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ABSTRACT 

 
 
Climate changes have sparked growing interest for the weather derivatives which are financial 
contracts relied on a meteorological index and allowing companies to hedge against climate 
risk. These contracts present the particularity of providing compensation to the buyer when 
the meteorological index crossed a limit agreed in advance with the seller. In order to evaluate 
these products and to manage at best the risks associated with their exchange, it is important 
to be able to accurately predict the evolution of the climate variable. Several processes have 
been proposed in the literature to model the behaviour of the temperature which is the basis of 
most of the traded weather instruments. These processes relate mainly to the univariate time 
series modelling which is founded on the study of the autocorrelation of the stationary 
variable. But we know that the behaviour of the temperature can be influenced by climatic 
factors such as rain, wind or sunshine. In our paper, we propose to take into account the 
impact of sunshine on the temperature as well as the asymmetric effect of the shocks on the 
volatility by estimating a structural model with a periodic threshold GARCH. We show that 
this model provides better out-sample forecasts for 30 and 60 days ahead than those obtained 
by the univariate autoregressive-conditional heteroskedasticity process. 
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1.   Introduction 
 
The weather derivatives market which began in 1997 has gained momentum in recent years 
because of the increased awareness of enterprises in the vulnerability of their turnover to 
climatic variations (temperature, rain, snow, ...). In 2003, it was estimated that the market had 
grown to a $3.5 billion notional market value with approximately 4,517 contracts traded. A 
weather derivative is a financial contract whose payments are triggered when the underlying 
climate index crosses, upwards or downwards, a barrier agreed in advance between two 
counterparties. It allows different actors (heating company, farmer, amusement park,…) to 
cope with climate risk. Unlike insurance contracts, weather derivatives require no finding of 
actual losses to receive compensation. The meteorological index can be calculated, for 
instance, from measurements of temperature, precipitation or humidity. At the moment, the 
most actively traded contracts are on the temperature because they meet the coverage needs of 
the energy companies which were the first initiators of weather derivatives and which 
currently represent the main actors on the climate market. The use of weather contracts 
requires companies to know with precision the evolution of the climate variable. Regarding 
the temperature and typically, the daily average temperature which is the average of the 
maximum and minimum temperature of the day, the estimation of an ARMA(Auto Regressive 
Moving Average) process has often been studied. It is a model connecting the dependent 
variable to its  past values and past error terms. The construction of the model is based on the 
analysis of the autocorrelation function. The major drawback of ARMA processes is that they 
do not consider other variables outside delayed values of the endogenous variable and shocks. 
But it is well-known that precipitation, wind and sunshine can affect the behaviour of the 
temperature. The question we ask is whether the incorporation of any of these variables in the 
modelling can improve or not the forecats of the daily average temperature. To find out, we 
propose to study the impact of hours of sunshine on the temperature through the estimation of 
a structural model composed of stationary variables. Moreover, it was shown that the 
volatility of the daily average temperature exhibited a seasonal behaviour which could be 
captured by means of a periodic GARCH (Generalized AutoRegressive Conditional 
Heteroskedasticity) process suggested by Campbell and Diebold (2005). The drawback of the 
GARCH process is that only symmetric effects of the shocks on the volatility are considered. 
To take into account also asymmetric impacts of the error terms on the volatility, we propose 
to extend the model of Campbell and Diebold by using the threshold GARCH process instead 
of the GARCH formulation. Our results demonstrate that considering the sunshine effect and 
the asymmetric impacts on the volatility of the temperature may give forecasts outside the 
sampling period (for 30 and 60 days ahead) that are better than those provided by the 
univariate time series model with a periodic GARCH. 
 
The outline of the paper is as follows : section 2 explores the relationship between the 
temperature and the sunshine as well as the behaviour of the two variables. It will be 
suggested to model the sunshine dynamics by a two-state first order Markov chain to capture 
its discontinuous feature. Section 3 deals with the estimation of the parameters of the Markov 
chain and those of the structural model equipped with the periodic threshold GARCH to 
reproduce the movement of the daily average temperature. Section 4 applies the estimated 
models for the evaluation and the risk management (computation of the Value-at-Risk) of the 
weather derivatives. Section 5 provides the conclusions. 
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2.  Causal relationship modelling of temperature with sunshine component and time-
varying volatility 
 
A key feature of sunshine is that it is a discontinuous variable (it may happen that some days 
are not sunny). As we see in Figures 1 and 2 below, the hours of sunshine are longer in 
summer than in winter and the number of days when it is sunny is more important in summer 
than in winter. From this information, we can assume that the sunshine shows a seasonal 
behaviour marked by a probability of occurrence and a magnitude greater in summer than in 
winter. Figures 3 and 4 reveal that the probability of having a sunny day in t depends on the 
situation in (t-1) : the chances of having a sunny day in t are more important when it is sunny 
in (t-1) than when it is not beautiful in (t-1). But the occurrence of sunshine in t seems to  be 
dominant whatever the situation in (t-1) during the summer period (this is particularly true for 
regions with mediterranean climate like Toulouse in France). 
 
