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Monotonic incompatibility between electing and

ranking∗

Michel Balinskiα, Andrew Jenningsβ, and Rida Larakiα

αLaboratoire d’Econométrie de l’École Polytechnique and C.N.R.S., France.
βDepartment of Mathematics and Statistics, Arizona State University, USA.

Abstract

Borda proposed a method that assigns points to each of the m candi-

dates. Condorcet proposed a method that assigns points to each of the

m! rankings of candidates. The first is more appropriate for electing, the

second is more appropriate for ranking. Each satisfies a different type of

monotonicity. These monotonicities are incompatible.

1 Introduction

The traditional model of social choice assumes that each of n judges or voters
submits a rank-ordering of all the m candidates. Two foremost questions are
addressed: (1) the designation of a winner, (2) the designation of a ranking of
all the candidates in the order of their merit.

The Chevalier de Borda’s method [3]—first proposed by by Nicolaus Cusanus
in 1433 [5]—assigns points to candidates. A voter contributes k Borda-points
to a candidate C if k candidates are ranked below C. The Borda-score of a can-
didate is the sum of her/his Borda-points. The Borda-winner is the candidate
with the highest score. The Borda-ranking is established in descending order
by the candidate’s Borda-scores.

The Marquis de Condorcet [4] had an entirely different idea. A voter with
the rank-order Q contributes k Condorcet-points to a rank-order1 R if the two
rankings agree in k pair-by-pair comparisons. The Condorcet-score of a ranking
is the sum of its Condorcet-points over all voters. The Condorcet-ranking is the
ranking with the highest score.2

By definition, the Chevalier and the Marquis addressed different questions.
Condorcet himself seems to have realized that the two ideas diverged, as

Peyton Young [7] pointed out after a careful reading of his works. In short,
Condorcet applied the idea of his “jury theorem” to the problem of ranking—find
the maximum likelihood ranking given the inputs of individuals’ rankings—but
he seems to have seen that this did not pick out the maximum likelihood winner
given the individuals’ rankings. Young was the first to show unambiguously

∗This work started during the visit of Andrew Jennings to the Ecole Polytechnique in 2008
and was partially supported by G.I.S. Sciences de la Décision.

1Note that there are m! rankings.
2This is the same rule suggested independently by John Kemeny [6].
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that finding society’s winner is really different than finding society’s ranking:
the maximum likelihood approach applied to finding society’s rank-order yields
the Condorcet-ranking whereas applied to finding a winner it yields the Borda-
winner. In fact, the divergence is even more fundamental, as is shown first by
an example, second by a theorem.

The notation A ≻ B indicates that a voter ranks candidate A ahead of
candidate B, A ≈ B that she/he considers them tied, and A � B that A ≻ B

or A ≈ B. The symbols ≻S , ≈S , and �S indicate society’s ranking determined
by a social decision method.

Consider the profile3

333 : A ≻ B ≻ C 333 : B ≻ C ≻ A 333 : C ≻ A ≻ B

1 : A ≻ C ≻ B,

meaning, for example, that 333 voters have the ranking A ≻ B ≻ C.
The first 999 voters constitute a Condorcet-component : every candidate ap-

pears in every position exactly the same number of times. In the absence of the
last voter, there is a clear tie between all three candidates—the perfect symme-
try in the voter profile demands it. Accordingly, the last voter tips the scales
and causes A to be the winner and B to be the loser. Borda’s method yields
this outcome.

However, A ≻S C ≻S B is certainly not society’s preferred ranking. Only
one voter prefers it. 333 are directly opposed. There are two Condorcet-
rankings: A ≻S B ≻S C and C ≻S A ≻S B. In each case 333 voters most
prefer it, and both strictly dominate the Borda-ranking in the pair-by-pair com-
parisons. On the other hand, Condorcet’s method yields a tie in winners, A and
C, which is unacceptable as well.

A method of ranking is: (1) winner-loser-unanimous if whenever all voters
rank a candidate first (respectively, last) he/she is the winner (the loser); (2)
choice-compatible if when all the voters rank a candidate first (respectively, last)
and a Condorcet-component is added to the profile, then that candidate must
be the winner (the loser); (3) rank-compatible if when a winner is removed from
the set of candidates then the new ranking on the remaining candidates agrees
with original ranking.4 Borda’s method satisfies conditions (1) and (2) but not
(3), whereas Condorcet’s satisfies (1) and (3) but not (2).

