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Two methods to generate centered distributions
controlling skewness and kurtosis coefficients

Pierre-Eric TREYENS

Université de la Méditerranée Université de Montréal
GREQAM CIREQ

June 7, 2007

Abstract

Whatever the econometric model which we study; any simulation requires a perfectly
definite DGP. Thus, even if all software can generate standard normal distributions,
we need methods not programmed to control higher moments. For all these methods,
we need to estimate the parameters connected to the desired values of the higher mo-
ments. Within the framework of Monte Carlo experiments, the computing times of
this estimate are then not very important. Indeed, once these parameters estimated,
we can re-use them and the computing time of simulations does not suffer from it. On
the other hand, for a parametric bootstrap which would consider the first four mo-
ments, the computing time is then multiplied by the number of desired simulations.
So we understand the importance to provide a method which makes it possible to
find the parameters attached to the first four estimated moments as quickly as pos-
sible. So, we must trade off between speed and possibilities of the method. The goal
of this paper is to provide two new methods which control these first four moments
and to compare their speed with that of the already existing methods.
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0 Introduction.

In econometrics, we must check most theoretical researches by using simulations. In
this framework, the first thing to do is to specify suitably the model we want to
study or in an equivalent way defining a suitable data generating process (DGP). Of
course, disturbances are the most important part of the model; indeed, they are the
only random part of the DGP. So, their distribution will condition all the statistical
properties of the model, not only the properties of the estimators, but the ones of the
tests too. Obviously, we are always able to centre and to standardise the distribution
of residuals, but it is harder to fit exact values ex-ante to third and fourth moments
of this distribution. Nevertheless, it is very interesting to control these moments.
For example, according to Pearson and Please [1975], we can find many variables
which do not admit Gaussian distributions. So, we can suppose that disturbances in
any model are not always Gaussian and so, we must provide methods to consider
non-normal distributions for the disturbances. We recall that the cumulant of order
three, which we usually call the skewness coefficient, calculates the asymmetry of
the distribution. When the distribution is Gaussian, this coefficient is equal to zero.
If it is positive, the probability density function (PDF) is leaning to the left; if it
is negative it is leaning to the right. The cumulant of order four, which we call the
kurtosis coefficient from the Greek word meaning shoulder, calculates as far as it is
concerned the concentration of the distribution. Like the skewness coefficient, it is
equal to zero when the distribution is Gaussian. If it is positive the PDF data are
concentrated around the mean; if it is negative data are distributed more uniformly.

Fleishman [1978] provided a method which made it possible to control the first four
moments of a variable Y by defining it by

Y = a + bZ + cZ2 + dZ3 (0.1)

Where Z is a standard normal distribution. Later, Tadikamalla [1980] referred to
several methods, among which the Fleishman method, which also made it possible
to control these moments. For each one of these methods, it was then necessary to
solve a nonlinear system of four equations in four unknowns (the first four moments).
Tadikamalla then calculated the computing times necessary to the resolution of these
systems. According to him, the Fleishman method is fastest, the computing times
of the other methods being at least higher by almost 40%. We do not provide these
computing times, the introduction of new processors having made them obsolete, but
the orders of magnitude are the same.

In the preliminary part, we will define cumulants of a distribution exactly and we will
see how they are linked to the moments of this distribution. In the second part, we
will present a method to generate data from unimodal distributions of which we will
control exactly second, third and fourth moments. Even if we can control these three
moments, we will study standard distributions more precisely and we will compare
the theoretical set of admissible couples (κ3, κ4) with the set we can obtain with
our method. The third part will present another method which generates possibly
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bimodal distributions of which we will control second, third and fourth moments. As
in the last part, we will particularly study standardised distributions we can obtain
using this method and we will compare the set of couples (κ3, κ4) we can obtain with
the last sets. In the fourth part, we will provide examples of PDFs we can obtain
with these methods. Then, we will compare the PDFs of different distributions with
the same first four moments in order to know how moments higher than four modify
graphs of the PDF. This part will also show how we can provide a better approxi-
mation of the distribution of the residuals than the estimation used by a paametric
bootstrap, i.e. a Gaussian distribution. In the fifth and last part, we will compare
the computing times necessary for the two methods and the Fleishman one by using
the freeware Maxima1.

