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Résumé: Considérons un jeu stochastique à deux joueurs et à somme-nulle avec un espace d'état 
Borélien S, des espaces d'actions métriques et compacts A, B et une probabilité de transition q 
telle que l'intégrale sous q de toute fonction mesurable et bornée dépend mesurablement de 
l'état initial s et continument des actions (a,b) des joueurs. Supposons que le paiement est une 
fonction bornée f des histoires infinies des états et actions. Admettons enfin que f soit 
mesurable pour le produit des topologies Boréliennes (des espaces des cordonnées) et semi-
continue inférieurement pour le produit des topologies discrètes. Alors, le jeu a une valeur et 
le joueur II a une stratégie optimale parfaite en sous jeux. 

 
Abstract: Consider a two-person zero-sum stochastic game with Borel state space S, compact metric 

action sets A, B and law of motion q such that the integral under q of every bounded Borel 
measurable function depends measurably on the initial state s and continuously on the actions 
(a,b) of the players. Suppose the payoff is a bounded function f of the infinite history of states 
and actions such that f is measurable for the product of the Borel sigma-fields of the 
coordinate spaces and is lower semi continuous for the product of the discrete topologies on 
the coordinate spaces. Then the game has a value and player II has a subgame perfect optimal 
strategy.      

 
Mots clés : Jeux stochastiques, perfection en sous jeux, ensembles Boréliens. 
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Classification AMS: 60G40, 91A60, 60E15, 46A55. 

 
 

ha
l-0

02
43

01
4,

 v
er

si
on

 1
 - 

6 
Fe

b 
20

08



1 Introduction.

The stochastic games treated here are two-person and zero-sum. The state space S is
a Borel subset of a Polish space. Players I and II have compact metric action sets A
and B, respectively. The law of motion is a Borel transition function q from S×A×B
to S such that for each bounded Borel function g on A×B × S, the function

(a, b, s) 7→
Z
g(a, b, s0) q(ds0|s, a, b)

is jointly continuous in a, b (for the product of the compact metric topologies on A
and B) for each fixed s.
The game starts at some initial state s1. Player I chooses an action a1 ∈ A and,

simultaneously, player II chooses an action b1 ∈ B. The next state s2 has distribution
q(·|s1, a1, b1) and is announced to the players together with the actions a1, b1 chosen
by them. This procedure is iterated so as to generate a random sequence

h = (s1, (a1, b1, s2), . . . , (an−1, bn−1, sn), . . .)

in the infinite product space H = S × (A × B × S)N where N is the set of positive
integers. The payoff from II to I is f(h) where f is a bounded function from H to the
real numbers. We assume that f is a Borel measurable function of h when the infinite
product spaceH is assigned the product topology of the coordinate spaces under which
S is a Borel set, and A and B are compact metric spaces. We further assume that
f is lower semicontinuous when H is assigned the product of the discrete topologies
on the spaces S, A, and B. In the sequel the terms "Borel" and "measurable" will
always refer to the first topology onH, while the terms "open,""closed,""continuous,"
and "semicontinuous" will refer to the second. Thus f is assumed to be Borel, lower
semicontinuous. (A simple example of such a function is the indicator of the set
of histories h such that sn ∈ B for some n, where B is a Borel subset of S. An
example of a Borel, continuous function is the familiar discounted payoff f(h) =P

n β
n−1r(sn, an, bn) where 0 < β < 1 and r : S×A×B 7→ R is bounded Borel.) The

game just described will be denoted by Γ(f, s1).
Denote by S∗ the disjoint union of the sets S, S× (A×B×S), , . . . , S× (A×B×

S)n, . . . , that is,
S∗ =

[
n≥0
[S × (A×B × S)n].

The elements of S∗ are called partial histories.
Let P (A) and P (B) be the sets of probability measures defined on the Borel

subsets of A and B, respectively. A strategy σ for player I assigns to each p =
(s1, (a1, b1, s2), . . . , (an−1, bn−1, sn)) ∈ S∗ the conditional distribution σ(p) ∈ P (A) for
an given p. Formally, a strategy σ for player I is a Borel function from S∗ into P (A).
A strategy τ for player II is defined similarly with P (B) in place of P (A). An initial
state s1 and strategies σ and τ for the players determine the distribution Pσ,τ of the
sequence h = (s1, (a1, b1, s2), . . . , (an−1, bn−1, sn), . . .). The expected payoff from II to
I in the game Γ(f, s1) is then Eσ,τf =

R
f(h)Pσ,τ(dh).

