
 

 
Approval voting and the Poisson-Myerson environment 

 
 
 

Matías Núñez 
 
 

 
January 2007 

 
 

Cahier n° 2007-03 
 

 

 

          ECOLE POLYTECHNIQUE         
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 

 

LABORATOIRE D'ECONOMETRIE 
1rue Descartes F-75005 Paris 

(33) 1 55558215 
 http://ceco.polytechnique.fr/  

mailto:lyza.racon@shs.poly.polytechnique.fr 
 

ha
l-0

02
43

04
9,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7310587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hal.archives-ouvertes.fr/hal-00243049/fr/
http://hal.archives-ouvertes.fr


 
 

Approval voting and the Poisson-Myerson environment1 
 
 
 

Matías Núñez* 
 
 
 

January 2007 
 
 

Cahier n° 2007-03 
 

Résumé: Dans ce papier, de nouveaux résultats sont fournis dans le modèle de Poisson-
Myerson. Ces résultats se révèlent utiles pour l'étude du vote par assentiment. 
En effet, le Théorème d'Equivalence des Magnitudes (MET) réduit fortement la 
complexité du calcul des magnitudes des pivots. Un exemple est fourni qui 
contraste avec les résultats de Laslier (2004) sur le vote par assentiment. Dans 
une situation de vote avec trois candidats, le gagnant de l'élection ne coïncide pas 
avec le gagnant de Condorcet du profil à l'équilibre. Une discussion sur la 
stabilité de l'équilibre est fournie. 

 
Abstract: In this paper, new results are provided in the Poisson-Myerson framework. These 

results are shown to be helpful in the study of approval voting. Indeed, the 
Magnitude Equivalence Theorem (MET) substantially reduces the complexity of 
computing the magnitudes of pivotal events. An example is provided that 
contrasts with Laslier (2004) results concerning approval voting. In a voting 
context with three candidates, the winner of the election does not coincide with 
the profile Condorcet winner in a three candidates contest. A discussion on the 
stability of the equilibrium is provided. 
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1 Introduction

Most models in game theory consider the number of players as a constant known by all the
players. This assumption, though realistic in bargaining contexts or small-group voting
schemes, could be a problem in large games. In this kind of games, we can assume that
players face some uncertainty about the total number of players. That is, we assume that
agents have some beliefs about the total number of players. For example, in an electoral
context, this uncertainty is quite realistic. Poisson games, introduced by [5], allow us
to introduce such uncertainty. In such a framework, the number of players in the game
is supposed to be drawn from a Poisson random variable of parameter n, the expected
population.

[5] shows that these games are uniquely characterized by two fundamental features:
the environmental equivalence and the independent-actions properties. The environmental
equivalence can be defined as the fact that ”any single player in the election should assess
the same probability distribution for the vote profile that will be generated by all the
other voters in the election counting everybody’s ballots except his own”. The property
of independent actions states that the number of players who choose a given action (who
cast a ballot in voting contexts) is independent of the number of players who choose all
actions except this one. These two characteristics are an advantage for mathematical
computations in this kind of games. Indeed, the existence of equilibria has been proved
for Poisson games with compact type sets and finite action sets thanks to these properties.

However, even if Poisson uncertainty allows to work in a model with nice mathematical
features, there exists a certain amount of complexity as we work in situations where the
number of agents tends towards infinity. Indeed, we deal with the computations of events
with extremely low probabilities. Therefore, instead of working with these probabilities,
it seems more reasonable to work with a measure of the speed at which these probabilities
tend towards zero: the magnitude.

Two seminal papers ([6], [7]) give the three results that could be considered as the
state-of-the-art techniques in the characterization of limits of probabilities in this type of
games. The magnitude theorem states a method to compute such a limit as the solution
of a maximization problem with a concave and smooth objective function. The offset
theorem characterizes the ratios between probabilities of events that differ by a finite
additive translation. Finally, the dual magnitude theorem (DMT ) gives a method of
computing events that have the geometrical structure of a cone, in a simpler way than the
Magnitude theorem. These three theorems give good tools to work in the Poisson-Myerson
environment.

Despite these useful tools and their mathematical features, this type of games has not
yet been applied in many different contexts. Mainly, they have been used for the study of
voting situations. [6] studies in detail the properties of different scoring rules. In a scoring
rule, each voter’s ballot must be a vector that specifies the number of points that the voter
gives to each candidate. Myerson proves that, in simple bipolar elections, equilibria are
always majoritarian and efficient under approval voting, but not under other scoring rules.
A bipolar election can be defined as the one where there are two types of voters and each
candidate is associated with one of them (for instance, left and right). We will focus on
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this particular type of voting: approval voting or AV .
[3] suggests a new model to study the properties of AV in a large electorate. Under

some sort of normally distributed uncertainty, his work shows that AV has two main
features: it implies sincere behavior of the voters and the winner of the election is a
Condorcet winner. In the present work, we show that this conclusion does not hold
anymore in the Poisson-Myerson framework. Indeed, a simple voting situation is provided
where the Condorcet winner does not coincide with the winner of the election. In this
example, the presence of a small group of voters makes the majority of the population
behave in a non-conventional way. The consequence of this deviation is the fact that at
equilibrium the Condorcet winner does not win the election.

In order to clarify this simple voting situation, new mathematical tools are developed.
Even if Myerson’s seminal papers solved some of the main problems in order to work in
this new kind of environments, some issues still needed to be elucidated. To start with,
a general formula is provided for the computation of the magnitude of equalities between
the scores of candidates. It should be noted that a previous result was given by [7] where
the magnitude of getting equal number of votes in two disjoint sets of ballots (for instance,
two different ballots) was explicitly expressed. Our result is therefore a generalization of
the latter.

