
Stopping games: recent results

Eilon Solan
Nicolas Vieille

Avril 2001

Cahier n° 2002-001

ECOLE POLYTECHNIQUE
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

LABORATOIRE D'ECONOMETRIE
1rue Descartes F-75005 Paris

(33) 1 55558215
 http://ceco.polytechnique.fr/

mailto:labecox@poly.polytechnique.fr

ha
l-0

02
42

99
4,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7310554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hal.archives-ouvertes.fr/hal-00242994/fr/
http://hal.archives-ouvertes.fr


Stopping games: recent results

Eilon Solan1

Nicolas Vieille2

Avril 2001

Cahier n° 2002-001

Résumé: Ce texte présente des résultats récents sur les jeux d'arrêts. Il a été préparé
pour l'ouvrage collectif à paraître, Annals of Dynamic Games, ed A. Nowak

Abstract: This is a survey of recent results on stopping games, prepared for the
forthcoming book Annals of Dynamic Games, ed A. Nowak

Mots clés : Jeux d'arrêt, jeux stochastiques, valeur

Key Words : Stopping games, stochastic games, value

Classification AMS: 91A15, 91A55

                                                            
1 Department of Managerial Economics and Decision Sciences, Kellogg Graduate School of Management,
Northwestern University, and the School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
e-mail: eilons@post.tau.ac.il
2 Ecole Polytechnique et Département Finance et Economie, HEC, 1, rue de la Libération, 78 Jouy-en-Josas,
France. e-mail: vieille@hec.fr

ha
l-0

02
42

99
4,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



1 Introduction

Stopping games have been introduced by Dynkin [4] as a generalization of
optimal stopping problems, and later used in several models in economics
and management science, such as optimal equipment replacement, job search,
consumer purchase behavior, research and development (see Mamer [11] and
the references therein), and the analysis of strategic exit (see Ghemawat and
Nalebuff [6] or Li [10]).

The basic setting is as follows. The game is defined by two processes a
and b, defined on a probability space (Ω,A,P), endowed with a filtration F.
Two players are allowed to stop at any time. The payoff to player 1 is given
by one of the two processes depending on who stopped first. Formally, the
two players choose stopping times σ and τ and player 1 receives from player
2 the amount

E [aσ1σ<τ + bτ1τ≤σ,τ<+∞] .

Much work has been devoted to the study of this zero-sum game, both in a
discrete time and in a continuous time framework. In discrete time, Dynkin
[4] proved the existence of the value under an assumption that at any stage
only one of the two players is allowed to stop, and Neveu [13] proved the
existence of the value under the assumption a ≤ b. After those seminal
contributions, most of the literature focused on continuous-time games, in the
context of the general theory of stochastic processes. Bismut [1] proved the
existence of the value under the assumption a ≤ b and an assumption known
as Mokobodsky’s hypothesis (in addition, several regularity assumptions are
needed). The latter assumption was later removed, see e.g. Lepeltier and
Maingueneau [9]. Some authors also worked in the diffusion case, see e.g.
Cvitanić and Karatzas [3]. Finally, most work involves a symmetrized payoff
function

γ(σ, τ) = E [aσ1σ<τ + bτ1τ<σ + cσ1σ=τ<+∞] ,

where c is a third given process, under the assumption a ≤ c ≤ b. This list
of references is by no means exhaustive.

Comparatively few studies deal with non-zero-sum (two-player) stopping
games. For such games, a, b, c are R2-valued processes, and the i-th coordi-
nate is the payoff to player i, see e.g. Mamer [11], Morimoto [12], Hideo [7],
and Ohtsubo [14],[15].

When the players are restricted to stopping times, the value needs not
exist in general, even if the processes are nonrandom and constant. For
instance, for the stopping game in discrete time defined by an = bn = 1 and
cn = 0, one has

sup
σ

inf
τ

γ(σ, τ) = 0 while inf
τ

sup
σ

γ(σ, τ) = 1.
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The purpose of this paper is to survey recent work on stopping games that
aim at obtaining the existence of the value under no order conditions on
the processes a, b and c, by suitably convexifying the set of strategies of the
players.

