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Abstract

This paper presents a new multivariate GARCH model with time-varying conditional correlation
structure which is a generalization of the Regime Switching Dynamic Correlation (RSDC) of Pelletier
(2006). This model, which we name Hierarchical RSDC, is building with the hierarchical generaliza-
tion of the hidden Markov model introduced by Fine et al. (1998). This can be viewed graphically
as a tree-structure with different types of states. The first are called production states and they can
emit observations, as in the classical Markov-Switching approach. The second are called abstract states.
They can’t emit observations but establish vertical and horizontal probabilities that define the dy-
namic of the hidden hierarchical structure. The main gain of this approach compared to the classical
Markov-Switching model is to increase the granularity of the regimes. Our model is also compared
to the new Double Smooth Transition Conditional Correlation GARCH model (DSTCC), a STAR
approach for dynamic correlations proposed by Silvennoinen and Teräsvirta (2007). The reason is that
under certain assumptions, the DSTCC and our model represent two classical competing approaches
to modeling regime switching. We also perform Monte-Carlo simulations and we apply the model
to two empirical applications studying the conditional correlations of selected stock returns. Results
show that the Hierarchical RSDC provides a good measure of the correlations and also has an interest-
ing explanatory power.

Keywords: Multivariate GARCH; Dynamic correlations; Regime switching; Markov chain; Hidden
Markov models; Hierarchical Hidden Markov models.

JEL Classification: C32, C51, G1, G0.

1 Introduction
Since the seminal papers of Engle (2002) and Engle and Sheppard (2001), the study of multivariate
GARCH with dynamic correlations has given rise to many extensions and developments. This has
been motivate by several empirical studies about stock market behaviors (like Longin and Solnik’s pa-
pers (1995, 1996 and 2001)). They show that the hypothesis of constant correlations (CCC model of
Bollerslev (1990)) is not realistic. However, if the assumption of dynamic correlations is now widely
accepted in the literature, the question of the form of the dynamic is still an open problem; see Bauwens
et al. (2006) or Silvennoinen and Teräsvirta (2007) for a recent survey.

The purpose of this paper is to present a new multivariate GARCH model with dynamic correla-
tions. We propose a regime switching model that is part of the Markov-Switching class. It is a general-
ization of the RSDC model of Pelletier (2006). This model is halfway between CCC of Bollerslev (1990)
and DCC of Engle and Sheppard (2001). Correlations are constant within regime, but vary from one
regime to another and the transition between the different regimes are performed by a Markov chain.

1

ha
ls

hs
-0

02
85

86
6,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

08



Silvennoinen and Teräsvirta (2005) have proposed a model with smooth transition between regime for
correlations (STCC model), which can be seen, under certain assumptions, as the competitive STAR
approach of Pelletier’s model. The STCC impose the correlations to varying between two matrix of
constant correlations. The transition between this two extreme matrix is governed by a conditional
logistic function. Recently, they build an extension of this model, the Double-STCC (see Silvennoinen
and Teräsvirta (2007)) in which conditional correlations vary across four matrix of constant correlations
through two logistic functions. Our new model, called Hierarchical-RSDC (HRSDC) can be seen as a
Markov-Switching version of the DSTCC. In this new model, correlations vary between four correla-
tion matrix constant in time but the transition from one to another is determined by hierarchical hidden
Markov structure. The originality of this structure is to establish a hierarchy between the hidden states
in order to increase the granularity of the regime. This hierarchical hidden structure was first developed
by Fine et al. (1998) for handwriting recognition. In our context, this specific structure will allow us to
bring out a finer definition of regimes that do not appear with the classical Markov-Switching approach.

The paper is organized as follows. In section 2, we briefly give a review of developments of dy-
namic correlations models. We also present a detailed overview of regime switching model, including
STAR and Markov-switching approach, apply to correlation modeling. The Hierarchical-RSDC model is
introduced in section 3.1.2. Section 4 presents results of Monte-Carlo simulations and two empirical ap-
plications and compare the HRSDC with the DSTCC and DCC models. Section 5 presents concluding
remarks and expose some directions for future research.

2 DCC-MGARCH and Regime Switching models
The general framework of multivariate GARCH models with dynamic correlations assumes that a the
stochastic process rt followed by the observations of size (K ×T ) is defined by :

rt |Ft−1 ∼L (0, Ht ) (2.1)

where L is a parametric distribution function with mean equal to zero and conditional variance Ht
follows :

Ht =Dt Rt Dt (2.2)

with Dt = diag(h1/2
1,t , ..., h1/2

K ,t ), a diagonal matrix composed of the standard deviation of the K univariate
series, obtained for example with a GARCH filtering. This filtering permit to calculate the standardized
residuals, which are expressed as εt = D−1

t rt . The expectation of these standardized residuals gives the
conditional correlations:

Et−1[εtε
′
t ] =D−1

t Ht D−1
t = Rt

The first multivariate volatility model to take into account the conditional correlations was the CCC of
Bollerslev (1990). He adopts the simplest dynamic ever by taking the conditional correlations constant
through time, i.e. Rt = R ∀t . The correlations matrix is then equal to the unconditional correlation
matrix. However, several empirical studies show that correlations among assets are not constant. These
results imply that the CCC seems too restrictive and give rise to an extensive literature about the process
follows by the conditional correlations.

Tse and Tsui (2002) suggested to express the correlations with an autoregressive form (DCCT model):

Rt = (1−θ1−θ2)R+θ2Rt−1+θ2Ψt−1, θ1+θ2 ≤ 1 (2.3)

where R is the unconditional correlation matrix while the elements of the correlation matrix Ψt−1 are
defined as :

ψi j ,t−1 = εi ,t−1ε j ,t−1/
q

ε2
i ,t−1ε

2
j ,t−1 with 1≤ i ≤ j ≤K

In the same way, Engle and Sheppard (2001) adopt an autoregressive formulation for Rt (DCCES model)
with:

Rt = diag{Vt }
−1/2 Vt diag{Vt }

−1/2 (2.4)

where Vt is the conditional covariance matrix such as:

Vt = (1−α−β)V +αεi ,t−kε
′
j ,t−k +βVt−l (2.5)
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with V the unconditional covariance matrix. These initial formulations define the basic framework of
dynamic correlations models and represent the starting point of many extensions that we will briefly
recall (see also figure 1 for a mapping of these extensions).

Combining covariances for correlations. Engle (2002) generalize the model DCCE by writing the
equation 2 as:

Vt = [ιι
′−A−B]�V +A� εt−1ε

′
t−1+B �Vt−1 (2.6)

in which A and B are two symmetric matrix of size K × K and � is the Hadamard product. This
specification is a less restrictive than the previous. It has the disadvantage of having more parameters,
but the advantage of not imposing the constraint of equal dynamics for all correlations. In order to
reduce the explosive number of parameters for large correlation matrix, Hafner and Franses (2003) reach
to write a parsimonious version of equation 2:

Vt = V̄ (1− ᾱ2− β̄2)+αα′� εt−1ε
′
t−1+ββ

′�Vt−1 (2.7)

where α and β are vectors of size K × 1 rather than matrix, ᾱ = (1/K)
∑N

i=1αi and β̄= (1/K)
∑N

i=1βi .
This formulation (called GDCC) encompasses the generalization of Engle (2002). The parameter αi can
be seen as an indicator of the sensibility of the i th series towards the correlations of the innovations.
In other words, large αi mean that correlations of the i th series are sensitives to the correlations of
the innovations. The extreme configuration where αi = 0 means that fluctuations of ri j ,t are perfectly
correlated with the ones of q j j ,t . Engle Cappielo and Sheppard (2006) propose another extension of
the specification defined by equation 2 whose goal is to capture asymmetry in correlation dynamics. It
consists of introducing a indicator function as follow:

Vt = (V̄ −A′V̄ A−B ′V̄ B −G′N̄G)+A′εt−1ε
′
t−1A+B ′Vt−1B +G′nt−1n′t−1G (2.8)

with A, B and G diagonal matrix. The indicator nt verify: nt = 1{εt<0} � εt and allows to calculate
N̄ = T −1∑T

t=1 nt n′t . As we have seen, the Holy Grail of multivariate DCC-GARCH is to have the most
flexibly specification. Several authors have tried to find a process which can express different dynamics at
once. In this spirit, Billio et al. (2003a) defined block diagonal matrix in the equation 2 with their Block-
Diagonal-DCC model. Nevertheless, this model seems to be hard to implement. That’s why Billio et al.
(2003b), with the Flexible-DCC, improved this idea by writing partitioned vectors:

Vt = c c ′�V +αα′� εt−1ε
′
t−1+ββ

′�Vt−1 (2.9)

where α, β and c are the partitioned vectors. Finally, a few improvements allow this authors to present
the Quadratic-Flexible-DCC which assume that:

Vt =C ′V C +A′εt−1ε
′
t−1A+B ′�Vt−1B (2.10)

with A, B and C are defined as symmetric matrix. This model considers the Flexible-DCC as a special
case where A, B and C are partitioned symmetric matrix.

On the other hand, Audrino and Trojani (2004) proposed a tree structured DCC-dynamics. The tree
is build on Vt and thresholds are defined with εt−1 via a weighted function:

ρ̄=
1

K(K − 1)

∑

u 6=v

εu,t−1εv,t−1

The partition P ={R1, ...,Rk} of the state space G =RK+1 on (rt−1, ρ̄−1) give the threshold function:

Vt = f P (rt−1,εt−1,Vt−1) =
k
∑

i=1
ci[(1−φi −λi )V̄ +φiεε

′+λiV ]1{(r,ρ̄)∈Ri } (2.11)

with c ∈ (0,1], φi ,λi ≥ 0, φi +λi < 1 and V̄ ∈R2K . The partitioned plane (rt−1, ρ̄−1) brings out various
groups of covariances.