Theorem 1 (Incompatibility [1, 2]). There is no method of ranking that is
winner-loser-unanimous, choice- and rank-compatible for all preference-profiles
(when there are at least three alternatives).

There is a third way to appreciate why there is a difference between designat-
ing winners and an order-of-finish. Borda asks as input messages rank-orders on
candidates to determine society’s winning candidate, instead of input messages
of a single candidate (as was done in his era . . . and is done in ours, with first-
past-the-post). Condorcet asks as input messages rank-orders on candidates
to determine society’s rank-order of candidates: but if society’s rank-order is
sought should not voters be asked as input messages the rank-orders over the
m! rank-orders of all candidates [1, 2]? Condorcet’s input messages of a single

3Originally in [1]
4Rank-compatibility is a weaker form of “local stability” [7].
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rank-order to determine society’s rank-order is the counter-part of first-past-
the-post’s input of a single candidate to determine society’s winner. In short,
the traditional model harbors a fundamental inconsistency in relating input
messages to the outputs that are sought.

Another recurring and fundamental question in social choice is that of mono-
tonicity. For a decision method to be just, a candidate must not be punished
when he/she is ranked higher by one or more voters. There are many different
conceptual formulations of monotonicity. The traditional formulation requires
only that the winner remains a winner when she/he is ranked higher by some
voters.

This paper shows that there is still another incompatibility that involves the
Chevalier de Borda and the Marquis de Condorcet: each satisfies a different
type of monotonicity, but no method satisfies both types of monotonicity.

2 Choice-monotonicity

Consider any pair of candidates A and B for which a method of ranking yields
A �S B in society’s ranking. The method is choice-monotone if one or more
voters move A higher or B lower implies A ≻S B. Many social choice methods
satisfy choice-monotonicity. This includes Borda’s method, for if candidate A

has at least as many Borda points as B, then moving A up will increase his
Borda points while moving B down cause his Borda points to decrease. In
either case, A will end up with more Borda points than B.

Condorcet’s method is not choice-monotone (though it took some effort to
find an example to prove it). Consider the following voter profile, P0:

k : A ≻ B ≻ C ≻ D ≻ E

k : B ≻ E ≻ C ≻ A ≻ D

2 : D ≻ E ≻ C ≻ A ≻ B

1 : D ≻ C ≻ E ≻ A ≻ B

1 : D ≻ E ≻ A ≻ C ≻ B

If k is at least 4, then Condorcet’s method will give a two-way tie for first
between

R1 = A ≻S B ≻S C ≻S D ≻S E and R2 = B ≻S E ≻S C ≻S A ≻S D.

This can be checked easily enough with a computer, but if k is at least 7, a
simple proof follows.

The relative pairwise rewards for one candidate preceding another in soci-
ety’s ranking are given in table 1. For simplicity, the mean, k + 2, has been
subtracted from each element5. This decreases the Condorcet score of each
ranking by 10(k + 2), but does not affect the order of finish.

The rankings R1 and R2 both have a relative Condorcet-score of 5k − 10,
and it will be seen that no other ranking can have as high a score.

5For example, the reward of A preceding C is k + 1 Condorcet points because in k + 1
voters’ rankings A precedes C. After k + 2 has been subtracted, this appears in the third
column of the first row of the table as −1.
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versus A B C D E

A 2 −1 k − 2 −2
B −2 k − 2 k − 2 k − 2
C 1 −k + 2 k − 2 −1
D −k + 2 −k + 2 −k + 2 2
E 2 −k + 2 1 −2

Table 1: Pairwise relative reward table for P0.

Any ranking which fails to preserve all five of the most significant pairwise
relationships, A ≻ D, B ≻ C, B ≻ D, B ≻ E and C ≻ D, may score at most
3k + 2 (the sum of at most 3k − 6 from these five pairs and no more than 8
points from the other five pairs). For k ≥ 7, this is less than 5k − 10 so any
ranking which doesn’t satisfy these five significant relationships is excluded from
winning. Out of the 120 possible societal rankings, there are 11 which meet this
criterion, given in table 2.