Let p = (s1, (a1, b1, s2), . . . , (an−1, bn−1, sn)) ∈ S × (A × B × S)n−1 be a partial
history. The length of p, lh(p), is defined to be n − 1. (Thus lh(s) = 0 for s ∈ S.)

1
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Denote by l(p) the last state sn of p. The subgame Γ(f, p) is the game with initial
state sn = l(p) and payoff function fp defined for sequences

h0 = (sn, (a
0
1, b

0
1, s

0
2), (a

0
2, b

0
2, s

0
3), . . .)

to be

fp(h0) = f(s1, (a1, b1, s2), . . . , (an−1, bn−1, sn), (a
0
1, b

0
1, s

0
2), (a

0
2, b

0
2, s

0
3), . . .).

Thus fp is the section of f at p. (Notice that the game Γ(f, s) is itself the subgame
Γ(f, p) for which p = s.) For strategies σ and τ , the conditional strategies given the
partial history p are written σ[p] and τ [p], respectively. A strategy τ for player II, say,
is said to be subgame perfect if τ [p] is optimal for player II in the subgame Γ(f, p) for
every p ∈ S∗.
Here is our main result and a corollary.

Theorem 1.1. Suppose that f is a bounded, Borel, lower semicontinuous function on
H. Then the game Γ(f, p) has a value V (p) for each p ∈ S∗ and the value function
V is Borel measurable. For each ² > 0 and p ∈ S∗, player I has an ²-optimal strategy
for the game Γ(f, p). Player II has a subgame perfect strategy.

Corollary 1.2. If f is bounded, Borel, and continuous, then both players have sub-
game perfect strategies.

These results generalize those of Sengupta (1975) who treated the case where the
state space S is compact metric, the action sets A and B are finite, and the payoff
function is lower semicontinuous on H when S is given its compact metric topology.
The key to the proof of Theorem 1.1 is a result in the next section on the structure

of Borel, lower semicontinuous functions. Sections 3 and 4 treat one-day and n-day
games, respectively. The proof of Theorem 1.1 is completed in section 5. The final
section has some additional remarks.

2 Borel, lower semicontinuous functions

Let X be a Borel subset of a Polish space, and let X̃ be the product space XN . As in
section 1, the term "Borel" will refer to the product of the topologies for which X is
a Borel set and the term "lower semicontinuous" will refer to the product of discrete
topologies. We abbreviate "lower semicontinuous" by "l.s.c" below.

Theorem 2.1. Let f be a bounded, Borel l.s.c. function on X̃. Then there exist
uniformly bounded Borel functions fn, n ∈ N, on X̃ such that fn ≤ fn+1, fn depends
only on the first n coordinates of X̃ and f = limn fn.

Proof. For each rational r, let Br = [f > r]. Then each Br is Borel, open, and

r < r0 ⇒ Br0 ⊆ Br.

By Corollary 2.4 in Maitra et al (1990), there is for each r a Borel stopping time tr
such that Br = [tr < ∞]. Define, for each n ≥ 1, Cr,n = [tr ≤ n]. Then, for each
r and n, Cr,n is a Borel cylinder set with base contained in Xn, Cr,n ⊆ Cr,n+1, and

2
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Br =
S
n≥1Cr,n. Now let Br,n =

S
r≤r0 Cr0,n. Then the sets Br,n are cylinders with

base contained in Xn, Br,n ⊆ Br,n+1, and

r < r0 ⇒ Br0,n ⊆ Br,n.

Moreover, [
n≥1
Br,n =

[
n≥1

[
r≤r0

Cr0,n =
[
r≤r0

[
n≥1
Cr0,n =

[
r≤r0

Br0 = Br.

Define fn : X̃ 7→ R by

fn(h) = sup{r |h ∈ Br,n} = sup
r
[r1Br,n(h)].