3

ha
ls

hs
-0

02
85

86
6,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

08



Non-parametric correlations. A semi-parametric approach is presented by Hafner van Dijk and Franses
(2005). In this Semi-parametric DCC model, this is the covariance matrix that is estimated by a non-
parametric way:

Vt (x) =

∑T
t=1 εtε

′
t Kh (xt − x)

∑T
t=1 Kh (xt − x)

(2.12)

where xt is a observable variable (e.g. market return or xt = t ), Kh (·) = (1/h)K(·/h) a kernel function
and h a bandwidth parameter. So, correlations are estimated with a modified Nadaraya-Watson estimator.
We would further point out that the choice of the observable variable is tricky. First, this approach
assumes that the conditional correlations depends on a exogenous variable. This variable will influence
the estimated correlations by conditioning the kernel. Second, the authors indicates that the choice of
the bandwidth highly influence the calculus of the correlations and suggests to use local bandwidths
instead of a constant bandwidth.

In order to avoid the problem of sparse data bring up by Hafner van Dijk and Franses (2005), Feng
(2006) develops a local estimator for the correlations using k-NN methods (k-nearest-neighbours). The
idea of k-NN methods is to classify each observations with a particular decision rule. The goal is to find
the k nearest observations to construct a bandwidth for these k ones. It can be done by considering the
regressor w j t = 1′εt− jεt− j 1, where 1 is a vector of length K , j = 1, ..., p and t = p + 1, ..,T . To obtain
this moving bandwidth, it is necessary to consider two smoothing parameters: (i) an integer k such that
k→∞ and k/n→ 0 when n→∞, (ii) choose b0 be the half bandwidth for the re-scaled time such that
b0→ 0, nb0→∞ and (nb0)

−1k→ 0 when n→∞ with t0 = [nτ]1 such that t0 > p. Defining k1 = [nb0]
and k0 = 2k1+ 1, the bandwidth for w j is chosen as:

1. calculate n1 = t0− k1 et n2 = t + k1
2. calculate dt = ‖(wt −w)′(wt −w)‖1/2

3. sort dt according to an ascending order

The nonparametric estimator is builded with two kernel. The first K0(·) is an univariate one with support
[−1;1]. The second, K(·), is p-dimensional. The proposed estimator can be written as:

Vτ =

∑n2
t=n1

εtε
′
t K0(

τt−τ
b0
)K(w1t−w1

b , ...,
wpt−wp

b )
∑n2

t=n1
K0(

τt−τ
b0
)K(w1t−w1

b , ...,
wpt−wp

b )
(2.13)

Feng points out that in practice, it seems appropriate to take n1 = t − k1 and n2 = t − 1, i.e. to take a
smoother involving only past observations.

Direct specification for correlations. Until now we have only discussed about specifications that were
extensions of the basic model of Engle and Sheppard (2001). Recall that models calculate correlations
from covariances. Others models specified directly the correlations.

Such is the case of Palandri (2006) with the Sequential-Conditional-Correlations model. His idea is
to use a sequential Cholesky decomposition to obtain the correlation matrix. Correlations are separated
between the conditional correlations and partial correlations as follow:

Rt = [
K−1
∏

i=1

K
∏

j=i+1
Ki , j ,t ][

K−1
∏

i=1

K
∏

j=i+1
Ki , j ,t ]

′ (2.14)

The matrix Ki , j ,t is a lower triangular matrix with elements such as:

Ki , j ,t [r ow, col ] =







ρi , j ,t if r ow = j and col = i
�

1−ρ2
i , j ,t

�1/2
if r ow = j and col = j

I[r ow,col ] otherwise

1The operator [x] denote the largest integer which is smaller than x.
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where I is the identity matrix. Moreover, instead of taking a BEKK representation as usual, he builds an
originally process based on the Fisher transform : χt = 0.5 ln((1+ρt )/1−ρt ). Correlations follow then
a bivariate autoregressive process and become:

χt =ω+
p
∑

h=1

δhχt−h +
q
∑

i=1
(θi +βi dt−i )ψt−i

with :

dt−i =
¨

1 if εi ,t−1 < 0 and ε j ,t−1 < 0
0 otherwise and ψt =

1
2

ln(
1+φt

1−φt
)

whereφt is an evaluation of the realized correlations at time t , which can be computed by an exponential
smoothing. Palandri also presents extensions of his model with the introduction of exogenous variables
or dummy for asymmetry. If its implementation remains delicate, the advantage of the SCC model is to
be able to calculate large correlations matrix very quickly through the sequential decomposition of Rt .

Finally, two others models have a direct specification for correlations. The goal of this two competing
approaches is to modeling regime switching for the correlations. The first one is the STAR type model
of Silvennoinen and Teräsvirta (2005). The second is from Pelletier (2006) and is builded in a Markov-
Switching setup. Recall that this two main classes of models -STAR and Markov-Switching- are build
on two ways to treat the problem. The STAR class assumes that the switch between the regimes is
deterministic and determinate by a observable transition variable. The Markov-Switching class is quite
different. It assumes that the process followed by the observation is governed by an underlying hidden
stochastic process. To better understand our proposed model which generalizes the Markov-Switching
of Pelletier, both approaches are described in more details in the following subsection.

2.1 (S)TAR approach
2.1.1 Theorical aspects

The Threshold Autoregressive (TAR) model of Tong (1980) was one of the first approach to model
regime switching. It assumes that at each time t regime is determined by a threshold variable and a
threshold value. A two regimes model will then be composed by two parallel sub-regimes where the
transition from one to another depends of the position of the threshold variable against the threshold
value. The SETAR model, for Self-Exciting TAR, is an direct extension in which the threshold variable
is the lagged time series itself. For example, a basic 2-regime SETAR model is written as:

yt =Φ1(L)yt1{yt−d>γ}+Φ2(L)yt (1−1{yt−d>γ})+ εt (2.15)

where 1{yt−d>γ} = 1 if yt−d > γ and 0 otherwise, Φ1(L) and Φ2(L) are two lagged polynomial of finite

order and εt ∼ i i d (0,σ2
ε
).

However, these early models are distinguished by a very sudden switch between regimes. Teräsvirta
(1994) proposes another extension in order to avoid this problem with the Smooth Transition AR
(STAR). His solution consists to replace the indicator function by a continuous function G(yt−d ;γ , c)
which vary smoothly and monotically from zero to one. This transition function depends on three
variables. The first is the transition variable yt−d ; the two others are parameters which determined the
localization (c) and the smoothness (γ ). The STAR version of the process defined by equation 2.15 is
then expressed as:

yt =Φ1(L)yt G(yt−d ;γ , c)+Φ2(L)yt (1−G(yt−d ;γ , c))+ εt (2.16)

Along all possible functions, the most commonly-used are the logistic function (LSTAR model):

G(yt−d ;γ , c) = (1+ exp(−γ
n
∏

i=1
(yt−1− ci )))

−1, c1 < ...< cn , γ > 0 (2.17)

and the exponential function (ESTAR model) :

G(yt−d ;γ , c) = 1− exp(−γ
n
∏

i=1
(yt−1− ci )

2), c1 < ...< cn , γ > 0 (2.18)
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Initial formulation
DC CE

Generalization
of Vt

DCCE

ADCC

GDCC

DCCE
Ht = Dt Rt Dt

Flexibility
of Vt

BDCC

FDCCTDCC

QFDCC

DCCE
Ht = Dt Rt Dt

Direct
specification

of Rt

SCC

Smooth
Transition

(STAR)

DSTCC

STCC

Markov
Switching

RSDC

HRSDC

DCCES
Engle & Sheppard ’01

Vt Non-
parametric

SPDCC

LDCC

ADCC: Asymmetric DCC [Cappiello & al. (2006)]
BDCC: Block-Diagonal DCC [Billio & al. (2006)]
DCCES : Dynamic Conditional Correlations [Engle & Sheppard (2001)]
DCCE : Generalization of the DC CES [Engle (2001)]
DSTCC: Double STCC [Silvennoinen & Terasvirta (2007)]
FDCC: Flexible DCC [Billio & al. (2003)]
GDCC: Generalized DCC [Billio Caporin (2006)]
HRSDC: Hierarchical RSDC [Charlot & Marimoutou (2008)]
LDCC: Local DCC - Feng (2006)]
QFDCC: Quadratic Flexible DCC [Billio & Caporin (2006)]
RSDC: Regime Switching Dynamic Correlation [Pelletier (2006)]
STCC: Smooth Transition Cond. Corr. [Silvennoinen & Teräsvirta (2005)]
SCC: Sequential Cond. Corr. [Palandri (2006)]
SPCC: Semi-parametric DCC [Franses & al. (2005)]
TDCC: Tree path DCC [Audrino & Trojani (2004)]

Figure 1: The different extensions of DCC model of Sheppard and Engle
(2001). The model we propose is the RSDC hierarchical (HRSDC). As this
mapping shows, it aims to be similar of the STAR approach of the DSTCC
but in a Markov-Switching framework.

Figure 2 shows this two functions for various smoothness values. The main advantage of the STAR
model is the effect of the smoothness parameter. It provides a strong transition when γ → +∞ and the
STAR can be seens as a TAR. Consequently, when γ → 0, the transition is very smooth and when γ = 0,
the STAR performed as a linear model (see Terasvirta et al. (2000) for a complete survey, or Franses and
van Dijk (2004)).