1 Preliminaries

Let X be a real random variable. Its first characteristic function fX(u) is the Fourier
transform of its probability density fX(u) = E

(
eiuX

)
. So if we suppose that for all

k ∈ ℵ, moments of order k exist, we can compute them by using Taylor expansion

of this exponential to obtain E
(
Xk

)
= 1

ik

[
∂fX(u)

∂uk

]
/u=0

. The second characteristic

function f
(2)
X (u) of X is the logarithm of its first function. By using a Taylor-McLaurin

development of f
(2)
X (u), some constants κk appear. They are the cumulants of order

k of the distribution of X and we can compute them by using the following formula

κk(X) = 1
ik

[
∂kf

(2)
X (u)

∂uk

]
/u=0

. So, for any centered random variable and defining µk as

the moment of order k of its distribution we obtain

κ1 = 0, κ2 = µ2, κ3 = µ3, κ4 = µ4 − 3µ2
2 and κ5 = µ5 − 5− 10µ2µ3 (1.1)

By definition, cumulants of order three and four are the skewness and kurtosis co-
efficients. We are going to be interested especially in these two coefficients; indeed,
according to the values we are going to assign them, we could obtain an asymmetric
distribution by varying the skewness coefficient and/or concentrate the data by vary-
ing the kurtosis. Now, we give two new definitions to simplify notations subsequent

Definition 1 Let X be a random variable of which the first four cumulants exist
and are respectively equal to κ1, κ2, κ3 and κ4. So, we will write

X ∼ ∆(κ1, κ2, κ3, κ4) (1.2)

Thus, for a standard normal distribution, we directly obtain

Z ∼ ∆(0, 1, 0, 0)

Definition 2 Let Y = (y1, . . . , yn) be a vector of which each element yt is a draw
independently and identically distributed from X ∼ ∆(κ1, κ2, κ3, κ4). So we will write

yt ∼ ii∆(κ1, κ2, κ3, κ4) (1.3)

1This freeware can be downloaded on http://www.ma.utexas.edu/maxima.html
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2 A method to generate unimodal distributions.

We developed this method to generate easily data for simulations with non Gaussian
disturbances of which the skewness and/or kurtosis coefficients are not equal to zero.
As the fundamental property of disturbances in an econometric model is that their
expectation is equal to zero, we can just consider the system of equations (1.1).
Let p be a uniform random variable defined on the interval [0, 2a], with a > 0. Let
N1 and N2 be two normal random variables of respective expectations µ1 and µ2

and of respective variances σ1 and σ2. We suppose these three random variables are
independent and we define X in the following way

X = pN1 (µ1, σ1) + (2a− p)N2 (µ2, σ2) (2.1)

Remembering we seek centered distributions, we can easily compute the first four
moments of X. Obviously, these four equations just consider moments of the random
variable X. Well, it is clearly more natural to consider its cumulants rather than
its moments. Indeed, thanks to the cumulants we can have ex-ante a precise idea
of the distribution of X. As we already saw, skewness and kurtosis coefficients are
respectively cumulants of order three and four. So, if we choose a positive (respec-
tively negative) value for skewness coefficient of random variable X, the graph of its
PDF will lean toward the left (respectively right) and/or if we choose a positive (re-
spectively negative) value for kurtosis coefficient, it will be less (respectively more)
uniformly distributed compared to the graph of a normal random variable. So, if we
consider the cumulants rather than the moments, we obtain the following system
that we will have to solve under the constraints σ1 ≥ 0 and σ2 ≥ 0.

κ2 =
4a2 (σ1 + σ2 + µ2

1)

3
κ3 = 4a3 (µ1σ1 − µ1σ2) (2.2)

κ4 =
16a4 (3σ2

1 + 3σ2
2 + σ1σ2 + 4µ2

1σ2 + 4µ2
1σ1 + µ4

1)

5
− 3κ2

2

Theorem 1 Let Z1 and Z2 be two independent normal random variables of respective
expextations and variances µ1 and µ2 and σ1 and σ2.
Let p be a uniform random variable on [0, 2a] independent of Z1 and Z2.
Now, let X be the random variable defined by X = pZ1 + (1− p)Z2 of which the four
first cumulants are κ1, κ2, κ3 and κ4.
If κ1 = 0, then the set of couples (κ3, κ4) that X is able to admit is invariant to the
uniform distribution p selected.