The paper is organized as follows. Section 2 contains a brief discussion
of the appropriate convexification. Sections 3 and 4 present results on zero-
sum games, respectively for discrete time and continuous time models. In
both cases, the proof is sketched in the simple case of deterministic payoff
functions. Finally, Section 5 discusses a result on two-player non-zero-sum
stoping games with deterministic payoff functions.

2 Randomized stopping times

This section contains a brief discussion of the proper way of convexifying the
set of stopping times. A more extensive treatment can be found in Rosenberg
et al. [16], or Touzi and Vieille [22]. We follow the logic of behavior strategies
and enlarge the set of strategies by allowing a player to stop, at any stage,
with positive probability.

In discrete time, this leads to the following notion. A strategy (of player 1)
is a F-adapted process x = (xn) with values in [0, 1]. xn is to be interpreted
as the probability that player 1 stops the game at stage n, conditional on the
game being still alive at that stage. In computing the payoff induced by a pair
of strategies (x,y), one assumes that the randomizations performed by the
players in the various stages are mutually independent, and independent from
the payoff processes. Thus, a strategy x that corresponds to the stopping
time σ is

xn =

{
0 on σ > n
1 on σ ≤ n

In continuous time, this leads to the following notion. A strategy (of
player 1) is a right-continuous, non-decreasing adapted process (Ft) with
Ft ∈ [0, 1] for each t. Here, Ft may be interpreted as the probability that
player 1 will have stopped before time t (including t). Thus, the strategy that
corresponds to a stopping time σ is the process (Ft) defined as Ft = 1σ≤t.
The payoff associated with the two strategies (Ft) and (Gt) can be written
as

γ(F, G) = E

[∫
[0,∞)

a(1−G)dF +

∫
[0,∞)

b(1− F )dG +
∑

0≤t<∞

ct∆Ft∆Gt

]
,

where ∆Ft = Ft − Ft− is the jump of F at time t.

3
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The alternative standard way of convexifying the set of stopping times
is to follow the logic of mixed strategies and to define a strategy as, loosely
speaking, a probability distribution over stopping times. The equivalence
between mixed strategies and behavior strategies holds under fairly general
assumptions, see Kuhn [8]. For a discussion specific to the case of stopping
games and to the above notions, see Touzi and Vieille [22].

3 Zero-Sum Games in Discrete Time

We here deal with zero-sum stopping games in discrete time. We first describe
the setup and the result in a precise way, then give an overview of the proof.

Let (Ω,A,P) be a probability space, and (Fn) be a filtration over (Ω,A,P)
(the information available at stage n). Let (an), (bn), (cn) be adapted pro-
cesses, defined over (Ω,A,P). We assume

sup
n
|an|, sup

n
|bn|, sup

n
|cn| ∈ L1(P). (1)

By properly enlarging the probability space (Ω,A,P), one can assume w.l.o.g.
that it supports a double sequence (Xn, Yn)∞n=0 of iid variables, uniformly
distributed over [0, 1], such that, for each n: (i) (Xn, Yn) is independent of
the process (ak, bk, ck)k; (ii) (Xn, Yn) is Fn+1-measurable, and independent of
Fn. Xn and Yn are used by the players in their randomizations.

Define the stopping game as follows. A strategy for player 1 (resp. player
2) is a [0, 1]-valued adapted process x = (xn) (resp. y = (yn)). Given
strategies (x,y), define the stopping stages of players 1 and 2 by θ1 = inf{n ≥
0, Xn ≤ xn}, θ2 = inf{n ≥ 0, Yn ≤ yn}, and set

θ = min(θ1, θ2). (2)

Thus, θ is the stage at which the game stops.
We set

r(x,y) = aθ11θ1<θ2 + bθ21θ2<θ1 + cθ11θ1=θ2<+∞.

The payoff of the game is γ(x,y) = E(r(x,y)).
The game has a value v ∈ R if

v = sup
x

inf
y

γ(x,y) = inf
y

sup
x

γ(x,y).