These methodologies, first developed for autoregressive processes, were quickly applied to GARCH
models. Tong’s approach has been taken over by Glosten et al. (1993) for the GJR-GARCH model, in
which the conditional variance follows two different processes depending on the sign of error terms. In
the same spirit, the model TGARCH developed by Rabemananjara and Zakoian (1993) specifies various
regimes for the dynamics of the conditional standard deviation depending on the sign of error terms.
Finally, Li and Li (1996) develop the Double-Threshold ARCH (DTARCH), which imposes a threshold
structure for conditional variance and also for the conditional mean. Following the example of the latter
model, Koutmos (1998) proposes a dual-threshold model in order to test the asymmetrical response of
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Figure 2: Examples of logistic and exponential functions with c = 0 and
different values of γ .

mean and conditional variance with past information (asAR-TGARCH model). The STAR approach
also results in various solutions capable of taking into account the asymmetry. Hagerud (1996) makes
two STAR-GARCH models. The first type is LSTAR where the transition variable is based on the sign
of residuals. The second model is based on a smoothing ESTAR and the transition variable is the absolute
value of residuals. These two models are complemented by the analysis of Gonzales-Riviera (1998) with
take as transition variable the asymmetry parameter of the variance. Lundberg and Teräsvirta (1999)
build the STAR-STGARCH model in which the mean follows a STAR process and the conditional
variance follows a STAR-GARCH. This approach extends two other nonlinear approaches that are GJR-
GARCH and Quadratic GARCH of Santana (1995). Nam et al. (2002) apply a non-linear structure based
on the STAR approach to the mean and conditional variance to capture the asymmetry (ANST-GARCH
model). There is also the approach of Lanne and Saikkonen (2005), in which the transition variable is the
conditional variance and whose goal is to model series with high persistence in the conditional variance.
Finally, Medeiros and Veiga (2007) establish a general formulation with the Flexible Coefficient Smooth
Transition GARCH model (FC-STGARCH), encompassing most of the models mentioned above.

2.1.2 STCC model

The construction of a STAR structure for the process followed by the correlations of a multivariate
GARCH model was produced by Silvennoinen and Teräsvirta (2005) and Berben and Jansen (2005),
leading to the Smooth Transition Conditional Correlation GARCH model (STCC-GARCH). The idea
is to establish a conditional correlation matrix Rt as a combination of two extremes correlation matrix
R1 and R2 constants over time. The transition from one to another is provided by the logistic function
as defined by the equation 2.17. Specifically, the STCC specifies dynamic of the correlations as:

Rt = (1−Gt )R1+Gt R2 with Gt = (1+ e−γ (st−c))−1 (2.19)

where γ is the smoothing parameter, c is setting the localization and st is the transition variable. To
ensure the semi-positivity of the conditional matrix Rt , the matrix R1 and R2 must themselves be positive
definite, via a Cholesky decomposition for example. The transition variable st can be both deterministic
or stochastic, but its choice will remain crucial. If there is no real consensus to choice this variable, the
study of empirical analysis using the STCC model shows two types of transition variable. It can be:

• a endogenous or exogenous variable. In Silvennoinen and Teräsvirta (2005), the authors apply the
model STCC to study the correlations of assets from the daily S&P500. The transition variable is
the value of the lagged returns of the squared S&P500. Their strategy is builded on the idea that a
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strong difference value of the index at a given time represents a strong turbulence of the assets of
the S&P500 to the next period.

• calendar time, i.e. st = t/T . This specification results in the terminology of Silvennoinen and
Teräsvirta (2005) to the Time-Varying Smooth Transition Conditional Correlation (TVSTCC)
model. That’s the choice of Berben and Jansen (2005) in order to study correlations of equity
returns.

Silvennoinen and Teräsvirta establish a strategy of inference for choosing the best transition variable.
The idea is to find the most explicative variable controlling the dynamics of correlations. In this context,
the transition variable varies depending on the purpose of the analysis. In the case where preliminary
analysis did not reach to discriminate clearly this transition variable, the choice of calendar time seems
to be the most consensual.

These authors extended the STCC model by introducing two transitions functions to evolve corre-
lations between four correlation matrix constants over time. The conditional correlations process then
takes the following form:

Rt = (1−G1t )R(1)t +G1t R(2)t avec
�

R(i)t = (1−G2t )R(i1)+G2t R(i2)
Gi t = (1+ exp(−γ (si t − ci )))

−1 , i = 1,2 (2.20)

As for the STCC model, the transition variable can be of various kinds (endogenous or exogenous). We
now focus on a special case of the DSTCC, in which transition functions are s1t = s2t = t/T . In this
version, the correlations dynamic can be rewritten in a more illustrative way as:

Rt = (1−G2t )((1−G1t )R11+G1t R12)
︸ ︷︷ ︸

R1t

+G2t ((1−G1t )R21+G1t R22)
︸ ︷︷ ︸

R2t

(2.21)

In this formulation, the correlation matrix is a linear combination of two conditional matrix R1t and
R2t . These two matrix are themselves a linear combination of two extreme matrix constants over time
and semi-positive definite.

Estimation is done by maximizing the likelihood with the usual iterative optimization methods (i.e.
Gradient), in one or two steps in accordance with the sample size (see Engle and Sheppard (2001)).
However, as often in the regime switching models, the existence of numerous local maxima require to
test many initial conditions.

2.2 Markov-Switching approach
2.2.1 Theorical aspects

The Markov Switching approach has its origins in the construction of mixtures models2. The objective
of this models is to estimate a density assuming that the density is a finite mixture of densities, i.e. a
convex combination of densities. Let {Yt }t∈N∗ = {y1, ...,yT } ⊂ Rk T observations of length k with the
PDF f (yt ) on Rk . Then, the density of {Yt } is given by:

f (yt ) =
N
∑

i=1
πi f (yt ;φi ) (2.22)

where f (yt ;φi ) is a density of parameters φi . The parameter πi ∈ (0,1) corresponds to the weight of
the component i in the mixture. To ensure the function f (yt ) to be a probability density function,
the positive sequence (πi )i∈N∗ must then verify that

∑N
i=1πi = 1. Estimation of finite mixture model is

particularly sensitive for the simple reason that we don’t know the proportion of each of the components
in the mixture model. More specifically, we may not affect the observations to the components of
the mixture. An usual solution to this problem is then to reconsider the model in a incomplete data
framework. This method combines to each vector yt an indicator variable {St }t∈N∗ = {s1, ..., sT } ⊂ R
such that 1{sn=i} = 1. The incomplete data model is so represented by the pair {Yt ,St }t∈N∗ . The data are
supposed to spread over the various components. The weight of a component can then be interpreted

2See, for example, McLachlan and Peel (2000) for a briefing and Böhning et al. (2007) for a survey of recent developments.
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as the probability that an observation belongs to the component i : πi = P[st = i]. The model is built
from an underlying structure composed of the latent indicator variables iid 1{sn=i}. The conditional
probability and the joint probability are written as:

P[yt |st ] =
N
∑

i=1
f (yt ;φi )1{sn=i} et P[yt , st ] =

N
∑

i=1
πi f (yt ;φi )1{sn=i} (2.23)

The mixture model can be seen as a latent variable model assuming the observed data is an indicator of
belonging to a component. This approach can be enriched assuming that the indicator follows a hidden
Markov chain, which allows us to introduce a temporal dimension on the indicator components.

Recall briefly the main definitions and properties needed on Markov chains3. Let S a countable
set called state space, in which each i ∈ S are called state. A Markov chain of order k is defined by a
sequence of random variables (st )t∈N taking values in S such that for each it ∈S and t ≥ 1 :

P[st+1 = it+1|st = it , ..., s0 = i0] = P[st+1 = it+1|st = it , ..., st−k+1 = it−k+1] (2.24)

Mixture models based on a Markov chain generally use a Markov chain of order one4, which admits a
simple intuitive interpretation: the current state depends only on its previous state. The dynamic is entirely
based on the transition probability between states: ai j = P[st+1 = j |st = i]. A Markov chain (st )t∈N is
said to be time-homogeneous if the probability of transition from one state to another are independent
of t , i.e. P[st+1 = j |st = i] = P[s1 = j |st = i]. The transition probabilities of a homogeneous Markov
chain with n states lead to a transition matrix:

A =









a11 · · · a1n
...

. . .
...

an1 · · · ann









(2.25)

which verify
∑

j ai j = 1 and 0 ≤ ai j ≤ 1. Any transition matrix can be represented by a directed
valued graph whose summits represent the states of the chain. Figure 3 exhibits an graphical example of
transitions between three states. Thus, assuming that the initial distribution of the states is πt , we can
easily obtain the distribution at t + 1 with: πt+1 = πtA . The behavior of the transition matrix for the
m next periods can be deduced with Chapman-Kolmogorov theorem:

A (m) =











a(m)11 · · · a(m)1n
...

. . .
...

a(m)n1 · · · a(m)nn











=A m (2.26)

where a(m)j i is the probability to move from state i at time 0 to state j at time m and for each n, k ∈ N,

h = 1, ..., k − 1 : a(k)j i =
∑

l∈S a(h)
l i

a(k−n)
l j

. It is then possible to identify different types of states by noting
that the space S can be partitioned. Let i and j two states of the chain, it is said that i is accessible
to j , written as i → j , if P[st+k = j |st = i] > 0. Similarly, these two states communicate, i.e. i ↔ j ,
if i → j and j → i . A state is called recurrent if P[∪∞n=1(sn = i)|s0 = i] = 1 and called transient if
P[∪∞n=1(sn = i)|s0 = i]< 15. A Markov chain in which all states communicate is called irreducible.