 
 
 

Fig.1  Daily average temperature and sunshine hours of Toulouse 
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Fig.2  Number of days of sunshine in Toulouse from 01/01/1949 to 05/31/2004 (no leap year) 
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Fig.3  Probability of sunshine following sunshine in Toulouse 
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Fig.4  Probability of sunshine following no sunshine in Toulouse 
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About the daily average temperature, Figure 1 displays a relationship between the latter and 
the sunshine. It is reasonable to consider a positive correlation between these two variables. 
Indeed, the more the hours of sunshine are important and the higher the temperature should 
be. Figure 1 also puts in evidence the following characteristics of the daily average 
temperature : a cyclical behaviour, a mean-reversion (the variations in the temperature do not 
deviate from a long equilibrium value) and an autoregressive feature (a hot day will likely be 
followed by another hot day, same for a cold day). 
 
Based on these observations, we propose the following model for the daily average 
temperature(1) : 

   Tt =  -  + m
tT )TT(ρ it

m
it

p

1i
i −−

=
−∑ ∑ −ϕ

=
−−−

q

0j
jtjtjtj )SS(f + εt (1) 

with   

   = a + bt +   and  ω = m
tT )tksin()tkcos( k,s

K

1k
k,c ωδ+∑ ωδ

= 365
π2  (2) 

 
where ft  is a binary variable which accounts for the occurrence of sunshine at time t, St 
represents the hours of sunshine, tS corresponds to the seasonal mean of hours of sunshine, 

ρ1, …, ρp  are p autoregressive parameters,  denotes the mean-reverting value of the daily 
average temperature with  ρ

m
tT

1 <0 reflecting the speed of the mean-reversion, bt stands for the 
trend and εt  is an uncorrelated random variable with zero mean and variance . 2

tσ
 
 
 

                                                 
(1)   The model could have been written in level as follows: Tt =  +  + + εm

tT it

p

1i
i Tρ −

=
∑ ∑

=
−−ϕ

q

0j
jtjtj Sf t .  

The problem with this formulation is that it does not take into account the mean-reversion of the temperature. 
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The model (1) without the lagged values of sunshine corresponds to an autoregressive process  
which is a particular case of the ARMA processes. The ARMA processes connect the 
stationay endogenous variable to its past values and error terms. It was shown in numerous 
articles that the daily average temperature exhibited an autoregressive structure rather than a 
mixture of autoregressive and moving average parts. The major problem of the ARMA  
processes is that they do not allow to take into account other dependent variables except the 
lagged values of the endogenous variable and of the error terms. The formulation given by 
Eq.(1) has the advantage to consider external factors like here the effect of sunshine on the 
daily average temperature. The model represents, in fact, a multivariate linear regression 
model composed of the stationary lagged variables  and )TT( it

m
it −− − )SS( jtjt −− − . It cannot be 

regarded as a VAR (Vector Auto Regressive) process since )SS( jtjt −− − does not appear also as 
a dependent variable. The coefficients of the model are to be estimated by the Maximum 
Likelihood Method and not by the Ordinary Least Squares because the variance  is 
assumed to vary with time (Engle (1982)). Indeed, it is well-known that the estimators of the 
Ordinary Least Squares are no more efficient in the presence of heteroskedasticity. 

2
tσ

 
In the case of the daily average temperature, many authors have pointed out the seasonality of 
the variance . To capture this characteristic, Cao and Wei (1998, 2004) and Roustant 
(2002) have used a sine function. Campbell and Diebold (2005) have put forward a more 
general model combining a k-th order Fourier series and a GARCH component. A non-
parametric volatility was proposed by Benth and Šaltytė-Benth (2005). We want to extend the 
model of Campbell and Diebold by allowing the volatility of the temperature to respond in 
asymmetric way to the shocks. Indeed, concerning the GARCH formulation, a negative or 
positive impact on the volatility has for only effect an increase of this one and in the same 
amplitude because of the square form of the variance. To allow the volatility to react 
differently depending on the sign of the shock, we use the threshold GARCH process in place 
of the GARCH representation in the model of Campbell and Diebold. The process threshold 
GARCH of Glosten, Jaganathan, and Runkle (1993), noted GJR-GARCH (p, q) is written as

2
tσ

 

(2) : 
 

  (3) ∑+∑ ⎟
⎠
⎞⎜

⎝
⎛ ++=

=
−

= <−ε−−

p

1j

2
jtj

q

1i )0it(

2
iti

2
iti

2
t σβdεγεαcσ

 
where  d(εt-i< 0) = 1  if  εt-i <0   and  d(εt-i< 0) = 0  otherwise,  with  c >0 , αi ≥0 , βj 

≥0   ∀ i, j. 