Besides, a formal definition of a pivotal event will be provided. Pivotal events and
their probabilities are key to determine the strategic behavior of the voters. Voters are
assumed to be instrumentally motivated1 and consequently, their utility depends only on
the candidate who wins the election. This implies that they only care about the influence
their ballot can have in pivotally changing the result of the election. It should be noted
that the definition of a pivotal event changes depending on the voting method used in the
election. Therefore, the definition that we provide is only verified in voting contexts where
voters are allowed to give at most one point to a candidate.

This new definition allows us to introduce a new theorem in this framework: the Magni-
tude Equivalence Theorem (MET ). This theorem substantially reduces the computations
of the magnitude of a pivotal event. Indeed, it allows us to compute the magnitude of
a pivotal event by solving a single optimization problem. The offset-ratio concept, intro-
duced by [3], and its interpretation will be key to understand the underlying intuition of
this theorem. Indeed, a classification of the events depending on its offset ratios is given
that clarifies in some way the previous results of the literature.

The usefulness of this theorem will be shown by the mean of an example that shows
that [3] results do not apply in the Poisson-Myerson framework. A simple voting situation
is analyzed where the expected winner of the election does not coincide with the profile
Condorcet winner. A discussion on the stability of the given equilibrium and on its welfare
implications is provided.

This paper is structured as follows. In Section 2 we introduce the basic model and
1In the literature, some authors have argued that since each single ballot has a negligible weight on

the outcome of the election when turnout is large, assuming that voters are instrumental is misleading.

However, [1] shows that, in opposition to the usual perceptions, assuming instrumental voting can reproduce

several stylized facts. His work concludes that instrumental voting is not the main cause of the failure of

”standard” models as far as explaining empirical regularities in elections is concerned.

2
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Section 3 provides the results concerning the computations of magnitudes in the Poisson
games environment. In Section 4, the Magnitude Equivalence Theorem (MET) is pre-
sented. Section 5 discusses in detail the situation where the Profile Condorcet Winner
does not coincide with the Expected Winner of the election. Finally, Section 7 concludes.

2 The model

We let K denote the set of candidates or outcomes in the election. The aim of the election
is to choose one candidate. The voters are asked to express their preferences among
candidates through ballots. We suppose that the total number of voters is a random
variable drawn from a Poisson distribution of parameter n. Each voter has a type t that
determines her preferences over the candidates. We denote by T the set of types. A
player’s payoff (or utility) only depends on her type and on the candidate who is elected.
The preferences of a voter with a type t will be denoted by ut = (ut(k))k∈K . Thus, if for a
given t we have that ut(k) > ut(k′), it implies that t-type voters strictly prefer candidate
k to candidate k′.
Each player’s type is independently drawn from T according to the expected distribution
of types denoted by r = (r(t))t∈T

2. By this, we mean that r(t) represents the probability
that a player randomly drawn from the population will have type t. The profile Condorcet
winner (P.C.W.) of the election is defined as:

Definition 2.1 A candidate k is called the Profile Condorcet Winner of the election
(P.C.W.) of the election if ∑

t∈Tk,j

r(t) > 1/2 ∀ j ∈ K, j 6= k

where Tk,j is the set of preference types where the candidate k is preferred to candidate j.

Each player i must choose a ballot c from a finite set of possible ballots (also called
actions), denoted by C. There exists two main ways of considering the set of available bal-
lots in the election. On one side, we can consider the ballot as a vector c = (c1, c2, . . . , cC)
where ci represents the number of votes given to candidate i (following Myerson’s nota-
tions). This notation is quite general as it allows us to work with other voting systems.
However, it should be noted that as we focus on AV , every component ci is either one or
nil. Therefore, this notation, used by [7] could seem unnecessarily complicated. Secondly,
we can think of a ballot simply as a subset of the set of candidates (following Laslier’s
notation). For easiness of notation, we will mostly use the second one. The players are
allowed to use mixed strategies. These strategies are determined by the strategy func-
tion3 σ(c|t) which is a function from T into the set of probability distributions over C

([7]). That is, σ(c|t) determines the probability that a given player of type t will choose
action c. Therefore, all the players with the same type choose the same strategy. Then,

2The expected distribution of types satisfies r(t) > 0∀ t ∈ T and
P

t∈T r(t) = 1.
3The strategy function satisfies σ(c|t) ≥ 0 ∀ c ∈ C and

P
d∈C σ(c|t) = 1.

3
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taking into account the expected distribution of voters and the strategy function, we can
determine the expected vote distribution τ = (τ(c))c∈C . Formally,

τ(c) =
∑
t∈T

r(t)σ(c|t)

As a consequence of the Poisson-Myerson environment, the number of players in the game
who choose action c is drawn from a Poisson random variable with parameter nτ(c).
The action profile, x = (x(c))c∈C , is the vector that gives the number of players who
are choosing action c, for all c ∈ C. We denote by Ck the set of available ballots where
candidate k is approved by the voter.

We may define the random variable s(k) that describes the score of candidate k by

s(k) =
∑
c∈Ck

x(c) ∼ P(n
∑
c∈Ck

τ(c))

Definition 2.2 A candidate k is called the Winner of the election if she has the highest
expected score. Formally,

The candidate k is the Winner of the election ⇐⇒
∑
c∈Ck

τ(c) >
∑
c∈Cj

τ(c) ∀j ∈ K, j 6= k

The elected candidate is the one with the highest score. Ties are resolved by a fair
lottery.
The parameters (T, n, r, C, U) define a Poisson game.

Taking into account the independent-actions property, we can write that, for any vote
profile x, the probability that x is the players’ action profile in the game is

P [x| nτ ] =
∏

c ∈ C

(
e−nτ(c)(nτ(c))x(c)

x(c)!

)
We refer to {σ, τ} as an equilibrium of the finite voting game (T, n, r, C, U). However,

as this paper deals with elections with a large number of voters, we shall look at the limits
of equilibria as the expected number of voters n goes to infinity. Thus, we may refer to
{σ, τ} as the equilibria sequence of the finite voting games, i.e. the limit of {σn, τn} when
n goes to infinity.

Strategic behaviour of the voters.