Since the sets Br,n depend only on the first n coordinates, so does fn. Plainly, fn is
bounded and Borel measurable. Since Br,n ⊆ Br,n+1, it follows that fn ≤ fn+1, so that
limn fn ≤ f . Suppose now that limn fn(h) < f(h). Then there is a rational r such
that limn fn(h) < r < f(h). Hence, h ∈ Br. So there is an n such that 1Br,n(h) = 1.
Hence, r ≤ fn(h), a contradiction. Thus f ≤ limn fn. This completes the proof.

We now apply Theorem 2.1 to a function defined on the space (A×B × S)N and
we write ((a1, b1, s1), (a2, b2, s2), . . .) for a typical element of this space.

Corollary 2.2. Suppose that f is a bounded, Borel l.s.c. function on (A×B×S)N and
that f does not depend on the coordinates a1, b1. Then there exist uniformly bounded
Borel functions fn such that fn ≤ fn+1, fn depends only on s1, (a2, b2, s2), . . . , (an, bn, sn)
and limn fn = f .

Proof. By Theorem 2.1, there exist bounded Borel functions gn such that gn ≤ gn+1,
gn depends only on ((a1, b1, s1), (a2, b2, s2), . . . , (an, bn, sn)), and f = limn gn. Fix
a∗ ∈ A, b∗ ∈ B and define fn((a1, b1, s1), (a2, b2, s2), . . . , (an, bn, sn), . . . ) to equal
gn((a

∗, b∗, s1), (a2, b2, s2), . . . , (an, bn, sn), . . . ). Then the functions fn satisfy the as-
sertions of the corollary.

3 Parametrized one-day games

Let Y be a Borel subset of a Polish space and let u : Y × A × B × S 7→ R be a
bounded, Borel function. We regard Y as a space of parameters and write uy(a, b, s)
for u(y, a, b, s). The one-day game with initial state s ∈ S and terminal payoff uy is
played as follows. Players I and II choose actions a ∈ A, b ∈ B simultaneously and
a new state s0 with distribution q(·|s, a, b) results. Player II then pays player I the
amount uy(a, b, s0). This game will be denoted by Γ1(uy, s).

Theorem 3.1. For each s ∈ S and y ∈ Y the game Γ1(uy, s) has a value Guy(s).
Moreover, there exist Borel functions µ̄ : Y × S 7→ P (A) and ν̄ : Y × S 7→ P (B) such
that for each y, s, µ̄(y, s) and ν̄(y, s) are optimal strategies for I and II, respectively,
in Γ1(uy, s). The function (s, y) 7→ Guy(s) is jointly Borel measurable in y and s.

Proof. By Ky Fan’s (1953) minimax theorem, the game Γ1(uy, s) has a value, which
will be denoted by Guy(s), and both players have optimal strategies. Now define a
multifunction F on Y ×S, having subsets of P (A)×P (B) as values, by setting F (y, s)

3
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equal to the set of all pairs (µ, ν) such that µ is optimal for I and ν is optimal for II
in Γ1(uy, s). It is straightforward to verify that (µ, ν) ∈ F (y, s) if and only if, for all
n ≥ 1 Z Z

wy(s, a, b)µ(da)ν(db) ≥
Z
wy(s, an, b) ν(db)

and Z Z
wy(s, a, b)µ(da)ν(db) ≤

Z
wy(s, a, bn)µ(da),

where

wy(s, a, b) =

Z
uy(a, b, s

0) q(ds0|s, a, b)

and {an, n ≥ 1} and {bn, n ≥ 1} are dense in A and B, respectively.
Now F (y, s) is a nonempty compact subset of P (A)×P (B) for each y, s, and it is

easy to check that the graph of F , namely, the set

Gr(F ) = {(y, s, µ, ν) ∈ Y × S × P (A)× P (B) | (µ, ν) ∈ F (y, s)},

is a Borel subset of Y × S × P (A) × P (B). It therefore follows from the Kunugui-
Novikov theorem (Theorem 5.7.1, Srivastava(1998)) that there is a Borel function
φ : Y × S 7→ P (A) × P (B) such that φ(y, s) ∈ F (y, s) for each y, s. Take µ̄(y, s) =
πA(φ(y, s)) and ν̄(y, s) = πB(φ(y, s)), y ∈ Y, s ∈ S, where πA and πB are the projec-
tions of P (A)× P (B) onto P (A) and P (B), respectively. Clearly, the maps µ̄ and ν̄
are Borel. Also, since µ̄(y, s) (ν̄(y, s)) is optimal for player I (player II) in Γ1(uy, s),
it follows that

Guy(s) =

Z Z
wy(s, a, b) µ̄(y, s)(da)ν̄(y, s)(db), y ∈ Y, s ∈ S.