Proof 1 See Appendix

Thanks to this theorem, we can choose any value for a. In order to simplify compu-
tations, we will suppose that a = 1

2
. Even if it is possible to provide exact solutions

when the second cumulant κ2 = 1, these last ones are too complex to use. So we
prefer work with the approximated solutions provided by freeware Maxima fitting
κ3 and κ4. Now, we only consider standard distributions. If we want the variance of
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Figure 2.1: Set of admissible couples Γ

the disturbances to vary, we just have to multiply them by the appropriate standard
error. By doing this, we modify in a non linear way the cumulants of the distribution,
where by non linear, we just mean that for all random variable Y ∼ ∆(κ1, κ2, κ3, κ4),
we have σY ∼ ∆(σκ1, σ

2κ2, σ
3κ3, σ

4κ4). Obviously, doing this does not change the
general graph of the PDF, indeed, standard error is positive and multiplying by a
positive integer does not change the sign of cumulants.

To begin with, we will give the theoretical couples (κ3, κ4) which can exist. After,
we will give the couples this method can provide. Let X be a continuous random
variable of which each moment exists and of which the PDF is fX(x). Let V be the
vector space of the functions g : < → < which satisfy

∫∞
−∞ fX(x)g2(x)dx < ∞. For

all (g, h) ∈ V 2, we define 〈., .〉 : V 2 → < by

〈., .〉 : (g, h) → 〈g, h〉 =

∫ ∞

−∞
fX(x)g(x)h(x)dx (2.3)

As 〈., .〉 : V 2 → < is a scalar product, by applying the Cauchy-Schwartz inequality,
we obtain 〈g, h〉2 ≤ 〈g, g〉〈h, h〉 ∀(g, h) ∈ V 2. Now, suppose that g : x → g(x) = 1
and h : x → h(x) = x2. By using previous results, we obtain κ4 ≥ −2. Suppose
then that g : x → g(x) = x and h : x → h(x) = x2 we obtain κ2

3 ≤ 3 + κ4. We
emphasize the fact that even if many other constraints connect κ3 and κ4 with other
cumulants, this is the only one which connect only κ3 and κ4 together. By using
previous results, we can obtain the following system of equations where Θ1 and Θ2

are two continuous functions in σ1 and σ2.

κ3 = ±Θ1 (σ1, σ2) = ±(σ1 − σ2)
√

3− σ1 − σ2

2

κ4 = Θ2 (σ1, σ2) =
6σ1 + 6σ2 − 5σ1σ2 − 6

5
(2.4)

The natural constraint of this system is just that σ1 and σ2 are positive or equal to
zero. The set of the acceptable couples (κ3, κ4) for which σ1 and/or σ2 are equal to
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zero is the frontier of the convex set Γ of the figure (2.1). We obtain this frontier by
setting one variance to zero and by solving the system (2.4). Under these conditions,
we have

κ3 = ±
(5κ4 + 6)

√
12−5κ4

6

12
with κ4 ∈ [−1, 2; 2, 4] (2.5)

As the functions Θ1 and Θ2 are continuous in σ1 and, σ2 and as on the frontier of
Γ at least one of the variances σ1 or σ2 is equal to zero, the couples (κ3, κ4) ∈ Γ
are associated with positive variance and so all these couples are acceptable. On the
other side, the couples (κ3, κ4) 6∈ Γ are related with negative or complex variances,
and so they can not be accepted.

3 A method to generate bimodal distributions.

As in the previous part, let N1 and N2 be two normal random variables. Now, let
p be a binary variable and a be the probability that p = 1. We suppose these three
variables are independent and we define

B = pN1 (µ1, σ1) + (1− p)N2 (µ2, σ2) (3.1)

By using the same method than in the previous part, we obtain the following equa-
tions, still under the constraints σ1 ≥ 0 and σ2 ≥ 0.

κ2 = µ2
1 + aσ1 + (1− a) σ2

κ3 = µ3
1 (2a− 1) + 3 (a− 1) µ1σ2 + 3aµ1σ1 (3.2)

κ4 = −2µ4
1 + 3a (1− a) (σ1 − σ2)

2

We find the greatest set of admissible couples (κ3, κ4) by setting a to 1
2

and as in the
previous part we just consider standard distributions. Now, by using equations (3.2)
we can obtain the following system of equations where Φ1 and Φ2 are two continuous
functions in σ1 and σ2.

κ3 = ±Φ1 (σ1, σ2) = ±3 (σ1 − σ2)
√

2− σ1 − σ2

2
√

2

κ4 = Φ2 (σ1, σ2) =
(σ1 − σ2)

2 + 8σ1 + 8σ2 − 8σ1σ2 − 8

4
(3.3)

Now, by using the same arguments as previously, we can find the equations which
connect κ3 and κ4 and which provide the frontier of the set of admissible couples
(κ3, κ4) this method provides.