It is convenient to introduce discounted payoffs, as in Yasuda [23]. For λ ∈
(0, 1], the λ-discounted evaluation is given by

γλ(x,y) = λE
[
(1− λ)θ+1r(x,y)

]
. (3)
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The game has a λ-discounted value vλ ∈ R if

vλ = sup
x

inf
y

γλ(x,y) = inf
y

sup
x

γλ(x,y).

Yasuda [23] proved the existence of the discounted value vλ, by adapting
Shapley’s [17] argument.

Theorem 1 (Rosenberg, Solan and Vieille, [16]) Every stopping game such
that (1) holds has a value v. Moreover, v = limλ→0 vλ.

We sketch below the proof in the deterministic case; that is, the payoff
at each stage n depends only on n. Thus, an, bn, cn are real numbers. The
proof for the general case builds upon the ideas described below.

We denote by Gn the game that starts at stage n. Gn is similar to the
original game, but players are restricted to use strategies that stop before
stage n with probability 0. In particular, G0 coincides with G.

We denote by vn(λ) the λ-discounted value of Gn, for each n ∈ N
and λ ∈ (0, 1]. Define vn(0) = lim supλ→0 vn(λ). We shall prove that
supx infy γ(x,y) ≥ v0(0). By exchanging the roles of the two players, one
immediately deduces

inf
y

sup
x

γ(x,y) ≤ lim inf
λ→0

v0(λ),

which implies both conclusions of the Theorem, since supx infy γ(x,y) ≤
infy supx γ(x,y).

As usual, vn(λ) satisfies a recursive equation (dynamic programming prin-
ciple), that here takes the form

vn(λ) = (1−λ) sup
x∈[0,1]

inf
y∈[0,1]

{(1− x)(1− y) vn+1(λ) + x(1− y) an + y(1− x) bn + xy cn}

(4)
By possibly taking a subsequence (λp) that converges to zero, we may assume
that vn(0) = limλ→0 vn(λ). We let xn(λ) achieve the supremum in (4), and
let xn(0) denote any limit point of (xn(λ)) as λ goes to zero. Thus, one has
for each y ∈ [0, 1] and every λ ≥ 0,

(1− λ)(xn(λ)y vn+1(λ) + xn(λ)(1− y) an + (1− y)xn(λ) bn

+(1− xn(λ))(1− y) cn) ≥ vn(λ). (5)

This can be rephrased by introducing the process (ṽn(λ))n defined, for λ ≥ 0,
by

ṽn(λ) =

{
vn(λ) n ≤ θ
rθ n > θ,

5
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where rθ is equal to aθ, bθ or cθ depending on whether θ1 < θ2, θ1 > θ2

or θ1 = θ2 < +∞. Note that ṽn(λ) depends on (x,y), through the value
of θ. Though (vn(λ)) is a sequence of numbers, (ṽn(λ)) is a process, the
randomness being caused by the random choices of the players. Whenever
useful, we shall write ṽx,y

n (λ) to emphasize which strategies are used.
Inequality (5) can be rephrased as follows: for every choice of strategy

y, and for each λ ≥ 0, the process ((1 − λ)min(n,θ)ṽn(λ)) is a submartingale,
provided that player 1 uses the strategy xλ := (xn(λ)).

In particular, the process (ṽn(0)) is a submartingale under the pair of
strategies (x0,0), where 0 is the strategy of player 2 that never stops. Thus,
it converges, P-a.s., to some random variable ṽ∞.

We now split the discussion in two parts. Assume first that, under the
pair (x0,0), θ is P-a.s. finite. In that case, θ is also P-a.s. finite for (x0,y),
whatever be y. Thus, for each y, the limit ṽ∞ coincides with rθ. The sub-
martingale property of ṽn(0) then implies that γ(x0,y) = E [ṽx0,y

∞ ] ≥ v0(0).
Since y is arbitrary, infy γ(x0,y) ≥ v0(0).

Assume now that θ = +∞ with positive probability, and let ε > 0 be
given. On the event {θ = +∞}, ṽn(0) = vn(0) for each n ∈ N. Therefore,
the sequence of numbers vn(0) is convergent, say to v∞. If v∞ ≤ 2ε,

γ(x0,y) = E [rθ1θ<+∞] ≥ E [ṽx0,y
∞ ]− ε ≥ v0(0)− 2ε,

hence infy γ(x0,y) ≥ v0(0)− 2ε.