 
 
 
 

                                                 
(2)   The threshold GARCH process of Zakoian (1994) called TGARCH (p,q) is quite close to the process of 
Glosten, Jaganathan, and Runkle (1993) :  

( ) ∑∑
=

−
=

−
−

−+
−

+ +−+=
p

1j
jtj

q

1i
itiitit σβεαεαcσ  

where    and   . )0,εmax(ε tt =
+ )0,εmin(ε tt =

−

 
We can notice that this process concerns the standard deviation and not the variance. The coefficients must be 
non-negative. 
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When εt-i ≥0, the variance increases of  whereas for ε2
iti εα − t-i <0, the variance increases of 

 . If > 0, the rising of the volatility is stronger after a negative shock than after a 
positive shock.. If < 0, the increase of the volatility is much lower following a negative 
shock. In short, if ≠ 0, the error terms have an asymmetric effect on the volatility. 

2
itii ε)γα( −+ iγ

iγ

iγ
 
Regarding the volatility of the daily average temperature, it is then expressed as follows : 
 

  (4) ( ) ∑+∑ ⎟
⎠
⎞⎜

⎝
⎛ ++∑ ω+ω+=

=
−

= <−ε−−
=

p

1j

2
jtj

q

1i )0it(

2
iti

2
iti

L

1
,s,c

2
t σβdεγεα)tsin(λ)tcos(λcσ

l
ll ll

with  ω = 365
π2 . 

 
The EGARCH (Exponential GARCH) process of Nelson (1991) whose coefficients are not 
restricted to positive values may also be considered to take into account the asymmetric 
effects on volatility. The EGARCH(p,q) process is defined as (3) : 
 

 [ ]( ) ∑+∑ −+φ+=
=

−
=

−−−

p

1j

2
jtj

q

1i
itititi

2
t σlnβzEzγzψcσln  (5) 

 

where  
it

it
it σ

εz
−

−
− =  represents the standardized innovation (with expectation 0 and variance 1) 

and ~>iid(0, ).  tε
2
tσ

 
The logarithmic expression of the conditional variance allows the removal of the positivity 
constraints on the coefficients. In contrast to the CJR-GARCH process, the impacts of are 
considered here instead of the impacts of .  Indeed, if ≥ 0 , the variance has the slope  
(γ + ø) while for <0, it has the slope (γ - ø). We will see in Section 3 on the estimation of 
the parameters of the processes that, for the temperature, impacts of  are more significant 
than those of  on the volatility. 

itz −

itε − itz −

itz −

itε −

itz −

 
To simulate the paths of the temperature, it is necessary to model the behaviour of the 
sunshine. To capture the discontinuous nature of the variable, we use a two-state (sunny day 
and no sunny day) first-order Markov chain (the state of the variable at t depends only on its 
state at the moment (t-1)) : 
  : 

ft = 
⎩
⎨
⎧
 
1     if sunshine occurs
0     otherwise  

 
ft | ft-1 ~>Markov(P) 

 
                                                 
(3)    The EGARCH(1,1) process is stated as :   2

1t1
1t

1t

1t

1t
2

1t

1t
1

2
t σlnβ

σ
ε

E
σ
ε

α
σ
ε

αcσln −
−

−

−

−

−

− +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++= . 

1t

1t

σ
ε

E
−

−  = π
2   when the distribution is normal. 
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where  P is the state transition probability matrix defined by :   
 
 P = [ pij ] ,  pij = Pr(ft = j | ft-1 = i),  i, j = 0, 1. (6) 
 
where p00, p01, p11, p10 are calculated as follows: 
 

 p00 = 
0100

00

nn
n
+

  ,  p01 = 1- p00  ,  p11 = 
1011

11

nn
n
+

 ,  p10 = 1 - p11 (7) 

 
with  ni1 representing the number of years when day t is in state 1 and day (t-1) is in state 
i.The probability p11 is plotted in Figure 3 while p01 is depicted in Figure 4. 
 