BCADE BAECD BACED BACDE

R2 = BECAD BEACD BCEAD BCAED

ABCED R1 = ABCDE ABECD

Table 2: Remaining rankings after one step.

The chosen rankings R1 and R2 both have total contributions of 0 points
from the eight less-significant pairwise relationships.

It is impossible for any ranking with B ≻ A, A ≻ E, and C ≻ E to achieve
first place, as this would contribute (−2)+(−2)+(−1) = −5 Condorcet points,
to which only 3 points could be added by the other two rankings. It is also
impossible for any ranking with A ≻ E, E ≻ D, and A ≻ C to achieve first
place, since this would also contribute (−2) + (−2) + (−1) = −5 Condorcet
points, to which only 3 points could be added by the other two rankings. This
eliminates 7 of the rankings, leaving those in table 3.

R2 = BECAD BEACD

BCEAD R1 = ABCDE

Table 3: Remaining rankings after two steps.

Two are the chosen rankings. The Condorcet scores of the remaining two
are computed below, where C(R) indicates the Condorcet score of ranking R

(without the 5k−10 point contribution from the five most significant pairs), and
PXY indicates the pairwise relative reward for a ranking that places candidate
X above candidate Y .

C(BEACD) = PBA+PAC +PEA+PEC +PED = (−2)+(−1)+2+1+(−2) = −2

C(BCEAD) = PBA+PCA+PEA+PCE+PED = (−2)+1+2+(−1)+(−2) = −2
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Thus the two rankings R1 and R2 are tied for first with Condorcet’s method
and this profile of voters.

This profile is now used to show that Condorcet’s method fails choice-
monotonicity. First, create profile P1 from P0 by having one of the voters who
ranked C immediately above A swap them. Since this would cause any ranking
which placed A above C to increase by one point and any ranking which placed
C above A to decrease by one point, Condorcet’s method now gives a unique
best societal ranking of R1 = A ≻S B ≻S C ≻S D ≻S E.

Second, create profile P2 from P0 by having the voter who ranked A im-
mediately above C swap them. Then Condorcet’s method would give a unique
best societal ranking of R2 = B ≻S E ≻S C ≻S A ≻S D.

Thus, moving from profile P1 to P2 is accomplished by having two voters who
placed C immediately below A swap them, and this causes society’s preferred
ranking to change from

R1 = A ≻S B ≻S C ≻S D ≻S E to R2 = B ≻S E ≻S C ≻S A ≻S D.

So the societal ranking has changed from C ≻S E to E ≻S C when C was
moved strictly higher in two voters’ rankings.

3 Rank-monotonicity

A method is rank-monotone if when one or more voters rank the winner higher
society’s ranking remains the same (not only the winner remains the same). This
requirement is quite selective, rejecting many methods, including Borda’s6.

Condorcet’s method satisfies rank-monotonicity. For if a candidate is first
in the Condorcet-ranking R and one voter ranks that candidate higher by one
position, then R receives one more Condorcet-point whereas the other rankings
either gain one point or lose one point, so the ranking R must remain uniquely
in first place.

Caution is required here, since Condorcet’s method may give a tie among
several rankings instead of one unique societal ranking. As such, Condorcet’s
method doesn’t even fit the strict definition of a ranking function: it does not
have an unrestricted domain. Yet in all cases where Condorcet’s method gives
a clear winning candidate (all chosen societal rankings have the same candidate
in first place), one or more voters ranking the winning candidate higher will
not change the set of societal rankings chosen, so it is reasonable to claim that
Condorcet’s method satisfies rank-monotonicity.

Thus rank-monotonicity is enjoyed by Condorcet-rankings but not Borda-
rankings.

4 Incompatibility

Rank-monotonicity and choice-monotonicity are not compatible.

6In the profile 3 : A ≻ B ≻ C and 2 : C ≻ B ≻ A, the candidates A, B, and C receive 6, 5,
and 4 Borda points respectively, giving the societal ranking A ≻S B ≻S C. If the two voters
who rank A last were to raise him one position, this would reward A with two Borda points
at the expense of B, giving a societal outcome of A ≻S C ≻S B.