The tricky case is when v∞ > 2ε. We choose N ∈ N such that
|vn(0)− v∞| ≤ ε for each n ≥ N . We define a strategy of player 1 as
follows. We first construct two sequences (λp, sp) (possibly of finite length)
by the following recursive device:

• Choose λ1 ∈ (0, 1] such that vN(λ1) > vN(0)− ε2; set

s1 = inf
{
n ≥ N, vn(λ1) ≤ ε2

}
.

• For p ≥ 1, choose λp+1 ∈ (0, 1] such that vsp(λp+1) ≥ vsp(0) − ε2 and
set sp+1 = inf {n ≥ sp, vn(λp+1) ≤ ε2}.

We let x be the strategy that coincides with x0 up to stage s0 = N ,
and with xλp+1 from stage sp up to stage sp+1. Consider what may happen
between the two stages sp and sp+1, assuming that the game was not stopped
before stage sp. Whatever be the strategy y used by player 2, the process
(1 − λp+1)

min(n,θ)ṽn(λp+1) is a submartingale between sp and sp+1. Thus,
ṽn(λp+1) increases on average by a factor of 1

1−λp+1
from one stage to the

6
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following, prior to min(θ, sp+1). Since vn(λp+1) ≥ ε− ε2 for n ≤ min(θ, sp+1)
and all quantities are bounded, it must be that min(θ, sp+1) is finite.

Since vsp+1(λp+1) ≤ ε2, the probability that θ < sp+1 (conditioned on
θ ≥ sp) is bounded away from zero, and the payoff to player 1, conditioned
on θ ≤ sp+1, is at least vsp(λp+1) ≥ v∞ − ε− ε2.

These observations imply that θ < +∞ P-a.s. under (x,y), for each y,
and γ(x,y) ≥ v∞ − 2ε ≥ vN − 2ε. Since ṽn(0) is a submartingale under
(x0,y), this implies that γ(x,y) ≥ v0(0)− 2ε.

4 Zero-Sum Games in Continuous Time

We deal here with zero-sum stopping games in continuous time and with
finite horizon. Let (Ω,F ,P) be a complete probability space, and T > 0 a
fixed terminal time. Let a = {at, 0 ≤ t ≤ T}, b = {bt, 0 ≤ t ≤ T} and
c = {ct, 0 ≤ t ≤ T} be real-valued processes, satisfying the integrability
condition

E

[
sup

t
|at|+ sup

t
|bt|+ sup

t
|ct|

]
< +∞ , (6)

and we denote by F the P-augmentation of the filtration generated by the
processes a, b and c.

We denote by V+ the set of adapted, right-continuous, non-decreasing
processes, with values in [0, 1]. For F, G ∈ V+, we set

γ(F, G) = E

[∫
[0,∞)

a(1−G)dF +

∫
[0,∞)

b(1− F )dG +
∑

0≤t<∞

ct∆Ft∆Gt

]
.

Theorem 2 (Touzi-Vieille [22]) Assume that: (i) (a, b, c) satisfy the inte-
grability condition (6), (ii) the game has a finite horizon T , (iii) a and b are
(càdlàg) semimartingales with trajectories continuous at T, (iv) c ≤ b. Then

sup
F∈V+

inf
G∈V+

γ(F, G) = inf
G∈V+

sup
F∈V+

γ(F, G),

i.e., the stopping game has a value .

The basic idea is to apply Sion [19] minmax Theorem to the payoff func-
tion γ : V+ × V+ → R. Define

S =

{
(Ft),E

[∫ T

0

F 2
t dt

]
< +∞

}
.

7
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The set S is a Hilbert space when endowed with the scalar product E
[∫ T

0
FtGtdt

]
,

and V+ is a subset of S, compact for the weak topology σ(S,S). However,
Sion Theorem does not apply directly since the payoff function γ does not
have enough continuity properties.

This difficulty is circumvented by applying Sion Theorem to restricted
strategy spaces. Define

V1 =
{
(Ft) ∈ V+, (Ft) has continuous trajectories, P-a.s.