To reproduce the variation with time of the transition probabilities, we fit a truncated Fourier 
series to the data, i.e. :  
 

 pij = . (8) )trsin(α)trcos(αα r,s

R

1r
r,c0 ω+∑ ω+

=

 
These probabilities are useful to simulate the occurrence of sunshine. To do this, a number 
between 0 and 1 is first genererated from the uniform distribution. It is then compared to p11 if 
the previous day was sunny or to p01 otherwise. The current day is sunny when p11 or p01 is 
superior or equal to the generated number (Wilks (1999)). 
 
When the current day is sunny (ft  = 1), we determine the amount St of sunshine by generating 
a value with the exponential or gamma distribution which produces only strictly positive 
numbers. The two distributions  are given by : 

  fexp(x) = θ
e x/θ−

 (9) 

and 

 fgam(x) = )(β
)β/xexp()β/x( 1

αΓ
−−α

. (10) 

 
 
To consider the performance of the model proposed for the daily average temperature, we 
estimate the coefficients in the following section. The results will be compared to those given 
by the univariate autoregressive process with a periodic GARCH. 
 
 
 
3.   Estimation and simulation 
 
We use data from the European Climate Assessment. They regroup the daily average 
temperature and hours of sunshine of Toulouse in France. They cover the period from January 
1st, 1949 to July 31st, 2004 which represents 20,226 observations (February 29 is removed 
for leap years). We estimate the parameters of the models by using data up to the end of May, 
2004. The remainder of the data is used for out-sample forecasts. 
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The component tS is estimated by fitting a Fourier series to the observations of sunshine since 
a periodic pattern is noticeable in Figure 1. On the basis of the information criteria (Akaike 
(AIC) and Schwarz (SC) criteria), we have selected three orders for the function as shown in 
Table 1. This number of orders minimizes the information criteria. The estimation results of 
the temperature processes are presented in Table 2.  
 
All the dependent variables of the models with and without sunshine appear significant (the t-
statistics in absolute value are above 1.96 at 5% level) which validates our representation 
choice made on the analysis of the information measures. Moreover, the coefficient ρ1 of 
mean-reversion has the correct sign (it appears here positive because we have replaced            

-  by  to make the estimation easier). Both models have no 

autocorrelation since the p-values associated with the Q-statistic of Ljung-Box in Table 3 are 
all superior to 5% (the null hypothesis of the test is that there is no autocorrelation up to order 
k). By comparing the information criteria in Table 2 of the model with sunshine and CJR-
GARCH component and the model without sunshine equipped with the GARCH effect, we 
remark that considering the sunshine impacts and the asymmetric effects on the volatility 
helps to reduce the values of the AIC and SC measures indicating that the first model fits 
better the data than the second model. Moreover, the parameter γ

)TT(ρ it
m

it

p

1i
i −−

=
−∑ )TT(ρ m

itit

p

1i
i −−

=
−∑

1 is negative and significant 
which means that there is indeed a phenomenon of asymmetry in the variance (the increase of 
the volatility is much lower after a negative shock). Table 2 reveals that the asymmetric 
effects of the error terms on the volatility are better considered through the estimation of the 
periodic CJR-GARCH process than through the estimation of the periodic EGARCH process 
because the first process shows the weakest values of AIC and SC. To analyze the 
performance of the model with sunshine and the periodic CJR-GARCH process outside the 
sample, we need to simulate the paths of sunshine. To do this, we need to simulate both the 
occurrence of sunshine events and the quantity of sunshine. As we stated earlier, the 
simulation of the occurrence is conducted by comparing the value of the transition probability 
which is given by the Fourier series estimated in Table 4 to the random uniform number. 
When the current day is sunny, the amount of sunhine is generated by means of the 
exponential or gamma distribution. The estimated coefficients of the two distributions are 
listed in the Table 5. When plotting the quantities from the two distributions, we note that 
those from the exponential distribution substantially underestimate the actual quantities (see 
Figure 5) while the amounts from the gamma distribution over-estimate widely the actual 
quantities (see Figure 6). Another problem is also noticed, the simulated quantities are not 
seasonal when this feature is apparent in the observations. To reproduce this characteristic, we 
decide to use the data of sunshine to create a series of seasonal amount. This series is 
determined by first combining the observations of hours of sunshine at time t per year and 
then by taking the average of these observations over the years for each date t giving rise to 
365 averages which constitute the seasonal amount series for any given year. The 
performance of the model with sunshine and the periodic CJR-GARCH process in terms of 
forecasts for the horizons of 7 days, 30 days and 60 days are recorded in Table 6. It is 
measured with the RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) 
criteria. We remark that the model with sunshine and periodic CJR-GARCH process provides 
predictions which are less good than those of the model without sunshine and periodic 
GARCH for the horizon of 7 days. On the contrary, the first model is more effective for 
longer horizons of 30 and 60 days. It has a more important predictive power in the longer 
term. 
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Table 1 :  Estimation of the Fourier series parameters for the 
seasonal mean of sunshine 