5
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Theorem 2. There is no ranking-function that is impartial, unanimous, rank-
and choice-monotone (when there are at least three candidates and at least two
voters).

Proof. Let 2k + i equal the number of voters, with i either 0 or 1, and P be the
profile

k : A ≻ B ≻ C ≻ A1 ≻ · · · ≻ An k : B ≻ C ≻ A ≻ A1 ≻ · · · ≻ An

i : A ≈ B ≈ C ≻ A1 ≻ · · · ≻ An.

By impartiality, the profile

k : B ≻ A ≻ C ≻ A1 ≻ · · · ≻ An k : B ≻ C ≻ A ≻ A1 ≻ · · · ≻ An

i : A ≈ B ≈ C ≻ A1 ≻ · · · ≻ An

implies A ≈S C. The profile P is obtained when the first k voters move A above
B. By choice-monotonicity, profile P must imply A ≻S C.

Similarly, the profile

k : A ≻ B ≻ C ≻ A1 ≻ · · · ≻ An k : B ≻ A ≻ C ≻ A1 ≻ · · · ≻ An

i : A ≈ B ≈ C ≻ A1 ≻ · · · ≻ An

implies A ≈S B and changes into profile P when the second group of voters move
C above A. Thus the profile P must imply B ≻S A. Unanimity now determines
the complete outcome for P to be B ≻S A ≻S C ≻S A1 ≻S · · · ≻ An.

By rank-monotonicity, the profile

k : B ≻ A ≻ C ≻ A1 ≻ · · · ≻ An k : B ≻ C ≻ A ≻ A1 ≻ · · · ≻ An

i : A ≈ B ≈ C ≻ A1 ≻ · · · ≻ An,

must imply the same outcome as P, including A ≻S C, which contradicts the
earlier impartiality result (A ≈S C) for this profile.

This proof admits inputs with equivalents: they are not strict rank-orders.
The same proof is valid for strict rank-orders as inputs when i = 0.

5 Condorcet’s monotonicity violations

The example which shows Condorcet’s method violates choice-monotonicity in-
cludes five candidates. What is the minimum number of candidates necessary
to create such a profile?

In fact, three or four candidates is too few.
Three candidates. Any violation of choice-monotonicity would be a pair

of profiles where the unique winning ranking goes from

A1 ≻S A2 ≻S A3 to A3 ≻S A2 ≻S A1

when A2 is ranked higher by one or more voters. But when A1 ≻S A2 ≻S A3 is
the unique winner, it must have more Condorcet-points than A1 ≻S A3 ≻S A2.
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After some voters have ranked A2 higher, this requires that A2 ≻S A3 ≻S A1

have more Condorcet-points than A3 ≻S A2 ≻S A1.
Four candidates. Suppose Condorcet’s method violates choice-monotonicity

with four candidates. Then there is a profile of voters, P0 which gives a unique
best ranking of

A1 ≻S A2 ≻S A3 ≻S A4,

and another profile of voters, P1 with either:
(i) The only difference between P1 and P0 is that some voters rank A2

higher, but Condorcet’s method applied to P1 gives a unique best ranking that
has A3 ≻S A2 or A4 ≻S A2.

(ii) The only difference between P1 and P0 is that some voters rank A3

higher, but Condorcet’s method applied to P1 gives a unique best ranking with
A4 ≻S A3.

A1 could not be the subject of a violation of choice-monotonicity because,
since Condorcet’s method is rank-monotone, one or more voters ranking A1

higher cannot change society’s ranking. A4 could not be the subject of such a
violation because he doesn’t defeat any candidates in P0. Thus the two cases
above are exhaustive.

Case (i): Here there are several strings of candidates which, if they appear
together in the winning ranking of P1, must appear in the same order as in the
winning ranking of P0. For example, A2 can not appear immediately after A3

because A1 ≻S A2 ≻S A3 ≻S A4 defeats A1 ≻S A3 ≻S A2 ≻S A4 in P0 so
the number of Condorcet-points awarded must be greater for A2 ≻S A3 than
it is for A3 ≻S A2. But this must hold in P1 as well. Thus any ranking with
A2 immediately following A3 will have strictly fewer Condorcet-points than the
same ranking with these two candidates reversed.