}
and

V2 =
{
(Gt) ∈ V+, GT = 1 on {bT < 0 < aT} and ∆GT = 0 on {bT > 0}

}
.

and let S =
{

(Ft),E
[∫ T

0
F 2

t dt + F 2
T

]
< +∞

}
. The space S is a Hilbert

space when endowed with the scalar product E
[∫ T

0
FtGtdt + FT GT

]
. One

can check that V2 is compact for the weak topology σ(S,S). Moreover, γ is
separately continuous on V1 × V2 for the strong topology. Hence, by Sion’s
Theorem

sup
V1

inf
V2

γ(F, G) = inf
V2

sup
V1

γ(F, G).

The restriction on player 1’s strategies is imposed in order to have continuity
of γ. The restriction on player 2’s strategies is imposed in such a way that
restricting the strategy spaces to V1 and V2 respectively entail no loss for the
players:

sup
V1

inf
V2

γ(F, G) = sup
V1

inf
V+

γ(F, G), and inf
V2

sup
V1

γ(F, G) = inf
V2

sup
V+

γ(F, G).

(7)
Let us discuss these two equalities in the non-random case. Thus, a, b and
c are right-continuous functions defined on [0, T ], and continuous at T . The
proof in the general case is obtained by elaborating upon the ideas that
follow.

The first equality is immediate: let (Ft) ∈ V1, and (Gt) ∈ V+ be given.
Thus, F : [0, T ] → [0, 1] is a continuous, non-decreasing function, while

G : [0, T ] → [0, 1] is a right-continuous, non-decreasing function. Let G̃ :

[0, T ] → [0, 1] be the function that agrees with G on [0, T ), and where G̃T

is equal to GT− or to 1 depending whether bT > 0 or bT ≤ 0. Plainly, G̃
belongs to V2. On the other hand,

γ(F, G̃)− γ(F, G) =

{
(1− FT )bT (1−GT ) if YT ≤ 0
−(1− FT )bT ∆GT if YT > 0

8
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In both cases, it is non-positive, which establishes the first equality.
As for the second equality in (7), let G ∈ V2 and F ∈ V+ be given. By

using an argument similar to the one of the previous paragraph, we may
assume that F is continuous at T in case aT > 0, bT ≥ 0. Let (F n) be a
sequence of continuous non-decreasing functions such that F n

t → Ft− for each
t ∈ [0, T ]. Using the assumption c ≤ b, one can check that lim sup γ(F n, G) ≥
γ(F, G), which yields the second equality.

5 Non Zero-Sum Games in Discrete Time

We conclude by presenting a result on two-player non zero-sum stopping
games in discrete time. We show how a simple application of Ramsey The-
orem, combined with a result of Flesch et al [5], imply the existence of an
ε-equilibrium in the deterministic case.

We let here (an), (bn) and (cn) be three bounded sequences in R2, and let
ρ be a uniform bound on the payoffs. The setup of Section 3 then reduces to
the following. A strategy of player 1 is a sequence x = (xn) in [0, 1], where
xn is the probability that player 1 will choose to stop in stage n, if the game
was not stopped before.

The payoff of the game is defined to be

γ(x,y) = E [r(x,y)] ,

as in Section 3, except that here γ(x,y) ∈ R2.

Theorem 3 (Shmaya, Solan and Vieille, [18]) For each ε > 0, the stopping
game has an ε-equilibrium (x∗,y∗); that is, a pair of strategies that satisfies:

γ1(x,y∗) ≤ γ1(x∗,y∗) + ε and γ2(x∗,y) ≤ γ2(x∗,y∗) + ε for each x,y.

Note that if payoffs are not uniformly bounded, an ε-equilibrium needs
not exist. (as a counter example, take the game defined by ai

n = bi
n =

n− 1, ci
n = n− 2 for every i = 1, 2, and every n ∈ N). Moreover, even when

payoffs are bounded a 0-equilibrium needs not exist (e.g. ai
n = bi

n = n/(n+1),
ci
n = (n− 1)/n for every i = 1, 2, and every n ∈ N).