κ3 = ±3

√
3−

√
6 + κ4

(√
6 + κ4 − 2

)
(3.4)

On the figure (3.1), we see immediatly that Γ is included in the set Γ1 of admissible
couples for the bimodal case. Moreover, by considering figures D.a, D.b and E.a we
see this method does not just generate bimodal distributions. Obviously we can also
find unimodal distributions which are particular cases of this method as a special
case of this method.
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Figure 3.1: Sets of admissible couples Γ and Γ1

4 Simulation evidence

4.1 Examples of PDF

Considering the set Γ, we see six special cases. Firstly, when κ3 = 0 we see on figures
(A.a) and (B.b) that the PDFs oscillate between a graph where data are concentrated
all around zero and a uniform distribution. Secondly, when κ4 = 0, in figures (C.a)
and (C.b) we see that PDF are nearly discontinuous. Figures (C.a) and (C.b) just
represent the highest and the lowest values that κ3 can take. Now, by continuous
distortion we can have a good idea of all PDFs this method can provide. Now, when
we consider the graphs of the PDFs provided by our second method, it is not as
clear. Indeed, for couples (κ3, κ4) on the frontier, we always obtain discontinuous
distributions because σ1 or σ2 is zero. So figures (G.a), (G.b) and H give us more
information. For example, with figure H we can have an more accurate idea of what
a continuous distortion between couples (κ3, κ4) = (0,−2) and (κ3, κ4) = (0, 3) can
provide. Obviously, to go from figure (E.a) to figure (E.b) we could find some graphs
of unimodal distributions as a special case of the bimodal method.

Now, by using both these methods and the Fleishman one we can fit κ3 and κ4

with specific values and compare the PDF we obtain. This will enable us to know
how the fifth and the sixth moment of a standard distribution influence the graph of
its PDF.

4.2 Example of estimation

In this subsection, we will show we can provide a better estimation of the distur-
bances in a linear model of regression by considering the first four moments than by
considering only the first two; I.e. what we use for parametric bootstrap. Let consider
for example the following DGP Θ

yt = 3xt + 2 + ut with ut ∼ ii∆ (0, 1, 0.6, 1) and t ∈ [0; n], n = 100, 1000
(4.1)
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Now, by using the first method we can provide the random variable u which satisfies
u ∼ ∆(0, 1, 0.6, 1) with p ∼ U [0, 1]. Then, this random variable generates the sample
y and we estimate it by using OLS. So, we obtain the estimated centered moments µn

i .

n µ̂n
2 µ̂n

3 µ̂n
4

100 0.998002 0.321370 0.299812
1000 1.018832 0.552135 1.283436

u = pN ( 0.68637431480031 , 2.138603696098563 )

+(1− p)N (−0.68637431480031 , 0.39028658936775 )

(4.1.a) ∆ (0, 1, 0.6, 1) and N (0, κ̂2) (4.1.b) ∆ (0, 1, 0.6, 1) and ∆ (0, κ̂2, κ̂3, κ̂4)

Figure 4.1: Comparaison of two estimation methods with n = 100

(4.2.a) ∆ (0, 1, 0.6, 1) and N (0, κ̂2) (4.2.b) ∆ (0, 1, 0.6, 1) and ∆ (0, κ̂2, κ̂3, κ̂4)

Figure 4.2: Comparaison of two estimation methods with n = 1000

Then, we just have to use the bimodal method to provide two random variable
un ∼ ∆(0, µ̂n

2 , µ̂
n
3 , µ̂

n
4 ) for n = 100, 1000. We want to make it clear that we do not
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use the same method to generate and to estimate the model. Indeed, a parametric
bootstrap using Gaussian disturbances will use also Gaussian terms for the bootstrap
DGP and a bias could appear. These new random variables are defined by

u100 = pN ( 0.3214607754734 , 1.22790422701744 )

+(1− p)N (−0.3214607754734 , 0.56142575373345 )

u1000 = pN ( 0.29294677628732 , 1.561268209083119 )

+(1− p)N (−0.29294677628732 , 0.30476009861559 ) ,

where p is the bimodal random variable defined in the previous part. Then, by
comparing figures (4, 1, a) and (4, 1, b) we immediately see that estimation obtained
with our method is better than estimation which only uses the first two moments.
Indeed, the two PDF are completely superposed on figure (4.1.b) and clearly not on
figure (4.1.a) and we also obtain the same result when the sample size is n = 1000.
Then, our first idea will obviously be to use this method in a parametric bootstrap
framework using all the first four moments of the distribution of the residuals and not
only the first two moments as we do by generating bootstrap disturbances following
a centered Gaussian distribution.