Defining a pivotal event. We assume that each voter determines which ballot she
will cast by maximizing her expected utility. As we have assumed that voters are instru-
mentally motivated, they care only about the influence of their own vote in determining
the winner’s identity. Thus, a voter needs to estimate the probability that any given set
of candidates will be in a close race for first place where one ballot could pivotally change
the result of the election: a pivot. We now introduce a formal definition of a pivot.

4
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Definition 2.3 For each non-empty subset Y of candidates, Y = {i1, i2, . . . , iY } we de-
note a pivot between all candidates in Y by:

pivot(Y ) = {
1⋃

j2=−1

1⋃
j3=−1

1⋃
j4=−1

. . .

1⋃
jK=−1

(s(i1) = s(i2) + j2 = s(i3) + j3 = . . .

= s(il) + jl = . . . = s(iY ) + jY > s(x))| i1, i2, . . . , iK ∈ Y and ∀x ∈ K \ Y }

The probability of such a sequence of pivotal events is small if n is large, but some of
these sequences of events are nevertheless much less likely than others. The probability
of any pivotal event will generally tend to zero as the expected population n becomes
large. But we can identify which races are serious by comparing the rates at which their
probabilities go to zero. These rates can be measured by a concept of magnitude, defined
as follows: given an expected distributional strategy τ = (τ(c))c∈C , the magnitude µ(M)
of a sequence of events (Mn)n∈N is

µ(M) = lim
n→∞

1
n

log P[Mn|nτ ]

Notice that the magnitude of a sequence of events must be inferior or equal to zero,
since the logarithm of a probability is never positive. If we can show that a pivot between
one pair of candidates has a magnitude that is strictly greater than the magnitude of a
pivot between another pair of candidates, then the latter is not serious.

The Decision Process. Following [3], the decision process of the voters can be
described as follows. Let x be a candidate. Let B and B′

be two ballots such that
B′

= B∪{x}. In order to evaluate which of the ballots the type-t voter is going to choose,
she computes the sign of the following expression

∆ =
∑
x∈Y

P [pivot(Y ) | nτ ]E[ut(B
′ | Y )− ut(B| Y )]

where ut(B| Y ) represents the utility of a type-t voter when she casts ballot B knowing
the event pivot(Y). The set ∆ simply represents the expected utility of the effect of voting
B′

instead of B given all the events where switching from one ballot to the other can have
an impact in the result of the election (the pivotal events where candidate x is involved).
Then, as we are interested in elections with a large number of individuals, we can factor
out by the pivotal(s) event(s) which has (or have) a higher magnitude than the others (if
any). If we call A the pivotal event with the highest magnitude (if it exists), we can write

sign(∆) = sign E[ut(B
′ |A)− ut(B|A)]

This formula represents the expected utility of the effect of voting B′
instead of B given

all the events within a the pivotal event knowing the event pivot(A).
The following section introduces new mathematical results dealing with the subtleties

of working with magnitudes. Particular attention is given to the interpretation of the
offset-ratio concept.

5
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3 Probabilities, offset ratios and magnitudes

3.1 A Tie between candidates

To begin with, an explicit formula for the magnitude of a tie between two given candidates
is provided.

Theorem 3.1 Let (T, n, r, C, U) be a Poisson game. Let a, b ∈ K. The magnitude of the
tie between the scores of candidates a and b, i.e. the event M = {s(a) = s(b)}, is

µ(M) = −
(√

Ca\b −
√
Cb\a

)2

with

Ca\b =
∑

{τ(c) : c ∈ Ca , c 6∈ Cb}

Cb\a =
∑

{τ(c) : c ∈ Cb , c 6∈ Ca}

The intuition behind this result is the following one. When comparing the scores of
two candidates, we can always express both of them as the sum of two Poisson random
variables, one which is common to both while the other is independent. The closer to each
other the averages of the independent parts of both scores (Ca\b and Cb\a), the closer to
zero the magnitude of a tie between these two candidates.

Proof : The score of candidate a could be written as:

s(a) =
∑

{x(c) : c ∈ Ca}

=
∑

{x(c) : c ∈ Ca\b}+
∑

{x(c) : c ∈ (Ca ∩ Cb)}

= sa + sa,b

Similarly, the score of candidate b is

s(b) = sb + sa,b

So, each score is written down as the sum of two Poisson random variables: a common
and an independent one. Then, as we are interested in the probability of having an equality
between both scores, we are only interested on the equality of the independent parts of
the sum.

P [{s(a) = s(b)} | nτ ] = P [{sa = sb} | nτ ]

where sa and sb are independent random variables that follow respectively P(n Ca\b) and
P(n Cb\a). As a consequence of Myerson (2000) result, we can conclude that

µ(A) = −
(√

Ca\b −
√
Cb\a

)2
�

It should be emphasized that the new contribution here is to give an explicit formula
for the magnitude of a tie between two sums of Poisson random variables that are corre-
lated (that represent the scores of candidates) and not independent as in Myerson (2002)

6
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result.

Myerson (2000) argues that ”the magnitude theorem is not useful for comparing the
probabilities of the events that differ by adding or subtracting a fixed vector, because
the difference between such events may seem small in large Poisson games and so they
usually have the same magnitude. So relative probabilities of events that differ by a simple
additive translation must be compared using the offset theorem instead”. The following
lemma extends the class of events described by Myerson that have the same magnitude.

Lemma 3.1 Let {An}∞n=1, {Bn}∞n=1 be two sequences of events with a finite magnitude.
Then, if

lim
n→∞

P (An | nτ)
P (Bn | nτ)

= εn

for some {εn}+∞
n=1, such that

lim
n→∞

log[εn]
n

= 0 and εn > 0 ∀ n ∈ N.

Then, we can write the following equality

µ(An) = µ(Bn)

Proof : This result is a direct consequence of the definition of magnitude �
Indeed, this lemma will allow us to extend the conclusions of the Theorem 3.1. How-

ever, some definitions are needed in order to enlarge its conclusion. Among these defini-
tions, the concept of offset ratio will be of some importance.