The basic idea of the Hidden Markov Model (HMM) is that the state of the system is not determined
by observations, but through a hidden process which establish a relation between an observation and a
state. Each observation yt is linked to a random variable st following a Markov chain by a probability.
The assumption that the random variables associated with observations follow a first order Markov chain
implies a temporal dimension, since the probability of being in a state in t + 1 depends on the state in
t . The main difference with the finite mixture model deals on the indicator function, which here admits
a temporal dependence. The random variable st generally follows (but not necessarily) a Markov chain

3For a more complete outline, we refer to Billingsley (1986, chap. 1.8) and Shiryaev (1996, chap. 1.12 and 8).
4Pr[St+1 = st+1|St = st , ..., S0 = s0] = Pr[St+1 = st+1|St = st ]
5The quantity P[∪∞n=1(Sn = i)|S0 = i] is the conditional probability to come back to state i given the chain started at state i .
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a13
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Figure 3: Basic structure of a first order Markov chain with three states.

of order one, but mostly complies with the conditions of homogeneity, ergodicity and irreducibility.
Let N the number of states, an HMM is determined by the couple {Yt ,St }t∈N and is defined by three
elements: (i) a vector of initial distribution of size (N × 1): ν = P[s1 = i] ∀i ∈ S, (ii) a transition matrix
A=(ai j ) of size (N ×N ) such that ai j= P[st+1 = j |st = i] ∀i , j ∈ S, (iii) a distribution of observations,
independents conditionally to the hidden states, : P[yt |st = i]= f (yt ;φi ) where φi is the parameters of
a parametric density family. In the discrete case, the joint probability followed by the hidden Markov
model defined by the couple {Yt ,St }t∈N is such as:

P[y1:T , s1:T ] = P[y1:T |s1:T ]×P[s1:T ] =
T
∏

t=1
P[yt |st ]×

T−1
∏

t=1
P[st+1|st ]×P[s1] (2.27)

Partly introduced by Lindgren (1978) in economics and highly popularized by Hamilton (1989), the
Markov-Switching approach is a slight variation of HMM6 in which the conditional distribution of yt+1
depends not only on st+1, but also on yt and/or yt−1, etc. Nevertheless, the Markov-switching approach
uses the same techniques for estimating than the HMM. The Markov-Switching version of the model
described by the equation 2.15 is written as:

yt =Φst
(L)yt + εt (2.28)

where Φst
(L) corresponds of the specification of the regime fitting with st . Since the seminal paper of

Hamilton (1989), this approach gave rise to a huge literature. We can quote, without being exhaustive,
the work of Hamilton (1990) for the development of a filter to estimate the transition probabilities, as
well as Krolzig (1997 and 2003) for a comprehensive extension of the original model to a multivariate
framework. Kim (1994) also introduces a smoothing filter refining the calculation of posteriors proba-
bilities.

The first ARCH model with Markov-switching (SWARCH) is proposed by Hamilton and Susmel
(1994) while the first GARCH extension (GRS) appears in an analysis of the interest rates by Gray (1996).
The innovation for the model developed by Gray lies in writing the conditional variance. Indeed, for
SWARCH, each conditional variance depends not only on the regime, but on all history7. Whereas in
the GRS, the conditional variance depends only on the current regime by the expectation of the lagged
variance. Klaassen (2002) improves the latter model by broadening the spectrum of information for the
lagged variance. Haas et al. (2006) suggest a slightly different approach with the MSG(N) model, which
consists of estimating N GARCH models in parallel and switching directly from a variance to another.
They then avoid the problem of path-dependency. It generalizes several Markov-switching GARCH
approaches like the models proposed by Haas et al. (2004) and by Francq et al. (2001), which appear as
special cases. Finally, Liu (2006) deepens the MSG(N) model by studying the conditions of his steady
states with less restrictive assumptions than Haas et al. (2006).

6In fact, these two names are not yet standardized and a model Markov-switching is often called the HMM (see Cappé (2005,
chap. 1.2).

7It is the well-known path-dependency problem.
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2.2.2 RSDC model of Pelletier (2006)

The literature on Markov-Switching GARCH models in a multivariate framework is actually much less
dense than in the univariate context. Lee and Yoder (2005) apply the Gray’s method to build a bivariate
Markov-switching BEKK model. The multivariate GARCH model of Pelletier (2006) is the first, and
for now the only one, to adopt a Markov-Switching structure for the correlations process. By imposing
constants correlations in each regime and establishing the switch of each other through a Markov chain
of order one, this model falls between the CCC and the DCC. Formerly, the RSDC model assumes that
the conditional correlation matrix has the form:

Rt =
N
∑

n=1
1{sn=i}Rn (2.29)

where {st }t∈N is a sequence follows a homogeneous first order Markov chain with N state. Rn is a
conditional correlation matrix of size K × K where Rn 6= Rn′ for n 6= n′. The distribution of the
process defined by {st }t∈N is determined by a transition matrix written A. So that the conditional
correlation matrix is indeed a correlation matrix8, it is necessary to impose a PSD constraint on the
matrix corresponding to the regimes. This can be a constraint Choleski decomposition, i.e. Rn =CnC ′n
with Cn a lower triangular matrix and imposing that diagonal elements of Cn to be written as:

c j , j =

√

√

√

√1−
j−1
∑

i=1
c2

j ,i (2.30)

Pelletier also proposes a more parsimonious specification of the RSDC whith the following expression:

Rt = Q̄λst
+ IK (1−λst

) (2.31)

With two states, the latter expression as being equal to the weighted average of two extreme states. The
case λst

= 0 is where the returns are not correlated while λst
= 1 corresponds to the case where they are

very correlated. This second formulation requires an identification constraint as follows:

λ1 = 1 with λ1 > λ2 > ...> λN or also max
i 6= j
|Ri j |= 1 with 1> λ1 > λ2 > ...> λN (2.32)

Estimation of the RSDC model is done via maximum likelihood, with a nuance according to the specifi-
cation in question. For the first specification, corresponding to the equation 2.29, Pelletier favors the use
of the EM algorithm. The second specification, define by equation 2.31, can be estimated through Gra-
dient methods by exploiting the idea of correlation targeting of Engle et Mezrich and using Hamilton’s
filter. In that case, the correlations can be simply calculated as:

E[Rt ] = Q̄
N
∑

n=1
λnπn + IK

N
∑

n=1
(1−λn)πn (2.33)

3 Hierarchical Hidden Markov Structure for Dynamic Correlations
As we have seen in section 2, the DSTCC model of Silvennoinen and Teräsvirta (2007) is an expanded
version of the STCC. Its feature is to express the conditional correlation matrix as a combination of two
extreme matrix that are themselves dynamics. As the authors explain, at the beginning of the sample,
the correlations defined by the equation 2.21 will vary between the two states R11 and R12, and then
towards the end of the sample between R21 and R22. Couples of matrix (R11, R12) and (R21, R22) define,
according to the second transition variable, two major states bounded by two extreme dynamic matrix.
We can say that the dynamic of the DSTCC works on two primaries regimes, themselves build under
four secondaries regimes. The Markov-Switching approach of Pelletier (2006) doesn’t consider the case
of sub-regimes, unless, in our case, to take four states. However, a classical Markov-Switching model

8Recall that by definition, for Rt be is a correlation matrix, it must be symmetrical, PSD, have its diagonal elements equal to 1
and the non-diagonal elements must belong to the interval [−1;1].
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will not reach to capture the existence of sub-regimes. The idea of the model that we present is that,
unlike the basic Markov-Switching, it makes possible to establish a hierarchy between states that define
sub-regimes. The aim is to show nuances induced by the existence of sub-regimes in the dynamic of the
correlations. As a first step, we will present the class of hierarchical hidden Markov models, the structure
which is build our model. In a second step, we will expose our model.

3.1 Structure
3.1.1 The Hierarchical Hidden Markov Model

The Hierarchical Hidden Markov Model (HHMM) has been proposed by Fine et al. (1998) in order to
generalize the HMM model. The idea is to build a stochastic process with several levels by adopting a
tree structure to obtain an interlacing of regimes. The hierarchy of the tree is built with internal states,
which are abstract states (i.e. they do not produce observations). The internal states can lead so-called
emitting states, which produce observations. Internal and emitting states can also lead to a third type
of state which are called exiting states. The exiting states allow to quit a level of the tree. Each internal
state produce a sub-HMM, which can also be itself a HHMM. In this framework, the classical HMM is
a special case of the HHMM with only one level. The main advantage of the HHMM compared to the
HMM is to improve the granularity of the regimes. The HHMM approach permits to break up a time
series into several types of regimes. For example, a HHMM with two levels has two types of regimes:
the firsts are called primaries regimes and the seconds secondaries regimes. The combination of the secon-
daries permits to deduce the primaries ones. This increased granularity allows us to bring out nuances
in regimes which can not occur with the simplified structure of HMM.

Formally, a HHMM can be represented as the process {Yt ,Qt }t∈N with :

• {Yt }t∈N is the process followed by the observations, which are supposed to be conditionally inde-
pendent to the hidden states.

• {Qt }t∈N is a homogeneous first order Markov chain. Each state of a HHMM qd
i belongs to the set

Q = {S ,I ,E} where S is the set of emitting states, I the set of internal states and E the set of
exiting states. The superscript d corresponds to the index Hierarchy (vertical location) in the tree,
with d ∈ {1, ...,D} and subscript i is its horizontal location.

The tree structure is obtained by imposing an internal state at the root (level d = 1)9. This initial state
then have several descendants which can be internal or emitting states. These sub-internal states can
themselves have descendants which can be internal or emitting and so on. The transition from level d to
level d + 1 is provided by the probabilities of vertical transitions through an internal state. The return
from level d + 1 to level d is done with the exiting states and corresponds to a probability of exiting.
Internal and emitting states of the same sub-HMM of level d communicate with a transition matrix as in
a classical HMM model. An internal state leading to another internal/emitting states of a lowest level is
called parent state. A parent state leads to child states. Finally, three probabilities govern the dynamic of
the hidden structure:

• A d
k = (a

d
k (i , j )) : is the matrix of horizontal transition of state i to state j where i and j are two

states of the same sub-HMM of level d , i.e. ad
k (i , j ) = P[qd

t+1 = j |qd
t = i], qd

t+1, qd
t ∈ {S ,I }.

• ed
i = P[q

d
t+1|q

d+1
t ], with qd+1

t , qd
t+1 ∈ {S ,I }: vertical probability to leads from a child at level

d + 1 state to parent state at level d .