The other such strings of candidates are A3A4 and A2A3A4. This leaves the
possible winning rankings in table 4.

A3 ≻S A1 ≻S A2 ≻S A4

A3 ≻S A1 ≻S A4 ≻S A2

A3 ≻S A4 ≻S A1 ≻S A2

A4 ≻S A1 ≻S A2 ≻S A3

A4 ≻S A2 ≻S A1 ≻S A3

Table 4: Possible winning rankings

It is also necessary that the winning ranking have A2 ≻S A1 in order for it
to increase in points more than A1 ≻S A2 ≻S A3 ≻S A4 in moving from P0 to
P1. This leaves A4 ≻S A2 ≻S A1 ≻S A3 as the only possible winning ranking
for P1, which will be examined below.

Case (ii): In the same manner as above, the unique best ranking in P1 cannot
contain A4 ≻S A3 contiguously. And rankings without A3 ≻S A1 or A3 ≻S A2

are eliminated because they are unable to overtake the winner from P0 in moving
to P1. This leaves only A4 ≻S A1 ≻S A3 ≻S A2 and A4 ≻S A2 ≻S A3 ≻S A1

as possible winning rankings.
In any case, the sum of the Condorcet points awarded in P0 for a ranking

having A1 ≻S A4, A2 ≻S A4 and A3 ≻S A4 must be positive since A1 ≻S

A2 ≻S A3 ≻S A4 defeats A4 ≻S A1 ≻S A2 ≻S A3. The Condorcet contribution

7
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from these three pairwise comparisons in P1 must be at least that of P0, hence
positive. This means that the unique winning ranking cannot have A4 in first
place, because it could gain Condorcet-points merely by moving A4 from first
to last place.

This eliminates the only rankings from either case (i) or case (ii) which re-
mained as violations of choice-monotonicity, so proves that a violation of choice-
monotonicity is not possible with four candidates.

This does not mean that Condorcet’s method satisfies choice-monotonicity
with three and four candidates. In fact, such a statement wouldn’t even make
sense with the restricted domain of Condorcet’s method. These results only
prove that, with three or four candidates, it is impossible to find a violation
of choice-monotonicity from the domain of voter profiles where Condorcet’s
method gives a unique best societal ranking.

Condorcet’s method could be extended into a true ranking function with the
addition of a tie-breaking rule that selects among society’s rankings when there
are ties. Naturally, this would strip the method of its impartiality, but it may
also cause the method to fail choice- or rank-monotonicity, in accord with the
monotonicity theorem above.

6 More monotonicity

A method is rank-order-monotone if a candidate does not lower in society’s
ranking when he/she is ranked higher by one or more voters.

Condorcet’s method fails this version of monotonicity also. Take the voter
profile, P0:

k : A ≻ B ≻ C ≻ D ≻ E ≻ F k : B ≻ E ≻ F ≻ C ≻ A ≻ D

1 : F ≻ D ≻ E ≻ C ≻ A ≻ B 1 : F ≻ D ≻ A ≻ C ≻ E ≻ B

1 : D ≻ C ≻ E ≻ A ≻ F ≻ B 1 : D ≻ E ≻ F ≻ C ≻ A ≻ B.

If k is at least 4, then Condorcet’s method will give a two-way tie for first
between

A ≻S B ≻S C ≻S D ≻S E ≻S F and B ≻S E ≻S F ≻S C ≻S A ≻S D.

A manipulation similar to the one above will give a pair of profiles where two
voters moving C above A will cause the preferred societal ranking to go from

A ≻S B ≻S C ≻S D ≻S E ≻S F to B ≻S E ≻S F ≻S C ≻S A ≻S D.

This violation requires six candidates—five is insufficient. A proof of this
fact follows the same lines as the above proof that it is not possible to find a
violation of choice-monotonicity with four candidates.

7 Stronger incompatibilities?

Theorem 2 requires impartiality, a standard requirement for any real voting
system, but a quite strict requirement in theoretical social choice. Can this
requirement be weakened?