Fix ε > 0 once and for all, and an ε-discretization Z of the set [−ρ, ρ]2;
that is, Z is a finite set such that for every u ∈ [−ρ, ρ]2 there is z ∈ Z with
‖z − u‖ < ε.

For every two positive integers k < l we define a periodic stopping game
G(k, l) as follows:

an(k, l) = ak+(n mod l), bn(k, l) = bk+(n mod l) and cn(k, l) = ck+(n mod l)

9
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This is “the game that starts at stage k and restarts at stage l.” We denote
by γk,l(x,y) the payoff function in the game G(k, l).

The game G(k, l) may be analyzed as a particular stochastic game Γ(k, l) with
absorbing states. To see this, assume for example k = 0 and l = 2, and con-
sider the stochastic game Γ(0, 2) described by the matrix

b0
∗ b1

∗

a0
∗ c0

∗ a0
∗

a1
∗ b0

∗ c1
∗

In this game player 1 chooses a row and player 2 chooses a column. The first
line corresponds to the pure strategy never stop, the second and third ones
to the pure strategies stop in stage 0 and stop in stage 1. The columns are
to be interpreted symmetrically for player 2. The meaning of an asterisked
entry is that the game moves to an absorbing state (i.e., ends) as soon as
such an entry is played.

Thus, each stage of Γ(0, 2) corresponds to two stages (a period) of G(0, 2).
Using Flesch et al. [5], the game Γ(k, l) has a stationary ε-equilibrium,

or equivalently, for each ε > 0, the game G(k, l) has a periodic ε-equilibrium
(x(k, l),y(k, l)), with period l − k.

For each k < l, we choose z(k, l) ∈ Z such that

‖γ(x(k, l),y(k, l))− z(k, l)‖ < ε.

For every pair of non-negative integers we attached an element in Z – a
color. By Ramsey Theorem (see, e.g., Bollobás [2]) there is an infinite set
K ⊆ N ∪ {0} and z ∈ Z such that z(k, l) = z for every k, l ∈ K, k < l.

In particular, there exists an increasing sequence of non-negative integers
k1 < k2 < · · · such that for every j ∈ N, z(kj, kj+1) = z.

We define a profile (x,y) from stage k1 on by concatenating the profiles
(x(ki, ki+1),y(ki, ki+1)): (x,y) coincides with (x(ki, ki+1),y(ki, ki+1)) from
stage ki up to stage ki+1 − 1. To complete the construction before stage k1,
we recall that every finite-stage game has an equilibrium. The profile (x,y)
coincides between stages 0 and k1 − 1 with an equilibrium in the k1-stage
game, whose payoffs are (an, bn, cn)n<k1 if the play is stopped prior to stage
k1, and is z otherwise. There is no difficulty in proving that (x,y) is an
ε-equilibrium of the stopping game, starting from stage k1.

1 Moreover, the
expected payoff, conditioned that the game was not stopped before stage k1,
is, up to ε, z. It follows that (x,y) is an ε-equilibrium of the stopping game.

1This is true, provided the periodic profiles in Γ(k, l) are chosen to satisfy an additionnal
property: the probability of absorption in each period is bounded away from 0. We do
not elaborate here on this point.

10
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Extensions to more than two players are limited. We actually proved that
if every periodic deterministic game admits an ε-equilibrium, then every non-
periodic deterministic game admits an ε-equilibrium. Using the technique of
Solan [20] instead of that of Flesch et al [5], one can prove that every three-
player periodic deterministic game admits an ε-equilibrium (though it needs
not be periodic). One can then prove that every three-player deterministic
stopping game admits an ε-equilibrium.

Unfortunately, it is currently not known whether every n-player periodic
deterministic stopping game admits an ε-equilibrium, for n ≥ 4. For more
details, see Solan and Vieille [21].

To generalize this proof to general two-player stopping games, one needs
to generalize Ramsey Theorem to a stochastic setup, and to show that a
concatenation of ε-equilibria in periodic non deterministic games yields an
ε′-equilibrium, for some ε′ > 0 that goes to 0 as ε goes to 0. Whereas Ramsey
Theorem can be generalized to a stochastic setup, it is not clear yet how to
achieve the second goal.
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