Hence, (s, y) 7→ Guy(s) is Borel measurable.

Let un : Y ×A×B×S 7→ R for n ≥ 1 be a sequence of bounded Borel functions.We
write un,y(a, b, s) for un(y, a, b, s) below.

Theorem 3.2. Suppose that un ≤ un+1 for n ≥ 1 and let u = limn un. Then, for all
y ∈ Y ,

a) Gun,y ≤ Gun+1,y, and

b) Guy = limnGun,y.

Proof. Assertion (a) is clear. For (b), fix y and s. Consider the game Γ1(uy, s).
Choose an optimal strategy µ for I, so thatZ Z

uy(a, b, s
0) q(ds0|s, a, b)µ(da) ≥ Guy(s)

for all b ∈ B. By the monotone convergence theoremZ Z
un,y(a, b, s

0) q(ds0|s, a, b)µ(da) ↑
Z Z

uy(a, b, s
0) q(ds0|s, a, b)µ(da). (3.1)

4
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Now both the expression on the left and that on the right of (3.1) are continuous
functions of b for fixed y and s. Since B is compact, by Dini’s theorem, it follows that
the convergence in (3.1) is uniform on B.
Let ² > 0. Choose M so that for all m ≥M and b ∈ B,Z Z

um,y(a, b, s
0) q(ds0|s, a, b)µ(da) ≥ Guy(s)− ².

Consequently, for all m ≥M ,

inf
ν∈P (B)

Z Z Z
um,y(a, b, s

0) q(ds0|s, a, b)µ(da)ν(db) ≥ Guy(s)− ².

It follows that
Gum,y(s) ≥ Gu(s)− ²

for all m ≥M . As ² is arbitrary, this proves that

lim
m
Gum,y(s) ≥ Guy(s).

The inequality in the opposite direction is trivial.

4 n-day games

Here we consider games in which the payoff depends only on the first n days of play.
The main result is the following Borel version of classical backward induction.

Theorem 4.1. Suppose f is a bounded, Borel function on H which depends only on
s1, (a1, b1, s2), . . . , (an, bn, sn+1). Then players I and II have subgame perfect strategies
in Γ(f, ·). If, for p ∈ S∗, V (p) is the value of the subgame Γ(f, p), then V is Borel
measurable on S∗. Moreover,

V (p) = GVp(l(p)), (4.1)

where Vp(a, b, s) = V (p(a, b, s)).

Proof. We will construct subgame perfect optimal strategies σ∗, τ ∗ for I, II, respec-
tively, by backward induction.
If p ∈ S∗ has length lh(p) ≥ n, then fp is constant and equal to f(ph∗), where h∗

is a fixed, arbitrary element of (A×B×S)N . Thus the value V (p) must also be equal
to f(ph∗), and every strategy is optimal for the two players in the game Γ(f, p). So
we can define σ∗(p) and τ ∗(p) to equal µ∗ and ν∗, for all p such that lh(p) ≥ n, where
µ∗ and ν∗ are arbitrary elements of P (A) and P (B), respectively.
Suppose now that σ∗, τ ∗, and V have been defined for all p such that lh(p) ≥ l,

where 1 ≤ l ≤ n. We will define σ, τ , and V for all p of length l − 1. So let p be of
length l − 1. Consider the one-day parametrized game with payoff up, where

up(a, b, s) = V (p(a, b, s)).

5
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By Theorem 3.1, the game Γ1(up, l(p)) has value Gup(l(p)) and optimal strategies
µ̄(p), ν̄(p) that are Borel measurable in p ∈ S × (A×B × S)l−1. We set

σ∗(p) = µ̄(p), τ ∗(p) = ν̄(p), and V (p) = Gup(l(p)).

We check by backward induction that σ∗, τ ∗ are subgame perfect strategies in
Γ(f, ·) and that the value of Γ(f, p) is V (p) for all p.
Let τ be a strategy for II. Then

Eσ∗[p],τ [p]fp =

Z Z Z
Eσ∗[p(a,b,s)],τ [p(a,b,s)]fp(a, b, s) q(ds|l(p), a, b) µ̄(p)(da) τ(p)(db)

≥
Z Z Z

V (p(a, b, s) q(ds|l(p), a, b) µ̄(p)(da) τ(p)(db)

≥ Gup(l(p))
= V (p).