3.2 The concept of Offset ratio: a measure in the Poisson-Myerson en-

vironment

In this section, a discussion about the difference between the probability and the magnitude
of an event is presented. The offset ratio is shown to be a key concept in the Poisson-
Myerson environment. Two examples are analysed in detail in order to explain the main
features and subtleties of this concept. Indeed, this section introduces the reader in the
spirit of the Magnitude Equivalence Theorem, which will be presented afterwards.

As stated by Myerson (2000), the concept of offset ratio can be defined as follows.

Definition 3.1 Let (T,n,r,C,U) be a Poisson game. For an event M, we call αM =
(αM (c))c∈C the offset-ratio vector of the vote profile x relative to the expected vote distrib-
ution τ , if for every action c in C, αM (c) = x(c)

nτ(c) , provided that x(c) occurs with a strictly
positive probability. Each of the components αM (c) of the vector αM are called the c-offset
ratios.

So, the offset-ratio αM is a vector which describes the number of players x(c) who choose
ballot c in the event M as a fraction of the expected number of players who were supposed
to cast it. Obviously, this ratio is not constant in a game: it depends on the event under
consideration. The concept of offset-ratio was shown to be important in this environment

7
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by the offset theorem. As [6] argues, ”relative probabilities of events that differ by a simple
additive translation must be compared using the offset theorem.” Applied to an event M ,
the offset theorem could be expressed as follows,

Theorem 3.2 (Offset Theorem, Myerson (2000)) Let w be any vector in ZC . For
each action c such that w(c) 6= 0, suppose that τ(c) > 0, and suppose that some number
αM (c) is the limit of the major c-offsets in the event M . Then

lim
n→∞

P [M − w | nτ ]
P [M | nτ ]

=
∏
c∈C

αM (c)w(c)

Thus, the offset ratio vector αM = (αM (c))c∈C has two main advantages.
First, it provides us a way of measuring the behavior of the electorate at a given event

M with respect to the expected behavior.
Secondly, it is useful to compute the difference between the probabilities of two events

that are ”too close” (in the sense that they have the same magnitude).
We can divide the events to study in two categories: the normal and the irregular

ones.

Definition 3.2 A normal event can be defined as the event where all the offset ratios are
different from zero.

Definition 3.3 An irregular event can be defined as the event where at least one offset
ratio is equal to zero.

This division comes from the fact that at a normal event there is no jump in the
probability of the event whereas, in an irregular one, there is a jump in the probability of
the event when adding or subtracting a fixed vector (when n tends towards infinity). Two
simple voting examples are provided now that illustrate and clarify this classification.

Example 1: Where the offset ratios are different from zero In this first example,
we focus on ”well-behaved” situations where the offset ratios of each ballot are different
from zero. Indeed, the assumption that every offset ratio is non negative implies that we
can always express the ratio between the probabilities two events that differ by a linear
transformation by some finite coefficient.

Let us consider a simple voting situation where there are two candidates (that we
denote by a and b) and the voting rule is majority voting4. Therefore, the set of candidates
is K = {a, b} and the set of actions is equal to C = {1, 2} (where 1 represents (resp. 2) the
action of voting for candidate a (resp. candidate b)). We assume there is no abstention
to keep things simple. Thus, the expected vote distribution τ is equal to τ = (τ(1), τ(2))
with τ(1) + τ(2) = 1 and τ(1) > τ(2) > 0 w.l.o.g. We are interested in the event of a tie
M between candidates a and b. Then, applying the DMT , we know that the magnitude
µ(M) of such an event is equal to

µ(M) = −
(√

τ(1)−
√

τ(2)
)2

4This example was studied by Myerson (2000) in a computational way. Here, the main interest is the

interpretation of the results and not the mathematical results themselves.

8
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and that the offset ratio vector αM = (αM (1), αM (2)) is such that

αM (1) =

√
τ(2)
τ(1)

< 1 αM (2) =

√
τ(1)
τ(2)

> 1

There exists two interpretations to these formulas. First, this result implies that in order
to get a tie (to be at the event M), a fraction αM (1) =

√
τ(2)
τ(1) of the voters who were

expected to cast ballot 1 (i.e. vote for candidate a), cast it. As αM (1) is inferior to one,
the number of voters who vote for candidate a is inferior to the average number of electors
who were supposed to do it (that is nτ(1)). Conversely, in the case of the event M , there

is a fraction
√

τ(1)
τ(2) of the voters who were supposed to vote for candidate b who vote for

it.
Secondly, this result can also be interpreted as follows. It should be remarked that

subtracting one ballot {a} to the event M that could be written as M − w where w =
(w(1) = 1, w(2) = 0) = (1, 0). So, applying the offset theorem, we can write

lim
n→∞

P (M − {a} | nτ)
P (M | nτ)

= lim
n→∞

1
n

P (M − w | nτ)
P (M | nτ)

=
∏
c∈C

αM (c)w(c)

Thus, as the vector w is equal to w = (1, 0) ∈ Z2

lim
n→∞

P [M − {a} | nτ ]
P [M | nτ ]

= αM (1) =

√
τ(2)
τ(1)

lim
n→∞

P [M + {a} | nτ ]
P [M | nτ ]

= αM (1)−1 =

√
τ(1)
τ(2)

It should be noted that, as a consequence of Lemma 3.1 we can write

µ(M − {a}) = µ(M + {a}) = µ(M)

meaning that the events M , M−{a} and M +{a} have the same magnitude. In some way,
this method (using magnitudes) is ”myopic” with respect to the linear transformations of
an event. Both events do not have the same probability when n goes to infinity and have
the same magnitude. Using the magnitudes, we can not state which of the events is more
probable. However, using the offset theorem we can prevent this effect and state the ratio
between the probabilities of these events when n goes to infinity. This shows the usefulness
of the offset theorem.