5 Comparison of the computing times

In order to apply these methods in a parametric bootstrap framework considering
the first four moments of the residuals, we now have to consider the computing
times of these methods. Indeed, for a classical parametric bootstrap we just compute
an estimate of the variance of the residuals and we use this estimation to generate
bootstrap disturbances following a Gaussian distribution and so we should not solve
a system of equations. Now, if we deal with a parametric bootstrap considering higher
moments (CHM),we first have to estimate the first four moments of the residuals and
then to solve a system of four equations with four unknowns. This is the computing
times of this part of the method which will change the final computing times of the
parametric bootstrap CHM considerably.

According to Tadikamalla [1980], the Fleishman method fails to generate all cou-
ples (κ3, κ4) which can exist theoretically, but on the other hand, it is much faster
than all the other existing methods. Both methods developed in this paper are also
unable to generate all these couples. In fact some couples can be generated with
the bimodal method and not with the Fleishman one and conversely. But if we
suppose that disturbances can not be distributed in a very different way from the
economic variables they are connected with, these methods can generate the major-
ity of the distributions which we can accept for disturbances, see Pearson and Please
[1975]. Moreover, the frontier of admissible couples we can obtain with the Fleishman
method is just provided approximately whereas both bimodal and unimodal distri-
bution provide the set of admissible couples exactly. This will be important when we
bootstrap a test. Indeed we could know ex-ante if we can provide a solution linked
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with the estimates of the first four moments. And so, there will be no risk for couples
with no solution which would lengthen the computing time.

In order to estimate these different systems of equations, we will use the freeware
Maxima 2. We choose couples (κ3, κ4) such that κ3 ∈ [−0.5, 0.5] and κ4 ∈ [−0.4, 1.5],
so we are sure that the three methods have solution for the couples they must esti-
mate and we will just evaluate the different computing times. We choose 15 couples
arbitrarily and we provide the computing time. Then, we provide the average com-
puting time for each method. So, we obtain

(κ3, κ4) Unimodal Bimodal Fleishman

(0.5,−0.4) 66.7 ms 66.7 ms 12.45 s
(0.5, 0) 66.7 ms 66.7 ms 10.60 s

(0.5, 0.4) 66.7 ms 66.7 ms 29.95 s
(0.5, 0.8) 66.7 ms 66.7 ms 61.21 s
(0.5, 1.2) 66.7 ms 50.0 ms 24.32 s

(0.25,−0.4) 66.7 ms 66.7 ms 12.88 s
(0.25, 0) 66.7 ms 50.0 ms 11.73 s

(0.25, 0.4) 66.7 ms 66.7 ms 13.90 s
(0.25, 0.8) 66.7 ms 66.7 ms 12.52 s
(0.25, 1.2) 50.0 ms 66.7 ms 12.13 s
(0,−0.4) 66.7 ms 116.7 ms 2.27 s

(0, 0) 133.3 ms 0.0 ms 2.30 s
(0, 0.4) 33.3 ms 116.7 ms 2.27 s
(0, 0.8) 150.0 ms 116.7 ms 2.25 s
(0, 1.2) 166.7 ms 116.7 ms 2.37 s

Average computing times 80.02 ms 73.36 ms 14.21 s

It appears clearly that the Fleishman method is very slow compared with both other
methods which provide nearly the same computing times. So, we cannot consider
a parametric bootstrap using the first four moments with the Fleishman method.
Simulations would be really too long. Actually, if you just want to deal with Monte-
Carlo experiments with extreme distributions you could generate what you wish by
using the Fleishman method whereas both unimodal and bimodal methods fail. Now,
if you just want classical distributions, these two methods are enough and they are
the only ones which make it possible to bootstrap a test considering higher moments.