 
 S  
 Estimation t-statistic 
η0 5.56 207.38 
ηc,1 -2.81 -73.98 
ηc,2 -0.33 -8.62 
ηc,3 -0.18 -4.65 
ηs,1 -0.07 -1.84 
ηs,2 0.53 14.07 
ηs,3 -0.05 -1.26 

 

 tS = )tdsin(η)tdcos(ηη d,s

D

1d
d,c0 ω+ω+ ∑

=
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Table 2 : Estimation of the models of the daily average temperature of Toulouse 
 

 Model with no sunshine (*) Model with sunshine (**) 
 Mean equation Mean equation Mean equation 
 Estimation t-statistic Estimation t-statistic Estimation t-statistic 

a 12.34 265.25 12.34 265.25 12.34 265.25 
b 8.17 × 10-5 20.52 8.17 × 10-5 20.52 8.17 × 10-5 20.52 
δc,1 -7.42   -225.42 -7.42   -225.42 -7.42   -225.42 
δc,2 -0.25   -7.48 -0.25   -7.48 -0.25   -7.48 
δc,3 -0.18   -5.54 -0.18   -5.54 -0.18   -5.54 
δs,1 -3.05 -92.70 -3.05 -92.70 -3.05 -92.70 
δs,2 0.99 30.03 0.99 30.03 0.99 30.03 
δs,3 0.03    0.92 0.03    0.92 0.03    0.92 
ρ1 0.83 114.48 0.80  105.52 0.80 106.95 
ρ2 -0.12 -12.91 -0.10  -11.05 -0.10 -11.10 
ρ3 0.05 6.40 0.05   6.69 0.05 6.80 
ϕ0   0.12   32.94 0.12 32.80 
ϕ1   0.03    8.54 0.03 8.66 
ϕ2   0.03    7.62 0.03 7.58 
ϕ3   -0.02   -5.88 -0.02 -5.97 
 Periodic GARCH(1,1) Periodic CJR-GARCH(1,1) Periodic EGARCH(1,1) 
c 0.31    3.34 0.95 5.58 0.25 4.55 
λc,1 0.09    3.22 0.43 5.41 0.10 5.26 
λc,2 0.03    2.50 0.09 4.02 0.01 2.54 
λs,1 -0.03    -5.42 -0.03   -2.23 -0.005 -1.54 
λs,2 -0.03    -4.46 -0.05  -3.19 -0.01 -3.12 
α1 0.02 5.01 0.07 7.70 0.03 5.17 
α2     0.09 7.42 
γ1     -0.05   -5.38   
β1 0.91 39.77 0.74 17.22 0.77 18.17 

AIC(***) 4.3138  4.2375  4.2380  
SC 4.3177  4.2433  4.2439  

 
  (*)   Model with no sunshine and periodic GARCH(1,1) : 

  Tt =  + + εm
tT )TT(ρ m

itit

p

1i
i −−

=
−∑ t  ,   εt = tt ε

~σ   ,  )1,0(iid~~
t >ε  

   = a + bt +  with ω = m
tT )tksin()tkcos( k,s

K

1k
k,c ωδ+ωδ∑

= 365
π2  

   and   . ( ) 2
1t1

2
1t1

L

1
,s,c

2
t σβεα)tsin(λ)tcos(λcσ −−

=
++ω+ω+= ∑

l
ll ll

 
  (**)   Model with sunshine : 

 Tt =  +  + m
tT )TT(ρ m

itit

p

1i
i −−

=
−∑ ∑

=
−−− −ϕ

q

0j
jtjtjtj )SS(f + εt  ,   εt = tt ε

~σ ,  )1,0(iid~~
t >ε  

    = a + bt +  with ω = m
tT )tksin()tkcos( k,s

K

1k
k,c ωδ+ωδ∑

= 365
π2  

    for the periodic CJR-GARCH(1,1) ( ) 2
1t1)01t(

2
1t1

2
1t1

L

1
,s,c

2
t σβdεγεα)tsin(λ)tcos(λcσ −<−ε−−

=
+++ω+ω+= ∑

l
ll ll

 and   ( ) 2
1t1

1t

1t
2

1t

1t
1

L

1
,s,c

2
t lnβ)tsin(λ)tcos(λcln −

−

−

−

−

=
σ+

σ

ε
α+

σ

ε
α+ω+ω+=σ ∑

l
ll ll   for the periodic EGARCH(1,1) 