• πd
i = P[q

d+1
t+1 |q

d
t ] with qd+1

t , qd
t+1 ∈ {S ,I } : vertical probability to lead from a parent state to its

child state.

To ensure the transition matrix to be stochastic10, it is necessary to impose that, for each sub-model
depending of parent k :

∑

j∈c h(k)

ad
k (i , j )+ ed

i = 1 and
∑

i∈c h(k)

πd
i = 1 (3.1)

9We will see later that this condition is not always necessary. The HRSDC model has not an internal state at the summit.
10∑

j ai j = 1 et 0≤ ai j ≤ 1.
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Figure 4: Basic structure of a HHMM with three emitting states.

where i , j ∈ c h(k) are two states with parents k. Figure 4 is an illustration of the basic structure of a
HHMM and figure 13 is a complete example (see appendix A). As we can seen, the number of parameters
of the model depends on the structure of the tree. Xie (2005) uses a useful notation to represent param-
eters space of a HHMM. Let Q the size of the space state of each sub-model, Xie assume that global
configuration of a HHMM starting from the root up to the d t h level can be written as:

q (d ) = (q1q2...qd ) =
d
∑

i=1
q i Qd−i

Thus, assuming that there is only one state at the root, all the parameters comprising a HHMM matches
to:

θ= (∪D
d=2 ∪

Qd−1−1
i=0 {A d

k ,πd
i , ed

i })∪ (∪
QD−1

i=0 {φi})

where φi corresponds to the parameters of a parametric probability distribution.

3.1.2 The Hierarchical RSDC model

The objective of the model we are building is to vary the correlations between two extreme major
regimes, while allowing the existence of secondaries regimes. Like Silvennoinen and Teräsvirta (2007),
the correlation process is bounded by four states of constant correlations over time. The structure
highlights two primaries regimes, depending on abstract states i1

1 and i2
2 . Each of these abstract states is

connected with emitting states. Thus, the regime corresponding to i1
1 is determinated by the emitting

states s2
1 and s2

2 ; that of i1
2 by s2

3 et s2
4 . Figure 5 shows the hierarchical hidden structure of the Hierarchical

RSDC model (HRSDC).

The hierarchical structure allows states to increase the granularity of the regimes. It establishes differ-
ent types of regimes, which in our case are primaries and secondaries. The primaries regimes correspond
to the regimes obtained with a classical Markov Switching model. To a higher level of granularity, these
primaries regimes are built with sub-regimes, known as secondaries regimes. The structure allows secon-
daries’s to capture nuances of dynamics that are thinner than the primaries’s. The idea of granularity is
illustrated on the figure 6. Our model has two levels and four secondaries regimes, corresponding to two
sub-HMM models.
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Figure 5: Hierarchical Hidden structure of the HRSDC.

The pair of emitting states defined by (s2
1 , s2

2 ) forms a Markov-Switching model and the same is
true for (s2

3 , s2
4 ). The link between these sub-models is provided by the abstract states i1

1 and i1
2 . The

model is then building on two sub-models with two emitting states each, which transition matrix are
respectively11 :

A2
1 =
�

a2
11 a2

12
a2

21 a2
22

�

and A2
2 =
�

a2
33 a2

34
a2

43 a2
44

�

and verified constraints:
�

a2
11+ a2

21+ e2
1 = 1

a2
12+ a2

22+ e2
2 = 1 and

�

a2
33+ a2

43+ e2
3 = 1

a2
34+ a2

44+ e2
4 = 1

where e2
i , i = 1, ..., 4 is the probability of exiting from a state of level two and go to a parent state at level

one. The two sub-HMM communicate via exiting states through abstract states i1
1 and i1

2 . The dynamic
in the transition from one to another of these abstract states is defined by the transition matrix:

A1 =
�

a1
11 a1

21
a1

12 a1
22

�

which verifies:
a1

11+ a1
12 = 1 and a1

21+ a1
22 = 1

Parameters π2
i , i = 1, ..., 4 represents the probability to move from a parent state of first level to one of

its children at the second level. These probabilities must verify:

π2
1+π

2
2 = 1 and π2

3+π
2
4 = 1

The specification for the four correlation matrix constants in time is that outlined by Pelletier (see
equations 2.29 and 2.31)12. In fact, the only difference with the RSDC is the hierarchical hidden structure
which introduce us to see the RSDC as a special case of the HRSDC with only one level. As in the RSDC
model, the specification defined by equation 2.29 can be estimate by EM algorithm whereas formulation
defined by equation 2.31 allows to use iterative methods like Gradient.

11Recall that the probability that the state q which was in i at time t −1 to be in j at time t is written P[qt = j |qt−1 = i] = p j i .
12The four correlation matrix then represent 4K(K + 1)/2 parameters.
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regime 1
regime 1.1

regime 1.2

regime 2
regime 2.1

regime 2.2

primaries reg. secondaries reg.

initial

regime

granularity

Figure 6: The increase of the granularity in the HRSDC model.

3.2 Estimation
Estimation of the HRSDC model can be done using the multi-step estimation of Engle and Sheppard
(2001) and Engle (2002). This computationally attractive method splits up the log-likelihood `(ϕ,θ) as
the sum of two parts : the volatility component `v (ϕ) and the correlations term `c (ϕ,θ), where ϕ is
the parameters space of the K univariate GARCH model and θ corresponding of the parameters of the
correlations. More formally, this is written as:

`(ϕ,θ) = `v (ϕ)+ `c (ϕ,θ)

with :
• `v (ϕ|rt ) =−

1
2

∑T
t=1(K log(2π)+ 2 log(|Dt |)+ r′t D−2

t rt )

• `c (θ|rt ,ϕ) =−
1
2

∑T
t=1(log(|Rt |)+ ε′t R−1

t εt )

Estimation of the volatility part `v is done by maximizing the sum of the individual GARCH likeli-
hoods. Estimation of the correlation part is trickier because of the abstract states. Various solutions have
been proposed.

In their seminal article, Fine et al. (1998) used a generalized Baum-Welch algorithm based on an
modified version of the Inside-Outside algorithm. This method requires to calculate all sequences that
could be generated by each sub-model of each level of the hierarchy. With a computational complexity
of O (NT 3), where N represents the number of hidden states and T the number of observations, this
approach is suitable for small sequences but remains impractical for long sequences13. An alternative
approach, first developed in Paskin and Murphy (2001) -and taking up again but with some modifications
by Bui et al. (2004)- provides an estimate by O (T ). The idea is to consider the HHMM as a special case
of Dynamic Bayesian Network (DBN). Note that a mechanic of a DBN is to repeat a chain of Bayesian
network for each observation. The chains of the network are connected in time by a causal relationship
which permit to track the evolution of the process. After the HHMM converted into a DBN, the
estimation uses an classical Baum-Welch algorithm. However, if this is attractive from a computational
point of view, it is still relatively complicated to implement. A third approach, suggested by Wierstra
(2005), is to circumvent the problem posed by vertical transitions, which implies the existence of several
paths to go from one state to another, by transforming the HHMM into a equivalent HMM. This
flattening method, has the advantage of allowing to use the usual estimation methods of HMM with a
complexity of O (T ). Wierstra’s tip is to redistribute vertical and horizontal probabilities such that no
longer exists self-referential probabilities for internal states. This transformation allows to have a flat
version of the HHMM in which there is only one path from a state to another. Xie (2005) succeeds to
estimate the HHMM with HMM’s standard tools while respecting the vertical dynamic of the model.
In contrast to previous approaches, Xie’s is builded on a particular expression of the transition matrix.
Instead of considering the whole dynamic of the model, the transition matrix is broken down into several
sub-transition matrix for each hierarchical level. Each level of the tree is then linked with a transition
matrix. This rewriting of the transition matrix allows to estimate the correlations with a version of the
Baum-Welch algorithm very similar to that used in the context of standard HMM. The complexity of
Xie’s approach is of order O (DT N 2N ).

13The inability of the Fine et al.’s algorithm to deal with long sequence is not presented as a problem by the authors they apply
their model for unsupervised handwriting recognition. In such applications, the size of the sequences are about fifty characters.
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To estimate our HRSDC model, we follows a modified Xie’s approach. The main advantage of its
method is the speed of implementation. Xie builds the transition matrix by successive layers in order
to have an expression of the likelihood of complete data that can be factorizable. In this framework,
vertical transitions, which allows to activate the child of a parent state are given by:

πq =
D
∏

d=1

πd
qd , q = 0, ...,QD − 1 (3.2)

Transition matrix is rewritten by layers, each layer represents a level of the hierarchy of the tree:

ãd (q ′, q) =
D
∏

i=d

e i
q ′i
πi

q i · a(q ′d , qd ) (3.3)

This probabilities are called hypertransition probabilities. Aggregation of these probabilities leads to the
hypertransition matrix of our model:

Ã(q ′, q) =
D
∑

i=1
ã i (q ′, q) (3.4)

Finally, the hypertransition matrix has size (S×S)where S = ca r d (S ). This formulation is attractive in
the sense that it leads to work with a transition matrix similar to the classical HMM or Markov-Switching
model. The hypertransition matrix of our HRSDC model is then written as:

Ã=
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2
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(3.5)

The hidden hierarchical structure requires twenty parameters. However, in practice, only sixteen pa-
rameters will be to estimate due to constraints of stochastic matrix. In the next sub-section, we propose
two ways to estimate the correlations. The first is based on the EM algorithm. The second is done with
the Hamilton’s filter.