Example 2: Where an offset ratio is equal to zero In this second example, we
focus on what may be called an irregular event or a ”corner solution”. By this, we mean
situations where there exists at least an offset ratio of one ballot which is equal to zero.
In this case, we know there is ballot for which no voter has voted.

Let us consider a simple voting situation where there are two candidates (that we
denote by a and b) and the voting rule is approval voting5. Therefore, the set of candidates

5This example was kindly suggested by J-F. Laslier.
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is K = {a, b} and the set of actions is equal to C = {1, 2, 3} (assuming there is no
abstention to keep things simple). Action 1 represents voting for candidate {a}, action
2 represents voting for candidate b and action 3 represents voting for both candidates.
Suppose that, given the expected type distribution, voters cast only ballots 1 and 3. Thus,
the expected vote distribution τ is equal to τ = (τ(1), τ(2) = 0, τ(3)) with τ(1)+ τ(3) = 1
and τ(1) > τ(3) > 0 w.l.o.g. We denote by x(1) (resp. x(2)) the random variable which
describes the number of players who choose to cast ballot 1 (resp. 2). Thus, x(i) is drawn
from a Poisson distribution of parameter nτ(i) for i=1,2. We focus in the event of a tie
M between candidates a and b. Then, applying the DMT , we know that the magnitude
µ(N) of such an event is equal to

µ(N) = −τ(1)

and that the offset ratio vector is such that αN = αN (1) = 0, as provided that x(1) = 0
there is always a tie between candidates a and b.

Then, we know that in order to get a tie between the scores of the candidates we need
that none of the voters (αN (1) = 0) who were supposed to vote for candidate {a}, vote
for him. That is, in order to get a tie between both candidates in this situation, no one
has to cast ballot 1.

The event of subtracting one vote for candidate {a} to the tie N has no longer a sense
(there is already no voter who votes only for him). However, denoting w = (1, 0, 0), we
can write the event N + {a} as the event N + w = N − (−w). Indeed, applying the offset
theorem, we can write

lim
n→∞

P [N + {a} | nτ ]
P [N | nτ ]

= lim
n→∞

P [N + w | nτ ]
P [N | nτ ]

= lim
n→∞

P [N − (−w) | nτ ]
P [N | nτ ]

= α(1)−1

= +∞

so that, the probability of getting a tie N becomes infinitesimal with respect to the prob-
ability of getting the event N + {a}. This is the ”jump” we described before when es-
tablishing the division between normal and irregular events. This could be explained as
follows,

P [N | nτ ] = P [x(1) = 0]

P [N + {a} | nτ ] = P [x(1) = 1] = nτ(1)P [x(1) = 0] = nτ(1)P [N | nτ ]

Thus, the limit equality is verified. However, even if one of the probabilities becomes
infinitesimal with respect to the other, they still have the same magnitude by Lemma 3.1.
Indeed, we wan write that

µ(N + {a}) = µ(N)

meaning that the events (N) and (N + {a}) have the same magnitude even if the proba-
bilities are infinitesimally different.
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The conclusion we can get from these examples is that within a Poisson game there
could be some events that infinitely more probable than others and that still have the
same magnitude. The purpose of studying these examples is to show the existence some
zones of absorption when working with magnitudes. That is, on both examples the tie has
the same magnitude as the linear transformations of it. This ”absorption” property will
be used on the next section to prove the Magnitude Equivalence Theorem, a useful tool
in this environment.

Prior to focusing on the MET, the extension of Theorem 3.1 is presented. The under-
lying logic of the proof is based on the ”absorption” property.

Corollary 3.1 Let (T, n, r, C, U) be a Poisson game. Let a, b ∈ K and j ∈ Z. The
magnitude of the event Mj = {s(a) = s(b)− j} is such that

µ(Mj) = µ(M)

whenever Mj exists.

Proof : Let w ∈ ZC such that w(j) = 1 and w(c) = 0 if c 6= j. In set-theoretical terms,
we can write that

Mj = M − w

Therefore, applying the offset theorem, we can state that

lim
n→∞

P [Mj | nτ ]
P [M | nτ ]

= lim
n→∞

P [M − w | nτ ]
P [M | nτ ]

=
∏
c∈C

αM (c)w(c)

= αM (j)

Thus, the magnitude of the event Mj is equal to

µ(Mj) = lim
n→∞

1
n

log P [Mj | nτ ]

= lim
n→∞

1
n

log [αM (j)P [M | nτ ]]

= lim
n→∞

1
n

log P [M | nτ ] + lim
n→∞

1
n

log [αM (j)]

= µ(M) + lim
n→∞

1
n

log [αM (j)]

Then, we have two different cases: 1 αM (j) finite for c ∈ C, 2 There exists at least one
αM (j) = 0

Case 1: αM (j) finite
In this case,

lim
n→∞

1
n

log [αM (j)] = 0.

The equality is verified.
Case 2: There exists at least one αM (j) = 0
Following similar reasonings to the ones explained in the Example 2, we can show that

the equality is verified.
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4 Magnitude equivalence theorem

The following result allows us to escape from the complexity of the structure of pivotal
events. Using the offset theorem, we find a simpler expression of the magnitude of a
pivotal event. The main advantage of this technique is that it allows us to use the DMT
to compute magnitudes of pivotal events directly.

Theorem 4.1 (Magnitude Equivalence Theorem) Let (T,n,r,C,U) be a Poisson game.
Let Y = {i1, i2, . . . , iY } be a subset of K. If every α(c) 6= 0 for every c ∈ C, we can state
the following equality:

µ[pivot(Y )] = µ[s(i1) = s(i2) = . . . = s(iY ) ≥ s(x) ∀x ∈ K \ Y ]

Proof: By definition, we can write the probability of a pivotal event as

P [pivot(Y ) | nτ ] = P [{
1⋃

j2=−1

1⋃
j3=−1

1⋃
j4=−1

. . .

1⋃
jK=−1

(s(i1) = s(i2) + j2 = s(i3) + j3 = . . .