6 Concluding remarks

As we saw , these two methods can easily provide a very wide panel of distributions
and almost all distributions which can occur in any economics framework, see Pearson

2All computations were made with a processor AMD 4400+ dualcore and a ram of 2GO
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and Please [1975]. Indeed, we can choose exactly the sort of PDF we want either
concentrating data by fitting κ4 or providing an asymmetrical PDF by fitting κ3.
In the last part, we showed how we could use these methods in order to estimate
residuals in an econometric model. The only problem was to estimate correctly both
cumulants κ3 and κ4. Indeed, their estimates are very volatile and when the sample
size is too small, it is very difficult to provide sharp ones. This is the reason why
we consider t = 1000 in this part. Now, the idea will be to use this method in a
parametric bootstrap framework to see if we can decrease the error in the rejection
probability of parametric bootstrap tests. Then, as estimates of (κ3, κ4) are rarely
sharp enough for small size samples, and as Γ ∈ Γ1 the best way to simulate a
bootstrap test will be to generate the error terms of our DGP with the unimodal
method and to estimate (κ3, κ4) with the bimodal one. Moreover, this method will
make it possible to disconnect the DGP which generates the disturbances from the
bootstrap DGP. Indeed, with a classical parametric bootstrap, simulations often
use Gaussian disturbances at the same time for the disturbances and the bootstrap
disturbances, which is very questionable.
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7 Figures

7.1 Unimodal method

(A.a) ∆ (0, 1, 0, 2.4) (A.b) ∆ (0, 1, 0,−1.2)

Figure A: Unimodal method

(B.a) ∆ (0, 1, 1, 1.2) (B.b) ∆ (0, 1,−1, 1.2)

Figure B: Unimodal method

(C.a) ∆
(
0, 1,

√
2

2 , 0
)

(C.b) ∆
(
0, 1,−

√
2

2 , 0
)

Figure C: Unimodal method
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7.2 Bimodal method

(D.a) ∆
(
0, 1, 3

(√
6− 2

) √
3−

√
6, 0

)
(D.b) ∆

(
0, 1,−3

(√
6− 2

) √
3−

√
6, 0

)
Figure D: Bimodal method

(E.a) ∆ (0, 1, 0, 3) (E.b) ∆ (0, 1, 0,−2)

Figure E: Bimodal method

(F.a) ∆
(
0, 1, 2√

3
, 10

9

)
(F.b) ∆

(
0, 1,− 2√

3
, 10

9

)
Figure F: Bimodal method
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(G.a) ∆ (0, 1, 0.5, 0.5) (G.b) ∆ (0, 1,−0.5, 0.5)

Figure G: Bimodal method

(H.a) ∆ (0, 1, 0.5, 0.5) (H.b) ∆ (0, 1,−0.5, 0.5)

Figure H: Bimodal method
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6 Appendix

Theorem 1 Let Z1 and Z2 be two independent normal random variables of respective
means and variances µ1 and µ2 and σ1 and σ2.
Let p be a uniform random variable on [0, 2a] independent of Z1 and Z2.
Now, let X be the random variable defined by X = pZ1 + (1− p)Z2 of which the four
first cumulants are κ1, κ2, κ3 and κ4.
If κ1 = 0, so the set of couples (κ3, κ4) that X is able to admit is invariant to the
uniform distribution p selected.

Proof 1 We consider the following system of equations

κ2 =
4a2 (σ1 + σ2 + µ2

1)

3

κ3 = 4a3 (µ1σ1 − µ1σ2)

κ4 =
16a4 (3σ2

1 + 3σ2
2 + σ1σ2 + 4µ2

1σ2 + 4µ2
1σ1 + 16µ4

1)

5
− 3κ2

2

By considering the first equation, we can provide easily µ1 in function of other vari-
ables and now, by replacing µ1 by this value in both other equations, we obtain the
new system

κ3 = ±4a3 (σ1 − σ2)

√
3κ2

4a2
− σ1 − σ2

κ4 =
24a2κ2σ1 + 24a2κ2σ2 − 6κ2

2 − 80a4σ1σ2

5

As on the frontier of the admissible set of couples (κ3, κ4), σ1 or σ2 is equal to zero
and as these two variances are symmetrical, we choose to fit σ2 to zero. At present,
with the second equation, we can provide σ1 as a function of a, κ2 and κ4. By replacing
this value in κ3, we obtain

κ3 = ±5κ4 + 6κ2
2

6κ2

√
18κ2 − 5κ4 − 6κ2

2

24κ2

And we see immediately that a does not appear in the equation which connects the
two cumulants. And so, the set of admissible couples’ frontier does not depend of the
parameter of uniformity a.
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