 

  (***)   AIC = -2 ⎝⎛ ⎠⎞
LL
n

 + 2k
n

  et  SC = -2 ⎝⎛ ⎠⎞
LL
n

 + k ln(n)
n

   where  LL represents the estimated log-likelihood, 

   n is the number of observations and k is the number of parameters of the model.  
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Table 3 : Test of Ljung-Box for detecting autocorrelation up to order k 
 
 

 Model with no sunshine Model with sunshine 
Order Q-Stat p-value Q-Stat p-value 

1 0.0148 0.903 0.0036 0.952 
2 0.0487 0.976 0.0089 0.996 
3 4.1796 0.243 1.2607 0.738 
4 4.2441 0.374 1.4312 0.839 
5 4.2482 0.514 1.8797 0.866 
6 6.7277 0.347 2.4385 0.875 
7 7.3500 0.393 2.8417 0.899 
8 11.268 0.187 6.6103 0.579 
9 11.301 0.256 6.6663 0.672 

10 11.740 0.303 7.1169 0.714 
11 12.292 0.342 7.5018 0.757 
12 13.225 0.353 8.1343 0.775 
13 16.316 0.232 11.320 0.584 
14 16.612 0.277 11.382 0.656 
15 16.653 0.340 11.570 0.711 
16 18.073 0.320 12.127 0.735 
17 18.126 0.381 12.163 0.790 
18 18.285 0.437 12.167 0.839 
19 19.224 0.443 13.600 0.806 
20 19.501 0.490 14.128 0.824 
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Table 4 : Estimation of the Fourier series for the transition probabilities 
 

 p11 p01

 Estimation t-statistic Estimation t-statistic 
α0 0.90   386.59 0.78   73.43 
αc,1 -0.09 -26.90 -0.14 -9.13 
αc,2 -0.04 -12.28 -0.04 -2.44 
αc,3 -0.01  -3.77   
αs,1 -0.002   -0.69 -0.03 -1.94 
αs,2 0.02 6.07 0.06 4.27 
αs,3 0.01 2.64   

 
 
 
 
 

Table 5 : Estimation of the distributions for the non-zero amount of sunshine 
 

 Exponential distribution  Gamma distribution 
 Estimation t-statistic  Estimation t-statistic 
θ 6.30   169.70 α 1.48  101.60 
   β 4.26   82.46 

 
 
 
 
 

Fig.5  Simulated hours of sunshine from the exponential distribution 
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Fig.6  Simulated hours of sunshine from the gamma distribution 
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Table 6 : Comparison criteria (*)  for out-sample forecats of  the daily average temperature of Toulouse 
 
 

 Model with no sunshine and 
periodic GARCH(1,1) 

Model with sunshine and 
periodic CJR-GARCH(1,1) 

 7 days 
RMSE (**) 1.990 2.114 

MAE 1.784 1.896 
 30 days 

RMSE 3.069 3.021 
MAE 2.579 2.570 

 60 days 
RMSE 3.330 3.020 
MAE 2.697 2.455 

 
    (* )    For each of the two models, we run 10,000 paths of the daily average temperature with the same 
                           noise for the 2 models. We then made the average of these 10,000 simulations and we compared it to 
                           the observed temperature in order to compute the RMSE and MAE criteria. 
    

 (**)   RMSE = ∑
=

−
n

1t

2
tt )T̂T(n

1  and  MAE = ∑
=

−
n

1t
tt T̂Tn

1   where represents the estimated temperature tT̂

  and n corresponds to the number of observations. 
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4.   Some applications to weather derivatives 
 
A weather derivative is a financial contract whose payoff depends on the evolution of an 
underlying meteorological index. At the moment, the most actively traded contracts are on the 
temperature and more specifically on cooling degree day (CDD) which counts the daily 
average temperature above 65 ° F when it comes to the summer and on heating degree day 
(HDD) which counts the daily average temperature being below 65° F during the winter 
period. Currently, two major challenges of the weather derivatives are the valuation and the 
risk management of these instruments. For these two tasks, it is essential to accurately predict 
the behaviour of the weather variable. We will judge the results provided by the model with 
sunshine and the periodic CJR-GARCH process by using it to value the weather forward on 
the CDDs of Toulouse and to calculate the Value-at-Risk of this contract. 
 