. . . = s(il) + jl = . . . = s(iY ) + jY > s(x))| i1, i2, . . . , iY ∈ Y and ∀x ∈ K \ Y }]

= P [
⋃

m∈M

Am]

For some arbitrary finite set M , the sets Am represent the different cases in which we can
have a pivotal event. However, it should be noted that this a disjoint union as Am∩Aj = ∅
if m 6= j. That is, the probability of the union is equal to the sum of the probabilities of
every event, i.e.

P [pivot(Y ) | nτ ] =
∑

m∈M

P [Am | nτ ]

Besides, we can express the relationship between every Am and the simple cone event
A0 = [s(i1) = s(i2) = . . . = s(iY ) ≥ s(x)] as a single positive translation. We denote by
wm = (wm(c))c∈C ∈ ZC the vector of translation. In set theoretical terms, we can write
this as

Am = A0 − wm

Then, by the offset theorem,

lim
n→∞

P [Am | nτ ]
P [A0 | nτ ]

= lim
n→∞

P [A0 − wm | nτ ]
P [A0 | nτ ]

=
∏
c∈C

α(c)wm(c)

where α(c) represents the offset ratio of action c at the event A0.
The proof proceeds in several steps. In Step 1, we prove the result when every offset

ratio is different from zero and finite. Step 2 shows the result when there exists one offset
ratio that is different from zero. Finally, Step 3 extends these results for the case where
there exists two or more offset ratios that are equal to zero.
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Step 1: Let us suppose first that every α(c) is different from zero and finite, where c

represents a ballot which gives a point to at least one of the candidates in the set Y . In
this case,

lim
n→∞

log[
∏

c∈C α(c)wm(c)]
n

= 0

Therefore, by Lemma 3.1 both events have the same magnitude. Denoting for every
m ∈ M , ρm =

∏
c∈C α(c)wm(c), we can write the magnitude of the pivotal event as

µ[pivot(Y )] = lim
n→∞

1
n

log P [pivot(Y)| nτ ]

= lim
n→∞

1
n

log

[∑
m∈M

ρmP [A0| nτ ]

]

= lim
n→∞

1
n

log

[
P [A0| nτ ]

∑
m∈M

ρm

]

= lim
n→∞

1
n

log P [A0| nτ ] + lim
n→∞

1
n

log
∑

m∈M

ρm

= lim
n→∞

1
n

log P [A0| nτ ]

=µ[s(i1) = s(i2) = . . . = s(iY ) ≥ s(x)]

Step 2: Now, let us suppose that there exists an α(c) which is equal to zero, where c

represents a ballot which gives a point to at least of the candidates in the set Y . Then,
the event A0 − {c} (the event of subtracting a ballot {c} to the event A0) is infinitesimal
with respect to the event A0 when n tends to infinity. Conversely, the event A0 + {c} (the
event of adding a ballot {c} to the event A0) is infinitely more probable than the event
A0 tends to infinity.

However, the event A−c = (A0 − {c}) does not occur with a positive probability. This
could be explained as follows. Given that we are at event A0, no voter who was supposed
to vote for ballot {c} has done it (as α(c) = 0): x(c) = 0. The event (A0−{c}) would imply
x(c) = −1. This is impossible given that x(c) is a Poisson random variable defined only
for the positive integers. Therefore, this event is not taken into account in the probability
of the pivotal event.

The fact that the probabilities of A0 and Ac = (A0 + {c}) diverge when n tends to
infinity, can be explained as follows. At event A0, we know that α(c) = 0 and thus that
x(c) = 0. So, the event Ac implies that (x(c) = 1). And,

lim
n→∞

P [Ac| nτ ]
P [A0| nτ ]

= lim
n→∞

P [x(c) = 1| nτ ]
P [x(c) = 0| nτ ]

= lim
n→∞

nτ(c)P [x(c) = 0| nτ ]
P [x(c) = 0| nτ ]

= lim
n→∞

nτ(c) = +∞

Even if the ratio between these probabilities diverges, we can write that

lim
n→∞

log[nτ(c)]
n

= 0
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Thus, by Lemma 3.1, the events A0 and Ac have the same magnitude.
By assumption, there is only one offset ratio which is equal to zero. Therefore, for

every event Am, m ∈ M \ {−c, c}, the following limit condition is still true,

lim
n→∞

P [Am| nτ ]
P [A0| nτ ]

= ρm

for some ρm which is constant with respect to n.
Thus, for every event Am, m ∈ M \ {−c, c}, we can write

lim
n→∞

P [Am| nτ ]
P [Ac| nτ ]

= lim
n→∞

ρmP [A0| nτ ]
P [Ac| nτ ]

= lim
n→∞

ρmP [A0| nτ ]
P [Ac| nτ ]

= ρm lim
n→∞

P [A0| nτ ]
P [Ac| nτ ]

= 0

Therefore, we can write that

µ[pivot(Y )] = lim
n→∞

1
n

log P [pivot(Y) | nτ ]

= lim
n→∞

1
n

log
∑

m∈M

ρmP [Ac | nτ ]

with

ρm =

{
1 if m = c

0 if not

So,

µ[pivot(Y )] =µ[Ac]

=µ[A0]

=µ[s(i1) = s(i2) = . . . = s(iY ) ≥ s(x)]

Step 3: Finally, let us assume that there exists two ballots {c} and {c′} such that
α(c) = α(c

′
) = 0, where {c} and {c′} are both ballots which give a point to at least one

of the candidates in the set Y . Given this hypothesis, we have that

lim
n→∞

P [A0 + {c}| nτ ]
P [A0| nτ ]

= lim
n→∞

P [A0 + {c′}| nτ ]
P [A0| nτ ]

= +∞

Unfortunately, we cannot repeat the same process as before as we have two different events
that are infinitely more likely. However, as we can write the following limit condition

lim
n→∞

P [A0 + {c}| nτ ]
P [A0 + {c′}| nτ ]

= lim
n→∞

P [x(c) = 1| nτ ]
P [x(c′) = 1| nτ ]

=
τ(c)
τ(c′)

and due to the fact that

µ(A0) = µ(A0 + {c}) = µ(A0 + {c′})

14

ha
l-0

02
43

04
9,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



the following equality still holds.