8
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If the domain is restricted to prohibit ties in the voters’ input, it is tempting
to postulate that every ranking function that is unanimous, choice-monotone,
and rank-monotone is equivalent to a dictatorship (with some appropriate min-
imum on the number of candidates).

In fact, this is false. Consider the method where, for n candidates, a sequence
of “decisive” voters, v1, v2, . . . , vn−1, is chosen. v1’s winner is society’s winner;
v2’s preferred candidate of the remaining candidates is society’s second choice;
and so on.

This is reminiscent of the way sports teams are often chosen (in schoolyards,
community gyms, and professional drafts). Two or more coaches or captains
are chosen, and they, in turn, draft from a pool of available candidates.

This method is equivalent to a dictatorship if and only if v1 = v2 = · · · =
vn−1. It is unanimous, choice-monotone, and rank-monotone for any number of
candidates.

Unanimity and rank-monotonicity are easy to verify. For choice-monotonicity,
note that a voter moving a candidate up will either not affect which candidate
is most preferred by the voter, or will change it to the candidate who was moved
up. Thus, when one or more voters move a candidate up, it may cause that
candidate to win in an earlier round, but same string of candidates who are
ahead of the candidate in the new societal ranking must be the winning string
of candidates in the old ranking, so it is clear that the candidate who was moved
up can not be ranked lower than any candidates he defeated before.

This method is, in fact, impartial with respect to candidates, though not to
voters. There is another method that is impartial with respect to voters but
not to candidates.

Consider the ordered set of candidates A1, A2, . . . , An, and the choice rule
that chooses Ai as the winner if A1, . . . , Ai−1 are not ranked first by any voters
and Ai is ranked first at least once. (A1 will win if he is the favorite of any
voter and An will win only if he is the favorite of all voters.)

After a winner is chosen, repeatedly applying the rule to the remaining
field will choose second-place, third-place, etc., an entire societal ranking. This
method of generating a societal ranking is unanimous, rank- and choice-monotone
for any number of candidates.

It is unanimous because if every voter places candidate A ahead of candidate
B, then candidate B cannot be chosen until A is eliminated from consideration—
that is, A must place higher than B.

It is rank-monotone because if Ai, society’s first placed candidate is ranked
higher by one or more voters, he/she will still be ranked first by at least one voter
and A1, . . . , Ai−1 will still not be ranked first by any voters. This candidate is
then eliminated from all further calculations so the remainder of the societal
ranking must be independent of the voters’ rankings of this candidate.

It remains to be shown that this method is choice-monotone.
First note that if A1 is excised from all voter profiles, society’s ranking among

the remaining candidates remains the same. (This only holds for A1, the most
advantaged candidate, not for all candidates.) To see this, let P0 be a profile
that includes A1 and P1 be the same profile without A1. In any round before
A1 is chosen in P0, A1 must not be ranked first by any voters, so the set of
voters’ first-placed candidates must be the same in P0 and P1 and the same
candidate must be chosen in P0 and P1. After A1 is chosen, he is dropped from
consideration, so the remainder of the rankings must be the same in P0 and P1.
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Now let P0 be a profile with Ai ≻S Aj and P1 be identical to P0 with Ai

moved higher by one or more voters. If i < j then it may be assumed that i = 1
since any more advantaged candidates could be dropped without affecting the
relative societal ranking for Ai and Aj . In any given round, Ai being moved
higher by one or more voters can only affect the set of voters’ top choices by
moving into that set, at which point it would win the round, so Ai can move up
in society’s ranking with P1, but cannot affect any earlier rounds, so Ai cannot
lose to someone he defeated in P0.

If i > j, consider the round in P0 where Ai wins. All of the voters’ top
choices must be Ai or less advantaged than Ai, so every voter must have Ai or
someone less advantaged than Ai ranked above Aj . With P1, when Ai is moved
up by some voters, this is still true. If Aj ≻S Ai in P1, then there must be
at least one candidate less advantaged than Ai who defeats Aj (and hence Ai)
in society’s ranking, otherwise Aj could not be any voter’s preferred candidate.
But this contradicts the fact proved above, that Ai cannot lose in P1 to any less
advantaged candidates which he defeated in P0.
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