 
4.1   Pricing  
 
In practice, weather derivatives are evaluated by using the actuarial method which is an 
alternative to the arbitrage-free method. This latter is commonly used to price derivatives. 
Regarding the weather derivatives, the arbitrage-free method encounters a number of 
difficulties in implementation. Firstly, the meteorological index is not traded on the financial 
market, so we can not use the Black and Scholes (1973) formula to value the weather options. 
Secondly, it is difficult to get round this obstacle by susbtituting the underlying for a linked 
exchanged security since the weather index is weakly correlated with prices of other financial 
assets. Thirdly, the market is incomplete for the weather derivatives, a market price of risk 
must be considered. However, a great part of the weather contracts are either non quoted or 
non liquid which does not allow the estimation of this parameter and so, the calibration of the 
arbitrage-free model. Besides, the actuarial method also has the advantage of being very 
simple to implement which attracts the practitioners. It determines the price at time t of the 
weather derivatives expiring in tm in the following way : 
 
  C(t,Tt, IC

t ) = δ e-r(tm-t) ( )E [ payoff | Ft ] + κ σpayoff  (11) 
 
for the weather call option on the CDD index,  
 
and 
   F(t,Tt, IC

t ) = δ ( )E[ IC
tm | Ft ] + κ σI

C  (12) 
 
for the weather forward on the CDD index 
 

where  payoff = max(IC
tm- K,0),   IC

tm = ∑
j=1

n

 max(Tj - 18C°,0) represents the CDD(4) index on n 

days of the contract period, Tj =  
Tmin

j  + Tmax
j

2
  is the daily average temperature, δ corresponds 

to the value attributed to one degree-day, K refers to the strike price, r corresponds to the risk-
free interest rate,  E[…| Ft] designates the conditional expectation operator under the real 

                                                 
(4)   During the cold period (November to April), it is the HDD index  that is used :  IH

tm
  = ∑

j=1

n

 max(18°C-Tj ,0). 
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probability, κ σpayoff  and κ σI
C  stand for the risk premiums  and  σpayoff   and  σI

C  denote 
respectively the volatility of the payoff and the volatility of the CDD index.  
 
The risk premium is often assumed to be equal to zero or to an arbitrary value because most 
of the time there is no quotation to calibrate the pricing model. As we do not have price data 
to estimate the risk premium of the weather forward of Toulouse, we do not keep account of 
this term when evaluating the contract. The conditional expectation, for which it is difficult if 
not impossible to be reduced to a closed-form expression, is most often calculated by using 
the Monte-Carlo simulations. This method consists in generating a set of paths for the daily 
average temperature. For each of these paths, the CDD index is constructed. The conditional 
expectation of the weather forward price is then equivalent to the average of the indexes from 
all the generated paths. We try here to calculate the prices of the weather forward on the 
CDDs of Toulouse over a period of 2 months (06/01/2004-07/31/2004). The paths of the 
temperature will be generated on the one hand, by using the model with sunshine and the 
periodic CJR-GARCH process and on the other hand, by resorting to the model without 
sunshine and the periodic GARCH for comparison. For prices at a time t > 0, we construct the 
CDD index by simulating the paths of the temperature for the moments  t  to  tm  and by 
taking observations of the temperature for dates prior to t (0  to t-1). The obtained predictions 
of price for the 2-month horizon appear in Figure 7. We can notice that prices from the model 
with sunshine and asymmetric effects and from the model without sunshine and asymmetric 
shocks are relatively close, especially for dates near the maturity date. However, we note that 
for these latter dates, prices provided by the model without sunshine are closer to the level 
reached by the CDD index at expiration as those given by the model with sunshine. This 
result is not surprising since we had shown that the model without sunshine was more 
efficient for forecasts of temperature in the short term. On the contrary, the price differences 
from the two models are more pronounced in the long term with prices much closer to the 
effective level of the index at maturity, in general, for prices from the model with sunshine. 
Moreover, we note that prices from the actuarial method becomes very inaccurate beyond 7 
days. 
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Fig.7  :   Predicted prices (expressed in CDD index points) of the weather forward of 
Toulouse from the actuarial pricing method with 10,000 simulations for each of  both 

models of the daily average temperature. 
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4.2   Evaluation of the Value-at-Risk  
 
The Value-at-Risk (VaR) is a measure of the maximum loss that can be expected for a 
position or a portfolio in normal market conditions and for a probability set a priori. More 
specifically, the VAR is the loss to be exceeded with a probability of only α% over the 
holding period of the asset or portfolio (α representing the percentage of abnormal 
fluctuations in the market. Generally α is fixed to 5 %). Let pT be the value of an asset at the 
moment T and p0, the value of the asset when estimating VaR, the change in the price of the 
asset over the period [0; T] is given by: 

 
 ∆p = pT – p0. (13) 
 
 
This variation of the price is also called the "PnL" (Profit and Loss). From this definition, the 
VAR is defined then as follows : 
 
 Pr{ ∆p > VaR(α )} = α   ou   Pr{ ∆p ≤ VaR(α )} = 1-α . (14) 
 
In other words,  
 VaR(α ) = F-1(1- α) (15) 
 
where  F refers to the cumulative distribution function of the random variable  ∆p  and F-1 is 
the inverse function of F. 
 