µ[pivot(Y )] = µ[A0]

Similarly, we can prove the same result even if there exists more than two α(c) that are
either equal or infinite.6 �
Thus, the magnitude of a pivotal event is equivalent to the magnitude of a cone event
which is part of it. This result allows us to directly use the DMT to compute the pivotal
magnitudes.

6It should be noted that if there exists an offset ratio α(c) = 0, then there always exists another α(c′)

which is infinite. If α(c) represents the effect of the translation −{c} to the event A0, it suffices to take for

instance, the translation {c′} = +{c}.
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5 An example where the Condorcet winner is not elected

In this section, an example is provided where, at equilibrium, the Winner of the election
does not coincide with the profile Condorcet Winner. An interesting feature of this example
is its simplicity. There are only three types of voters with ordinal preferences and the type
distribution is quite simple. Furthermore, the equilibrium is shown to be quite stable.

Let us consider a voting context where there are three candidates K = {a, b, c} and
three types of voters, i.e. T = {t1, t2, t3}. We describe the preference profiles of the
different types as follows

ut1(a) > ut1(b) > ut1(c)

ut2(b) > ut2(a) > ut2(c)

ut3(c) > ut3(a) > ut3(b)

where ut(k) denotes the utility of type-t voters when candidate k wins the election. The
expected type distribution is

r(t1) =
3
32

r(t2) =
18
32

r(t3) =
11
32

Under approval voting, we can find an equilibrium in which the Winner of the election
does not coincide with the P.C.W.

Let us suppose that the strategy functions satisfy

σ({a}| t1) = σ({a, b}| t2) = σ({c}| t3) = 1

Note that in this example all the voters with the same type choose the same action.
Therefore,

τ({a}) = r(t1), τ({a, b}) = r(t2), τ({c}) = r(t3)

Once we have described the setting of the voting situation, we proceed to the com-
putation of the magnitudes of the pivotal events. The solved minimization problems are
included in the appendix.

Magnitude of a pivot between candidates a and b Following the MET , we can
write the following equality

µ(pivot(a, b)) = µ({s(a) = s(b) ≥ s(c)})

According to the DMT, we know that this magnitude is equal to the solution of the
following optimisation problem.

µ({s(a) = s(b) ≥ s(c)}) = min
λ

r(t1) exp[λ1 − λ2 + λ3] + r(t2) exp[λ3] + r(t3) exp[−λ3]− 1

such that λi ≥ 0 ∀ i.
Thus, numerically solving this constrained minimization problem, the magnitude of

this pivotal event is such that

µ(pivot(a, b)) = −0.09375

The offset ratio vector associated to this event which we call α1, is equal to

α1({a}) = 0 α1({a, b}) = 1 α1({c}) = 1
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Magnitude of a pivot between candidates a and c Combining the MET and the
DMT , the magnitude of a pivot between candidates a and c is equal to

µ(pivot(a, c)) = µ({s(a) = s(c) ≥ s(b)}) = −0.0500822

The offset ratio vector associated to this event which we call α2, is equal to

α2({a}) =
1.44749

2
= 0, 7237 α2({a, b}) = 0, 7237 α2({c}) =

2
1.44749

= 1, 3817

Magnitude of a pivot between candidates b and c Combining the MET and the
DMT , the magnitude of a pivot between candidates b and c is equal to

µ(pivot(b, c)) = µ({s(b) = s(c) ≥ s(a)}) = −0.120547

The offset ratio vector associated to this event which we call α3, is equal to

α3({a}) = 0 α3({a, b}) =
2

2.55841
= 0, 7817 α3({c}) =

2.55841
2

= 1, 2792

Therefore, the magnitudes of the pivotal events are ordered in the following way:

µ(pivot(a, c)) > µ(pivot(a, b)) > µ(pivot(b, c))

Taking into account the ordering of the magnitudes, and following the assumption that
we have instrumental voters, we can determine the action that each agent of a given type
will choose. To clarify how the voters choose the ballot, the decision process of t1 voters
is now described in detail. When deciding between casting {a} or {a, b}, they take into
account the magnitudes of the pivots where candidate b is involved as they evaluate the
effect on their expected utility of adding candidate b to their ballot {a}. Mathematically,
this decision process could be expressed as evaluating the sign of ∆,

∆ = E[{a}]− E[{a, b}] =
∑
b∈Y

P [pivot(Y )]E[ut1({a}|pivot(Y ))− ut1({a, b}|pivot(Y ))]

= P [pivot(a, b)]E[ut1({a})− ut1({a, b})|pivot(a, b)]

+ P [pivot(b, c)]E[ut1({a})− ut1({a, b})|pivot(b, c)]

As we know that pivot(a, b) is the pivotal event where b is involved with the highest
magnitude, we can write that

lim
n→∞

P [pivot(b, c)]
P [pivot(a, b)]

= 0

Then, following Laslier (2004)’s reasoning, one can factor out P[pivot(a,b)] in ∆ when n

tends to infinity and then just evaluate the sign of the following expression

E[ut1({a})− ut1({a, b})|pivot(a, b)]

Defining Aj = (s(a) = s(b) + j ≥ s(c)) for j ∈ {−1, 0, 1}, this expression is equivalent to

E[ut1({a})− ut1({a, b})|pivot(a, b)] =
1∑

j=−1

E[ut1({a})− ut1({a, b})|Aj ] P [Aj ]

17

ha
l-0

02
43

04
9,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



Using the offset ratios, we know that

P [A−1] = 0

lim
n→∞

P [A0 | nτ ]
P [A1 | nτ ]

= 0

and, by computing the expected utility of the voters, the following inequalities can be
stated,