3.2.1 Estimation by EM algorithm

To run EM algorithm14, we need to write the quantity Q(θ|θk ). With our hypertransition matrix, it is
simply written as:

Q(θ|θp ) = Eθp
[log f (ε1:T , s1:T ;θ)|ε1:T ] (3.6)

=
T
∑

t=1

S
∑

i=1
log( f (εt ;φi ))Pθp

[st = i |ε1:T ]

+
T−1
∑

t=1

D
∑

d=1

S
∑

i=1

S
∑

j=1
log(ãd

i j )Pθp
[st+1 = j , st = i |ε1:T ]

+
S
∑

i=1
log(νi )Pθp

[s1 = i |ε1:T ]

To simplify the later formula 3.6, we define:

γ p
t (q)

d e f
= Pθp

[qt = q |ε1:T ]

ξ p
t (q

′, q , d )
d e f
= Pθp

[qt = q ′, qt+1 = q , et = d |ε1:T ]

Reestimation formulas are obtained by maximizing the expected value of the complete-data log-likelihood
Q(θ|θp ). In order to speed up this maximization, we can rewriting γ p

t (q) and ξ p
t (q

′, q , d ) with the aux-
iliary variables defined by the Forward-Backward algorithm.

14See appendix B for a very brief review.
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Forward-Backward algorithm The Forward-Backward algorithm is a useful method to reduce the
calculus complexity15. It is to define two auxiliary quantities from which will be expressed reestimation
formulas of the M step.

• Forward algorithm: the auxiliary quantity Forward, written αt (q), is defined as the probability
that the sequence (ε1, ...,εt ) to be in state q in the model θ :

αt (q)
d e f
= Pθ[ε1:t , qt = q]

Let f p (εt ;φq ) the value of the likelihood at time t and iteration p. To simplify the notations, we
will omit the superscript p and use the short-hand notation of fq (yt ). The two steps calculus for
Forward quantity is as follow:

¬ Initialization: α1(q) =πq fq (ε1)
 Iteration: αt+1(q) = fq (εt+1)

∑

q ′
∑

d αt (qt )ãd (q ′, q)

for t = 1, ...,T − 1 and q = 0, ...,QD − 1.

• Backward Algorithm: the Backward variable, written βt (q), is the inverse of the Forward. It is
defined as the probability to generate the sequence (εt+1, ...,εT ) by leaving from state q in the
model θ:

βt (q)
d e f
= Pθ[εt+1:T |qt = q]

We have then two steps to compute the Backward variable:

¬ Initialization: βT (q) = 1
 Iteration: βt (q) =

∑

qt

∑

d βt+1(q ′) fq ′(εt+1)ãd (q , q ′)

for t = 1, ...,T − 1 and q = 0, ...,QD − 1.

Auxiliary variables αt (q) and βt (q) allows to rewriting the probabilities γ p
t (q) and ξ p

t (q
′, q , d ) as fol-

low16:
γ p

t (q) = αt (k)βt (k)
ξ p

t (q
′, q , d ) = αt (q ′)ãd (q ′, q) fq ′(εt+1)βt+1(q)

As these two variables are probabilities17, they shall normalize as:

•
∑

k γ
p

t (q) = 1
•
∑

k
∑

k ′
∑

d ξ
p

t (q
′, q , d ) = 1

• γ p
t (k

′) =
∑

k
∑

d ξ
p

t (k
′, k , d )

Then, we can easily rewriting the reestimation formulas with γ p
t (q) and ξ p

t (q
′, q , d ).

Reestimation formulas Reestimation formulas can be obtained by maximizing Q(θ|θp ) subject to
the stochastic constraints on the parameters (see sub-section 3.1.2). Then, we have only to differentiate
with respect to the constraints and adding the appropriate Lagrange factors. We take the Xie’s notations
to indexing the states. The writing q = (r i r ′) and q ′ = (r i r ′′) are two states configuration which
are identical up to the d t h level and have the same (d − 1)t h parent r such that r = q1:d−1 = q ′1:d−1.
Moreover, r ′ = qd+1:D

t and r ′′ = qd+1:D
t+1 are two state configurations of a level below d . For each level

15it lets you go of a complexity from O (eT ) to O (T ) (see Cappé (2004) chap. 3.2 and also Baum et al. 1966 p.170).
16For a detailed calculation, see Cappé (2004, chap. 3).
17In practice, the calculation of auxiliary variables Forward and Backward revealed problems of underflow. It is therefore

advisable to apply a scaling factor in order to facilitate the computation (see appendix C).
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d ∈ {1, ...,D}, the reestimation variables at iteration p + 1 can be displayed as:

• π̂d
r ( j ) =

∑T−1
t=1

∑

r ′
∑

r ′′
∑

i ξ
p

t ((r i r ′), (r j r ′′), d )
∑T−1

t=1

∑

r ′
∑

r ′′
∑

j
∑

i ξ
p

t ((r i r ′), (r j r ′′), d )

• êd
r (i) =

∑T−1
t=1

∑

r ′
∑

r ′′
∑

q ′
∑

d ′≤d ξ
p

t ((r i r ′), q ′, d ′)
∑T−1

t=1

∑

r ′
∑

r ′′ γ
p

t ((r i r ′))

• âd
r (i , j ) =

∑T−1
t=1

∑

r ′
∑

r ′′ ξ
p

t ((r i r ′), (r j r ′′), d )
∑T−1

t=1

∑

r ′
∑

r ′′
∑

j ξ
p

t ((r i r ′), (r j r ′′), d )
× (1− êd

r (i))

• R̂q =

∑T
t=1 εt · γ

p
t (q) · ε′t

∑T
t=1 γ

p
t (q)

We simply use as stopping rule the conventional difference ‖θ̂ p+1− θ̂ p‖ ≤ 10−6.

3.2.2 Estimation Gradient methods

Using Gradient methods to estimate a HMM is made possible with the so-called Hamilton’s filter (see
Hamilton (1989), (1990) and (1994, chap. 22)). This iterative filter allows to make inference on the
state of the unobserved Markov chain. With Hamilton’s notations, let ξ̂t |t a vector of size (N × 1)
which elements ξ j t = Pr[st = j |Ft−1,θ], j = 1, ...,N are the conditional probabilities to be in regime
j given the information set Ft−1 at time t − 1 and Ã our hypertransition matrix of size (N ×N ) (see
equation 3.4). Then, the vector ηt of size (N ×1), which elements are the densities under the N regimes,
i.e. f (εt |st = j ,Ft−1;θ), j = 1, ...,N . Then, Hamilton shows that the observed density εt given the
information set is written as:

f (εt |Ft−1;θ) = 1′(ξ̂t |t−1�ηt ) (3.7)

where 1′ is a (N × 1) vector with all elements equal to 1. The conditional distribution of st can be
deduced :

f (εt , st = j |Ft−1;θ)
f (εt |Ft−1;θ)

= Pθ[st = j |εt ,Ft−1] (3.8)

= Pθ[st = j |Ft ]

Combining with equation 3.7, relation 3.8 has the following expression :

Pθ[st = j |Ft ] =
f (εt , st = j |Ft−1;θ)

1′(ξ̂t |t−1�ηt )
(3.9)

As the joint density f (εt , st = j |Ft−1;θ) is written as:

f (εt , st = j |Ft−1;θ) = Pθ[st = j |Ft−1]× f (εt |st = j ,Ft−1;θ) (3.10)

which is the density of the j t h regime. By collecting for the N regimes, the filtered probabilities become:

ξ̂t |t =
(ξ̂t |t−1�ηt )

1′(ξ̂t |t−1�ηt )
(3.11)

with forecasts calculated by:
ξ̂t |t+1 = Ã× ξ̂t |t (3.12)
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Inference for each date t is then found by iterating equations 3.11 and 3.12. For choosing starting
value, we use one of the options proposed by Hamilton (1994, p.693). He suggests to take the vector of
unconditional probabilities π, which is the solution of the following system:

¨

Ãπ=π
1′π= 1

(3.13)

The starting value are then given by:

π= (M ′M )−1M eN+1with M =
�

IN − Ã
1′

�

where eN+1 is the (N + 1)t h column of IN+1.

3.2.3 Smoothed probabilities

Hamilton’s filter allows to make inference about the state of the Markov chain at time t conditional on
the information set up to time t . Kim (1994) has developed an filter in order to make inference with
the whole information set. Instead of computing ξt |t , it permit to compute ξt |T with t < T . The Kim’s
filter is computed with our hypertransition as in the classical case:

ξ̂t |T = ξ̂t |t �{Ã
′[ξ̂t+1|T � ξ̂t+1|t ]} (3.14)

where � denotes element-by-element division.

4 Applications
This section contains Monte-Carlo experiments and two applications based on real dada. The first real
database is that used by Colacito and Engle (2006) and contains daily data from S&P500 and 10-year
bond futures (see appendix E). The second real database application is done with that of Pelletier (2006).
It contains four week-days close exchange rates against US dollar which are Pound, Deutschmark, Yen
and Swiss-Franc (see appendix D).

4.1 Simulated data
In this sub-section, we compare the correlations estimates of our HRSDC model and the DCCES of
Engle and Sheppard (2001) in a setting where the true correlation structure is known. For simplicity,
it is done in a bivariate framework. We simulate six DGP. The first one has the following variance
equations:

h1,t = 0.01+ 0.05r1,t−1+ 0.85h1,t−1
h1,t = 0.12+ 0.1r1,t−1+ 0.85h1,t−1

and the others (DGP2:5):
h1,t = 0.01+ 0.04r1,t−1+ 0.95h1,t−1
h1,t = 0.01+ 0.2r1,t−1+ 0.5h1,t−1

For the DGP1, the correlations process follow a TAR-CCC model with constants correlations. The
DGP2:5 are builded with dynamic processes. The different DGP are labeled as:

• DGP1: R12,t =











0.99 if t ∈ [1;250]
−0.99 if t ∈ [251;500]
0.4 if t ∈ [501;750]
−0.4 if t ∈ [751;1000]

• DGP2: R12,t = 0.4+ 0.34cos(t/250)

• DGP3: R12,t = 0.5+ cos(d/s)− (1/3)cos(3d )+ (1/7)cos(5d ), d = (t − 50)/145, s = 35
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Figure 7: Simulated Correlation Processes. The last two graphs are an
example of the estimated correlations of the two models for the DGP1.