Three methods are commonly used to estimate the VaR : variance-covariance method, 
historical simulation approach and Monte-Carlo simulation technique. In the case of the 
Monte-Carlo simulation method, n price changes are simulated. After that, they are arranged 
in ascending order. The VaR is then equal to the absolute value of (n × α) i-th smallest value. 
For example, we assume here that an electricity company in Toulouse wants to hedge against 
a too strong rise in temperature during the first half of June 2004, which would increase above 
normal the electricity consumption for air conditioning. It signs then with a bank a forward 
contract on the CDD index with a perception of a compensation when the index exceeds the 
level 40 at the expiration date (the coverage period is of 15 days). However, the company will 
have to pay the bank if it is wrong in its anticipations (it will pay the positive difference 
between 40 and the level reached by the index at the maturity date). The level of 40 was 
chosen after simulation of the CDD index level at maturity (the obtained level was around 26) 
and comparison of this level with the average of the historical CDD indexes for the month of 
June (it was equal to 17 for the first half of June). The average of the historical CDD indexes 
was calculated from observations over the period 01/01/1949 - 05/31/ 2004. It was observed a 
magnitude of 91 for the CDD index in 2003 which is the highest record because of a long 
heatwave. To determine the VaR of the weather forward on the CDDs of Toulouse for the 
period 06/01/2004 - 06/15/2004, we calculate, as a first step, n = 2,000 prices for the forward 
contract on the date 06/15/2004. Each price are computed with 10,000 simulations of the daily 
average temperature. In a second step, we calculate n price variations over the considered 
period by setting for initial price of the contract, the level 40 of the CDD index. Finally, in last 
time, the n variations are ordered in ascending way to determine the VaR (see Figure 8). 
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Fig.8  :   Frequency (in %) of the simulated PnL from the model with sunshine 
 and periodic GJR-GARCH(1,1) for the daily average temperature 
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For α = 5% and a sample of 2,000 simulations, the Value-at-Risk is equal to 31.35 in CDD 
index points (or 31.35 € if one assumes that 1 degree-day is equal to 1 €). This value 
corresponds to the 101st value of the list. It indicates the potential loss on a horizon of 15 days 
and in 5% of the worst scenarios. To validate the model chosen for the temperature to 
calculate the VaR, we must verify that the actual losses would exceed the estimated VaR only  
in 5% of the cases during the holding period. To verify it, it would be necessary to be able to 
compare the daily actual losses with the daily VaR. In our case, it is difficult to carry out this 
task because we do not have quotations for the forward contract of Toulouse. It is therefore 
not possible to calculate the daily actual losses. We only have, for information, the level of the 
index at the maturity date (here the effective level of the index is 38.2). The electricity 
company has therefore lost 1.8 points. To overcome the lack of price data, practitioners 
determine the actual losses by using "marked-to-model" prices. In our case, there would be a 
strong risk of error given the inaccuracy of the estimated prices from the actuarial method 
beyond 7 days. However, it is possible to judge the results of a model for the temperature in 
the calculation of the VaR by applying this model to the temperature of a city for which there 
is a weather contract with quotations. If the model provides correct results in the calculation 
of the VaR of a quoted and liquid weather derivative, there are strong chances that this model 
also fits in the computation of the VaR of a non quoted weather contract. 
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5.   Conclusion 
 
By taking into account the impacts of sunshine and the asymmetric effects of the shocks on 
the volatility through the estimation of a structural model with a periodic CJR-GARCH (1,1) 
process, we have improved the in-sample forecasts of the daily average temperature with 
regard to those stemming from the univariate autoregressive process with a periodic 
GARCH(1,1) representation. Concerning the out-sample forecasts, the results from the 
structural model appeared better than those from the univariate model for the horizons of 30 
and 60 days. Simulations of the daily average temperature were run by using a two-state first 
order Markov chain for the sunshine dynamics in order to capture the discontinuous pattern of 
the latter variable.Two examples of the use of the structural model were proposed for the 
weather risk management as the pricing of the weather forward of Toulouse and the 
evaluation of the Value-at-Risk of the contract. The structural model presents no difficulty of 
implementation and can easily be extended to other climate variables to improve the 
understanding of the behaviour of the temperature and also to simulate extreme and possible 
scenarios of the temperature. 
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