E[ut1({a})− ut1({a, b})|A−1] > 0

E[ut1({a})− ut1({a, b})|A0] > 0

E[ut1({a})− ut1({a, b})|A1] = 0

Thus, ∆ is positive and so t1 voters prefer to cast {a} rather than {a, b}. Repeating
the same decision process, it can be deduced that t1 voters prefer to cast ballot {a} to
{a, c}. Similarly, the expected utility of adding one single candidate to a given ballot can
be computed, obtaining the optimal strategy for each type of voter. Thus, the voters’
optimal strategies are such that,

σ({a}|t1) = σ({a, b}|t2) = σ({c}|t3) = 1

Then, this is an equilibrium of the voting game. It should be noted that,

r(t1) + r(t2) > r(t2) > r(t3)

By this, we mean that candidate a is the Winner of the election. Besides, we also have:

r(t2) > r(t1) + r(t3)

r(t1) + r(t2) > r(t3)

that is, candidate b is the Profile Condorcet Winner. �

On the stability of the equilibrium. Concerning the equilibrium presented here,
there are two main aspects that should be underlined. First of all, in this game we can
find another equilibrium where the P.C.W. coincides with the winner. For instance, if we
assume that the expected type distribution is the following one,

r(t1) =
12
32

r(t2) =
12
32

r(t3) =
8
32

with the same strategy functions then we have such an equilibrium.
Secondly, we try to test the stability of this equilibrium. In order to attain this objective,
we focus in situations where there are some part of the individuals who do not behave
rationally. This reason could be some kind of bias towards the expected winner. It could
also be thought as some kind of trembling-hand action due to some external factor. We
show here that for non-negligible fractions of the voters showing lack of rationality, we
still get the equilibrium where the winner does not coincide with the P.C.W.
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Let us suppose that there is a fraction of t2-voters who economically misbehave and
vote only for candidate a. We will denote this class of voters by i2 where I denotes their
irrationality. Then, the expected type distribution is

r(t1) =
3
32

r(t2) =
18
32
− ε r(i2) = ε r(t3) =

11
32

Then, according to the DMT and the MET , we should solve the following optimization
problem to compute the magnitude of a pivot between candidates a and b.

min
λ

r(t1)UV + r(t2)V + r(t3)V −1 + r(i2)UV

such that U > 0 and V ≥ 1. We do not give explicit formulas for the optimization
problems corresponding to the computation of the magnitudes of pivots between a, c and
b, c as they are similar to the latter.
Solving this problem numerically, we find that whenever ε ∈ (0, 6

32), the pivotal events
follow the same order as in our example,

µ(pivot(a, c)) > µ(pivot(a, b)) > µ(pivot(b, c))

Therefore, the rational agents still behave in the same way. Then this is an equilibrium if
and only if ε ∈ (0, 6

32). The upper bound of this interval is roughly equal to 0.21 implying
that even if 21% (on average) of the population do not behave rationally we can still get an
equilibrium where both concepts do not coincide. This process could be repeated assuming
the same kind of irrationality among t1 and t3 voters leading us to the same result: the
equilibrium holds. As a conclusion, we can say that the stability of this equilibrium is
quite strong.
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6 Conclusion

The structure of the Poisson-Myerson environment and the use of magnitudes is deeply
analysed in this work. This article could be divided in two main sections. Firstly, the
mathematical section where the attention is focused purely on the mathematical structure
of the Poisson games. Secondly, the economic section where we focus on the economic
implications of the tools previously developed.

Concerning the first section, the importance of the offset ratios associated to an event
has been underlined. Indeed, the Magnitude Equivalence Theorem depends intrinsically
on the concept of offset ratio and on its properties. This theorem allows us to compute
the magnitudes of pivotal events (which have a difficult geometrical structure) in a quite
simple way. We have been able to differentiate the events between the normal ones (where
the offset ratios are different from zero) and the irregular ones (where there is at least
offset ratio equal to zero).

Different objectives have been attained in the second section. We have been able to
prove that, because of the presence of the “correlated” ballots, the expected winner of the
election does not always coincide with the profile Condorcet winner and that voters do
not behave sincerely. By “correlated” ballots, we mean ballots where voters are allowed
to vote for more than one candidate. In the Poisson-Myerson framework, the number of
voters who choose a ballot is independent of the number of voters who choose all other
ones. However, as we allow voters to vote for more than one candidate, the scores of the
candidates are correlated. This is the main difference with Laslier (2004) framework in
which the scores of the candidates are assumed to be independent. Mathematically, the
“correlated” ballots break the partial ordering stated by Laslier, which is a key feature of
his model.
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7 Technical Appendix

Magnitude of a pivot between candidates a and b

µ({s(a) = s(b) ≥ s(c)}) = min
λ

r(t1) exp[λ1 − λ2 + λ3] + r(t2) exp[λ3] + r(t3) exp[−λ3]− 1

such that λi ≥ 0 ∀ i.

Solving the optimal problem we can state that,

µ({s(a) = s(b) ≥ s(c)}) = −r(t1) as r(t2) > r(t3)

Similarly, the following equalities can be stated.

Magnitude of a pivot between candidates a and c

µ({s(a) = s(c) ≥ s(b)}) = min
λ

r(t1) exp[λ1 − λ2 + λ3] + r(t2) exp[λ1 − λ2] + r(t3) exp[−λ1 + λ2]− 1

such that λi ≥ 0 ∀ i.

µ(pivot(a, c)) = µ({s(a) = s(c) ≥ s(b)} = −(
√

r(t1) + r(t2)−
√

r(t3))2 = µ(tie(a, c))

Magnitude of a pivot between candidates b and c

µ({s(b) = s(c) ≥ s(a)}) = min
λ

r(t1) exp[−λ3] + r(t2) exp[λ1 − λ2] + r(t3) exp[−λ1 + λ2]− 1

such that λi ≥ 0 ∀ i.

µ(pivot(b, c)) = µ({s(b) = s(c) ≥ s(a)}) = −r(t1)− (
√

r(t2)−
√

r(t3))2

= −r(t1) + µ(tie(b, c))
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