;t (yt � kt) =
1

T

TX
t=1

z0;t (yt � kt)�
p
2
1

T

TX
t=1

kg;t (yt � kt) (78)

L�!
T!1

E [z0;t (yt � kt)]�
p
2Hg (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�0 �p2�0
with �0 =

P1
v=0E [�kg;t (yt�v � kt�v)] : Then, the asymptotic distribution of bA0 can

be immediately derived from:

bA0 = T�2
TP
t=1

�
z21;t
�
T�1

TP
t=1
[z0;t (yt � kt)]� T�3Op

�
T 2
�

T�1
TP
t=1

�
z20;t

�
T�2

TP
t=1

�
z21;t

�
� T�3Op (T 2)

L�!
T!1

E [z0;t (yt � kt)]
E
�
z20;t

� = h0

(79)
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The estimator bA0 converges in distribution toward a null punctual mass. Given the
de�nition of bA1, we also get:

T bA1 L�!
T!1

E [z0;t (yt � kt)] e	1 � E �z20;t� e	0
p
2E
�
z20;t

�
�2a

1R
0

W 2
1 (r) dr

(80)

where the stochastic variables e	j ; j = (1; 2) are:
e	j = Hg (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�0j + �j 8j = 0; 1 (81)

Appendix E: Asymptotic distribution of beg under the OCRS
hypothesis

The Wold�s decomposition of processes fkg;t � ktg ; fnt � ktg and fyt � ktg are.

yt � kt = �0 eH (L) �t (82)

kg;t � kt = �3 eH (L) �t (83)

�(nt � kt) =
h
(1� L) �1 eH (L)�Hg (L)i �t (84)

where the polynomial vector Hg (L) and vectors �0; �1 and �2 have been previously
de�ned. We note �3 =

�
�1 1

�
: Then, by application of the functional central limit

and the continuous mapping theorems, we get:

1

T 2

TX
t=1

(nt � kt)2 =
1

T 2

TX
t=1

k2t +
1

T
Op (T )

L�!
T!1

4�2a

1Z
0

W1 (r)
2 dr (85)

1

T

TX
t=1

�
(kg;t � kt) e�2;t� p�!

T!1
E
�
(kg;t � kt) e�2;t� (86)

1

T

TX
t=1

(kg;t � kt)2
p�!

T!1
E
h
(kg;t � kt)2

i
(87)

where W1 (:) is standard scalar Brownian motion. In the same way, we get:

1

T

TX
t=1

(nt � kt) e�2;t L�!
T!1

�Hg (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�02 + �2 (88)

1

T

TX
t=1

(nt � kt) (kg;t � kt)
L�!

T!1
�Hg (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�03 + �3
(89)
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where E ("t"0t) = 
 = PP 0 and where fW (:) = [W1 (:) W2 (:)]
0 denotes a standard

vectorial Brownian motion, with

�2 =

1X
v=0

E
�
�(nt � kt) e�2;t�v� (90)

�3 =
1X
v=0

E [� (nt � kt) (kg;t�v � kt�v)] (91)

Then, we transform the expression of beg in order to control for the di¤erent speeds
of convergence:

beg � eg =
TP
t=1

h
(nt�kt)2
T 2

i TP
t=1

h
(kg;t�kt)e�2;t

T

i
�
�
1
T

� TP
t=1

h
(nt�kt)(kg;t�kt)

T

i TP
t=1

h
(nt�kt)e�2;t

T

i
TP
t=1

h
(nt�kt)2
T 2

i TP
t=1

h
(kgt�kt)2

T

i
�
�
1
T

� � TP
t=1

(nt�kt)(kg;t�kt)
T

�2
(92)

Given previous results, we get:

beg � eg =
TP
t=1

h
(nt�kt)2
T 2

i TP
t=1

h
(kg;t�kt)e�2;t

T

i
�
�
1
T

�
Op
�
T 2
�

TP
t=1

h
(nt�kt)2
T 2

i TP
t=1

h
(kgt�kt)2

T

i
�
�
1
T

�
Op (T 2)

p�!
T!1

E
�
(kg;t � kt) e�2;t�

E
h
(kgt � kt)2

i (93)

The centered estimator beg � eg converges in distribution toward a punctual mass
(this result assures the convergence in probability) corresponding to the correlation
between kg;t � kt and e�2;t. By developing the expression of the stationary componente�2;t; we can rewrite the bias on beg as a linear function of the stationary components of
the Beveridge and Nelson�s decomposition of the process (�kt�kg;t)

0, since, we have:

E
�
(kg;t � kt) e�2;t�

E
h
(kgt � kt)2

i = (1� ek � eg)
E [(kg;t � kt) (at � kt)]

E
h
(kg;t � kt)2

i + (1� ek)
E [(kg;t � kt)nt]
E
h
(kg;t � kt)2

i

=

�3

� 1P
v=0

eHv
 eH 0
v

�
�02

�3

� 1P
v=0

eHv
 eH 0
v

�
�03

(94)

In the same way, it is possible to derive the asymptotic distribution of ben: We
consider the following de�nition:

Tben =
TP
t=1

h
(kg;t�kt)2

T

i TP
t=1

h
(ng;t�kt)e�2;t

T

i
�

TP
t=1

h
(nt�kt)(kg;t�kt)

T

i TP
t=1

h
(kg;t�kt)e�2;t

T

i
TP
t=1

h
(nt�kt)2
T 2

i TP
t=1

h
(kgt�kt)2

T

i
�
�
1
T

� � TP
t=1

(nt�kt)(kg;t�kt)
T

�2 (95)
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We get:

T ben L�!
T!1

E
h
(kg;t � kt)2

i e	2 � E �(kg;t � kt) e�2;t� e	3
E
h
(kg;t � kt)2

i
�2a

1R
0

W 2
1 (r) dr

(96)

where stochastic variables e	2 and e	3 are de�ned as:
e	j = �Hg (1)P

8<:
1Z
0

fW (r)
hfW (r)

i0
dr

9=;P 0 eH (1)0�0j + �j 8j = 2; 3
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Table 1: Main Empirical Results: Speci�cations in Level

Study Data Method Model eg ek en

United States

Ratner (1983) USA (49-73) AR(1) CD / OCRS 0.06 0.22 0.72

Aschauer (1989) USA (49-85) OLS CD / OCRS 0.39 0.26 0.35

Ram and Ramsey (1989) USA (49-85) OLS CD / OCRS 0.24 0.25 0.51

Munnell (1990) USA (49-87) OLS CD / NC 0.31 0.64 -0.02

Eisner (1994) USA (61-91) AR(1) CD / NC 0.27 0.19 0.97

Sturm and De Haan (1995) USA (49-85) OLS CD / OCRS 0.41 0.12 0.47

Vijverberg et al. (1997) USA (58-89) 2LS CD / OCRS 0.48 -0.92 1.23

OECD

Bajo-Rubio and Sosvilla (1993) SPA (64-88) OLS CD / NC 0.19

Berndt and Hansson (1992) SWE (60-88) OLS CD / NC 0.68 0.37 0.40

Otto and Voss (1994) AUS (66-90) OLS CD / PFCRS 0.38 0.47 0.53

Wylie (1996) CAN (46-91) AR(1) CD / NC 0.51 0.30 0.19

Note: CD: Cobb-Douglas, OCRS: Overall Constant Returns to Scale, PFCRS: Private
Factors Constant Returns. NC: No Constraint. Methode: AR(1): Cochrane-Orcut, 2LS: Two
Stage Least Square, OLS: Ordinary Least Square. eg, ek and enrespectively denote public,
private capital elasticity and labor elasticity.
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Table 2: Main Emprirical Results: Speci�cations in First Di¤erences

Study Country Sample Model eg

Tatom (1991) USA 49-89 � N.S.

Hulten and Schwab (1991) USA 49-85 NC N.S.

Sturm and De Haan (1995) USA 49-85 NC N.S.

NTH 60-90 OCRS 1:16

Ford and Poret (1991) USA 57-89 NC 0:40

(Strict De�nition) FRA 67-89 OCRS N.S.

UK 73-88 OCRS N.S.

GER 62-89 NC 0:81

Note: NC: No Constraint, OCRS: Overall Constant Returns to Scale, NS: Non Signi�cant
at 5%

Table 3: Empirical Frequencies of Rejection of beg = �

H0: beg = 0
�ag 0 0:5 0:7 0:9

PFRCS (�) 66.14 58.34 55.39 60.60

OCRS (�) 71.66 59.71 54.99 52.25

H0: beg = eg

�ag = 0 0:5 0:7 0:9

PFRCS (�) 61.71 61.57 65.03 74.26

OCRS (�) 64.58 58.61 58.19 63.16
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Figure 1: Asymptotic Distribution of beg under PFCRS
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Figure 2: Asymptotic Distribution of beg under OCRS
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Figure 3: Empirical Density of beg: First Di¤erences Speci�cation under PFCRS
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