• DGP4: R12,t =
�

.8+ .2 cos(t/20) if t ∈ [1;500]
0.2+ .2 cos(t/20) if t ∈ [501;1000]

• DGP5: R12,t = 0.99− 1.98
1+exp(0.5max(ε2

1,t−1,ε2
2,t−1))

• DGP6: R12,t = 0.5+ sin(s3)/(1+
Æ

�

�s3�
�), s = 5− t/100

The simulated correlations are voluntarily pathological in order to test the accuracy of the corre-
lations estimates corresponding of a very volatile/distress periods of financial markets. The DGP2:4;6
are builded with sinusoidal functions to create correlations with different regimes or sub-regimes. The
DGP5 is used by Long and Ullah (2005) and corresponds of the stylized fact pointed out by Longin and
Solnik (2001) that correlations among assets tend to increase during volatile periods.

The performance measures we use are very similar of theses used by Engle (2002). We first calculate
two versions of a very classical loss function, which are computed as follow:

M AE1 =
1
T

∑T
t=1

�

�

�R̂t −Rt

�

�

�

M AE2 =
1
T

∑T
t=1(R̂t −Rt )

2

For the second type of measure, we follow the methodology of Engle (2002) by considering the loss
function of the Value-at-Risk (VaR). Recall that for a portfolio with a share w invested in the in the first
asset and (1−w) in the second, the VaR assuming normality can be computed as:

V aRαt =Φ
−1
t (α)

Ç

(w2Ĥ11,t +(1−w)2Ĥ22,t + 2w(1−w)R̂12,t

q

Ĥ11,t Ĥ22,t )

The loss function of the VaR is then defined by:

hi tt = 1{w r1,t+(1−w)r2,t<−V aRt} −α
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DGP1 DGP2 DGP3 DGP4 DGP5 DGP6
MAE1
DCC .1331 .5125 .3774 .4237 .5298 .2764
HRSDC .0562 .5521 .3836 .4642 .5386 .2831
MAE2
DCC .0553 .2901 .1700 .2361 .2824 .0778
HRSDC .0235 .3408 .1660 .2659 .3008 .0835
DQ à 5% (strategy EW)
DCC .7594 .5884 .6499 .9299 .5784 .9586
HRSDC .5966 .6985 .7814 .9699 .4263 .9800
DQ à 1% (strategy EW)
DCC .3359 .9944 .9970 1e−4 .0217 .9925
HRSDC .4382 .9733 .9995 2e−4 .0215 .9929
DQ à 5% (strategy LS)
DCC .7969 .1616 .5136 .9532 .7284 .7068
HRSDC .8731 .0912 .3509 .9216 .6574 .7321
DQ à 1% (strategy LS)
DCC .4294 4.3e−5 .9986 .9996 .01 .0523
HRSDC .3896 .2685 .9959 .9994 .01 .0136

Table 1: Performance measures results.

We then use the in-sample Dynamic Quantile (DQ) test introduced by Engle and Manganelli (2001). This
consists to test if all the coefficients of the regression of the violation process hi tt with its lagged values
and others exogenous variables are equals to zero. To compute this F test, we use as explanatory variables
five lags hi tt and the current value of the VaR. We test two numbers of rejections (1% and 5%) and two
portfolios: an equal-weighted (w = 0.5, strategy EW) and a long-short (1 and -1, strategy LS). Table 1
presents the results of the performance measures.

The results show that the HRSDC performs better than the DCC when correlations are piecewise
constants. This result is consistent with what could be expected since the HRSDC varied correlations
between several constants correlations matrix over time. Once the simulated correlations are no longer
piecewise constants, the DCC model has better MAE, which, once again, seems normal. However,
differences in the MAE between the DCC and the HRSDC are rather weak. The dynamic process
resulting from a combination of regimes of the HRSDC seems to be not too bad face to the autoregressive
dynamic of the DCC.

The results of the DQ test are more mixed and appear highly dependents on the strategy chosen.
The DCC is the best for EW strategy, while HRSDC dominates on the LS strategy. A simple addition
of the best values shows that the HRSDC seems preferable to DCC. Nevertheless, it would be unfair to
conclude to the dominance of HRSDC under the DCC. It is just better to point out that the HRSDC
remains credible face to the DCC.

Finally, the HRSDC remains a formidable efficiency when correlations are piecewise constants
(DGP1), but becomes less effective when it is no longer the case (DGP2:6). It seems that the autoregres-
sive dynamic of the DCC stay very efficient when correlations oscillate around a trend value. However,
the interest of the HRSDC is in its explanatory power. Beyond a simple measure of correlations, its
structure allows to bring out the components of the overall dynamic by increasing the granularity of
regimes.

4.2 Correlations between S&P500 index futures and 10-year bond futures
The first application with a real database is based on the bivariate sample of Colacito and Engle (2006).
It contains daily returns of S&P500 index futures and 10-year bond futures from January 1990 to August
2003 (see appendix E). This data are also used by Silvennoinen et Teräsvirta (2007) to apply their DSTCC
model. The individuals volatilities are obtained by running a GARCH(1,1) model. We later obtain the
correlations by running three different models in order to make comparisons. These models are HRSDC,
DCCES and DSTCC. For this sample, the correlations of the DCCES and DSTCC are estimated using
gradient methods while the correlations of the HRSDC are computed with EM algorithm. The figure 8

21

ha
ls

hs
-0

02
85

86
6,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

08



0 500 1000 1500 2000 2500 3000 3500
−1

0

1
Hierarchical RSDC

0 500 1000 1500 2000 2500 3000 3500
−1

0

1
Double TVSTCC

0 500 1000 1500 2000 2500 3000 3500
−1

0

1
DCC

Figure 8: Estimated correlations of the HRSDC, DCCES and DSTCC with
the sample of Colacito and Engle (2006).

shows the estimated correlations for the three models.
In our application, transition variables for the DSTCC are defined as s1t = s2t = t/T (calendar time).

In their study, Silvennoinen et Teräsvirta (2007) used another specification: one of the transition variable
is calendar time while the other is VIX index18. This particular approach is motivated by investigate
the fact that correlation among S&P500 and bond futures increase with distress of the market. As our
model can not incorporate exogenous variable, calendar time allows to the DSTCC to be similar to the
HRSDC. They are together conditional on time.

Results of the estimated parameters of the HRSDC are presented in appendix F and the smoothed
probabilities corresponding to the secondary regimes are in the figure 9. The model has correctly identi-
fied two sub-regimes with positive correlations and two sub-regimes with negative correlations. Adding
the smoothed probabilities of each pairs of sub-regimes give the smoothed probabilities that we would
have had with Markov-Switching model with two regimes. This is shown on the Figure 10. The results
for the DSTCC (with the calendar time specification) show that it does not accurately captures the punc-
tual changes in regime. Correlations estimate have the form of a curve. Rather than a local measure, this
model allows for a trend. For example, in the DCC and HRSDC models, correlations go to a negative
correlations regime around the 2400t h observation whereas they are still positives in the DSTCC. These
is due to the fact that the DSTCC has only two transition functions. A solution to this problem could
be to introduce more transition functions as in Amado and Teräsvirta (2008). If the DCC and HRSDC
correlations estimate seem similar, the advantage of HRSDC in the case study is to explain nuances in
the dynamics through the decomposition in sub-regimes. The increasing of the granularity ends up to a

18The Vix index (for Chicago Board Options Exchange volatility index) is build with of selected basket of the implied volatility
of S&P500 index options. It gives a measure of expectation of the market’s volatility over the next 30 days. The VIX index can be
freely downloaded at: http://www.cboe.com/micro/vix/introduction.aspx
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Figure 9: Smoothed probabilities of the HRSDC. Regimes 1.1 and 1.2 cor-
respond to the emitting states {s2

1 , s2
2 } and regimes 2.1 and 2.2 to {s2

3 , s2
4 }.
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regime 1
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Figure 10: Smooth probabilities of the regimes defined by the internal
states i1

1 and i1
2 (first application).

finer definition of the dynamic.

4.3 Correlations between exchange rate data
In this second application, we apply our HRSDC model to the sample used by Pelletier (2006). This series
are exchange rate data and are plotted on the figure 14 (see also appendix D). As before, the dynamic of
the standard deviations is obtained with a GARCH(1,1) model. For this case study, only DSTCC and
HRSDC models are considered. We use the two-step maximum likelihood estimation using gradient
methods for both models. Figure 11 shows plots of the estimated correlations for the two models.
Parameters estimated for the HRSDC are in the table 3 (see appendix F). Smooth probabilities for the
HRSDC can be seen in the figure 12. As we can seen on figure 11, as in the previous application, the
DSTCC (with its calendar time specification, i.e. s1t = s2t = t/T ) allows mainly to establish a trend on
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Figure 11: Estimated correlations for the HRSDC (in black) and DSTCC
(in red).

the evolution of correlations in the sample. The reason is often that, with only two transition functions,
the DSTCC can not capture more than three regimes. The direct consequence of this formulation is that
it fails to capture the punctual extreme regimes, as it shows by example on the Swiss Fr/Deutschmark
correlations. These are indeed marked by two peaks of correlations close to zero as they oscillate the rest
of the time around a value about 0.8.

On this sample, the HRSDC clearly identifies four sub-regimes. Recall that the first primary regime
associated with the internal state i1

1 is a combination of the secondaries regimes depending of the two
emitting states s2

1 and s2
2 . Increasing the granularity provided by the hidden hierarchical structure allows

to highlight the existence of a sub-regime linked to s2
2 . This sub-regime occurs only very rarely along the

sample, around the 450t h observation. But it permit to capture an extreme and punctual behavior of the
correlations process. This element of the global dynamic of correlations would be go unnoticed with a
classical Markov-Switching model (because too short and not significant enough in relation to the size of
the sample).

This application with a sample of four series brings to light a problem in the correlations specifi-
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Figure 12: Smoothed probabilities for the HRSDC (exchange rate data).

cation. As we have said before, estimated parameters have been obtained using Gradient methods to
estimate the HRSDC. This choice is not fortuitous. In fact, our experiments shows that the specifica-
tion defined by equation 2.29 has some difficulties to return the maximum of the objective function by
EM algorithm. The reason comes from the constraint Choleski representation used for the correlation
matrix. Without this transformation, the derivatives of the objective function gets a formulation of the
correlation matrix with no guarantees to have all one in the diagonal and PSD. But, the substitute of the
Choleski representation for the diagonal elements:

c j , j =

√

√

√

√ri ,i −
j−1
∑

i=1
c2

j ,i (4.1)

by its constraint version:

c j , j =

√

√

√

√1−
j−1
∑

i=1
c2

j ,i (4.2)

strongly disrupts the convergence of the EM algorithm. That’s why it is preferable to use the specifi-
cation defined by equation 2.31 which can be estimated by gradient methods using Hamilton’s filter.
In this example, despite of a huge number of iterations, the EM algorithm has not converge whereas
Gradient methods rapidly reach the optimum of the objective function. Nevertheless, even the second
specification (equation 2.31) need numerous parameters and the estimation of large correlation matrix
could turn out to be cumbersome.

5 Conclusion
In this paper, we have presented a new multivariate GARCH with dynamic correlations. This further
generalization, called Hierarchical RSDC (HRSDC), extends the RSDC model of Pelletier (2006). The
HRSDC is a Markov-Switching class model with a correlation process bounded by four correlation
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matrix constants over time. The innovation of our model is that it is builded on a hierarchical hidden
structure introduced by Fine et al. (1998).

The main advantage of this hidden tree-like structure is to increase the granularity of the regime.
It permits to define different types of regime; in our case, primary and secondary regime. Apply to
correlations modeling, the HRSDC allows to capture thinner nuances than with the classical Markov-
Switching approach. Monte carlo experiments and applications on real data show that this approach
could improve understanding of the dynamic of the correlations. The application of the HRSDC to
estimate the correlations between S&P500 index futures and 10-year bond futures or between exchange
rate data has exhibited existence of sub-regime which can’t appear with the another regime switching
model.

While the results in this paper show that the HRSDC has a good explanatory power, several limi-
tations have yet to be overcome. The first of them is about model selection. In this study, our model
is builded from a symmetric hidden tree, with two primaries regimes which are formed with one sub-
HMM each. This is a very simple structure. It is possible to build an asymmetric tree with much levels
of depth. But finding the best hierarchy, i.e. split/merge/swap levels, is yet an open problem. Xie (2005)
use the Reversible-Jump MCMC (RJMCMC) of Green (1997) for model selection. This approach seems
interesting but it must be expanding. A second problem is about the specification of the correlation
matrix. The specification of Pelletier doesn’t suit to model large correlation matrix. As the hierarchi-
cal hidden structure model is a plug-in method, it could be interesting to find a specification for large
correlation matrix. These tasks await future research.
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A An example of HHMM
Figure 13 is an example of HHMM with four levels and six emitting states.
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Figure 13: An example of Hierarchical Hidden structure.

B EM algorithm
The origin of the Expectation-Maximization (EM) algorithm comes from the difficulties to estimate the parameters
of models based on unobserved latent variables. More specially, it is an alternate approach face to usual iterative
method to reach the optimum of an objective function. In the case of HMM/Markov-Switching models, the dif-
ficulties comes generally from two levels: (i) the likelihood function has numerous optimums (ii) optimizing the
likelihood function is analytically intractable.

The firsts major contributions to elaborate this technique are due to Baum et al. (1966 and 1970). They developed
the two step methodology which consist to first compute the expectation of the likelihood function with the latent
variables (E step) and then maximizing this expected likelihood (M step). From a theoretical point if view, the
condition of convergence of the algorithm were proved by Dempster et al. (1977) and improved few years later by
Wu (1983). The literature on the subject was later expanded considerably and many variants have emerged (see for
example Meng and van Dyk (1997) and also Geoffrey and Thriyambakam (1997)).

More formally, the mechanic of the EM algorithm is to proceed by successive maximization based on observable
data and information that we have every iterations on the latent variables. Instead of trying to directly calculate the
conditional expectation E[log f (ε, s |θ)|ε,θ], which is impossible because of s , the problem is being circumvented
by focusing on the calculation of the quantity:

Q(θ|θp )
d e f
= Eθp

[log f (ε1:T , s1:T ;θ′)|ε1:T ]

that it is calculable. Because the log-likelihood of the complete data is convex, it is possible to use Jensen inequality
to deduce that, for all (θ′,θ) : Q(θ′|θ)≥Q(θ|θ) =⇒ `(θ′)≥ `(θ). The two steps methodology for the p t h is then
as follow:

¬ E-step : Q(θ|θp ) =Eθp
[log f (ε, s ;θ′)|ε]

 M-step : θ̂p+1 = argmaxθQ(θ|θp )

By iterating ¬ and , the sequence (θp )p∈N ensures the convergence of the sequence (`(θp ))p∈N to the true vector of
parameters.
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C Scaling factor
Computing the quantities αt (q) and βt (q) can lead to underflow problem. A easy way to circumvent this issue is
to introduce a scaling factor, written as ς . In that case, initialization of Forward variable, written ᾰt (q) is done by
taking ς(1) =

∑

q α1(q):

ᾰ1(q) =
α1(q)
ς(1)

We can then compute the intermediary Forward variable, written ᾱt+1(q):

ᾱt+1(q) = fq (εt+1)
∑

q ′

∑

d

ᾰt (qt )ã
d (q ′, q)

which lead to the scaling factor ς(t + 1):
ς(t + 1) =

∑

q
ᾱt+1(q)

The adjusted Forward variable can then be written as follow:

ᾰt+1(q) =
ᾱt+1(q)
ς(t + 1)

Similar calculus can be apply to obtain the Backward variable. By initializate with β̆T (q) = 1, the intermediary
quantity is expressed as:

β̄t (q) =
∑

qt

∑

d

β̆t+1(q
′) fq ′ (yt+1)ã

d (q , q ′)

and the adjusted Backward variable is obtained by computing for each t = T − 1, ..., 1:

β̆t (q) =
β̄t (q)
ς(t )

The two quantities ᾰt (q) and β̆t (q) allow to rewriting the probabilities γ p
t (q) and ξ p

t (q ′, q , d ) as:

γ p
t (q) = ᾰt (k)β̆t (k)
ξ p

t (q ′, q , d ) = ᾰt (q ′)ãd (q ′, q) fq ′ (yt+1)β̆t+1(q)

D Exchange rate data
The exchange rate database is that of Harvey et al. (1994) and was also used by Kim et al. (1998) and Pelletier (2006).
It is freely downloadable at the url :

http://www.nuffield.ox.ac.uk/users/shephard/pub.aspx

It contains week-days close exchange rates against US dollar for Pound, Deutschmark, Yen and Swiss-Franc over the
period 1/10/81 to 28/6/85. This series are plotted on figure 14.

E S&P500 index futures and 10-year bond futures
This database is that of Colacito and Engle (2006) (plotted on figure 15) and available at the url:

http://www.unc.edu/~colacitr/Research/Files/EC2006.zip

It contains daily returns of S&P500 index futures and 10-year bond futures from January 1990 to August 2003 (3912
observations).

F Estimated parameters of the HRSDC for the real database appli-
cations

Table 3 shows the parameters estimations of the correlations process for the database of exchange rate data; table 2
for the database of Engle and Colacito.
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Figure 14: Exchange rate database.
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Figure 15: S&P500 index futures and 10-year bond futures.
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correlation matrix:

R1=
�

1
0,5189 1

�

R2=
�

1
0.2924 1

�

R3=
�

1
−0.1853 1

�

R4=
�

1
−0.1597 1

�

transition probabilities

A1 =
�

0.9797 0.9365
0.0203 0.0635

�

A2
1 =
�

0.9919 1.4e−4

0.0055 0.7876

�

A2
1 =
�

0.8139 0.0618
0.1853 0.9299

�

e2
1 = 5.85e − 4, e2

2 = 0.2123, e2
3 = 7.7e − 4, e2

4 = 0.0084
π2

1 = 0.0067, π2
2 = 0.9933, π2

3 = 0.9933, π2
4 = 0.0067

Table 2: Estimated parameters for the correlations of the sec-
ond real data application.

correlation matrix:

R1=











1
−0,4860 1
−0,3943 0,8125 1
−0,5004 0,9488 0,8032 1











R2=











1
−4e − 5 1
−3e − 5 8e − 05 1
−5e − 5 9e − 5 8e − 5 1











R3=











1
−0,8746 1
−0,6912 0,7720 1
−0,8299 0,9214 0,7587 1











R4=











1
−0,7337 1
−0,5798 0,6476 1
−0,6962 0,7730 0,6365 1











transition probabilities

A1 =
�

0,9933 0,4167
0,0066 0,5832

�

A2
1 =
�

0,6711 0,0084
0,0115 0,9915

�

A2
1 =
�

0,9835 0,0002
0,0157 0,9571

�

e2
1 = 0.3172, e2

2 = 8.21e − 05, e2
3 = 7.37e − 04, e2

4 = 0.0425
π2

1 = 0.9933, π2
2 = 0.0066, π2

3 = 0.9933, π2
4 = 0.0067

Table 3: Estimated parameters for the correlations of the sec-
ond real data application.
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