The first inequality is by the inductive assumption; the second holds because µ̄(p) is
optimal in Γ1(up, l(p)).
Similarly, for any strategy σ of I, Eσ[p],τ∗[p]fp ≤ V (p).

Theorem 4.2. Suppose fk, k ≥ 1, is a sequence of uniformly bounded, Borel functions
on H such that each fk depends only on s1, (a1, b1, s2), . . . , (an, bn, sn+1). Assume also
that fk ≤ fk+1 and f = limk fk. Denote by V (·), and Vk(·) the value functions for the
games Γ(f, ·) and Γ(fk, ·), k ≥ 1. Then Vk ≤ Vk+1 and V = limk Vk.

Proof. The theorem follows by backward induction, Theorem 3.2, and Theorem 4.1.

5 Lower semicontinuous games

We are now ready for the proof of Theorem 1.1:

Proof. By Corollary 2.2, there exist uniformly bounded Borel functions fn, n ≥ 1, such
that each fn depends only on the coordinates s1, (a1, b1, s2), . . . , (an, bn, sn+1), fn ≤
fn+1, and f = limn fn.
Let Vn(·) be the value function for Γ(fn, ·). Then Vn ≤ Vn+1. Set V = limn Vn. We

claim that V (·) is the value function for Γ(f, ·). To see this, let ² > 0 and fix p ∈ S∗.
Choose k such that Vk(p) > V (p)− ². According to Theorem 4.1, there is a subgame
perfect strategy σk for player I in Γ(fk, ·). Plainly then, if τ is any strategy for player
II,

Eσk[p],τ [p](fp) ≥ Eσk[p],τ [p](fkp) ≥ Vk(p) > V (p)− ².
Thus the lower value of Γ(f, p) is at least V (p).
Now let Vp(a, b, s) = V (p(a, b, s)) and Vk,p(a, b, s) = Vk(p(a, b, s)). Then, by Theo-

rems 3.2 and 4.1,

GVp(l(p)) = lim
k
GVk,p(l(p)) = lim

k
Vk(p) = V (p).

6
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By Theorem 3.1, there is a Borel function τ ∗ : S∗ 7→ P (B) such that τ ∗(p) is
optimal for player II in Γ1(Vp, l(p)). To complete the proof, it suffices to show that,
for all strategies σ for I and all p, that

Eσ[p],τ∗[p](fp) ≤ V (p), p ∈ S∗.

For this will establish that the upper value of Γ(f, p) is at most V (p), and also that
τ ∗ is subgame perfect.
Let p have length 0. The proof for p of positive length is similar. Suppose l(p) = s1.

Fix a strategy σ for I. Suppose that the random sequence generated when I plays σ
and II plays τ ∗ is

s1, Y1, Y2, . . . , Yn, . . . .

(Thus Yn = (an, bn, sn+1), n ≥ 1.) By the choice of τ ∗, the process

V (s1), V (s1, Y1), . . . , V (s1, Y1, . . . , Yn), . . .

is a supermartingale under Pσ,τ∗. Indeed,

Eσ,τ∗[V (s1, Y1, . . . , Yn+1)|(s1, Y1, . . . , Yn) = p] = Eσ(p),τ∗(p)Vp ≤ GVp(l(p)) = V (p).

Hence

Eσ,τ∗(f(s1, Y1, . . . , Yn, . . .)) = lim
n
Eσ,τ∗(fn(s1, Y1, . . . , Yn, . . .))

= lim
n
Eσ,τ∗Vn((s1, Y1, . . . , Yn))

≤ lim
n
Eσ,τ∗V ((s1, Y1, . . . , Yn))

≤ V (s1).

Here the first line is by the monotone convergence theorem, the second holds because
fn depends only on s1, Y1, Y2, . . . , Yn, the third holds because Vn ≤ V , and the final
line is by the supermartingale property.

Corollary 1.2 follows from Theorem 1.1 since, by reversing the roles of the players,
we see that I also has a subgame perfect strategy.
The final result of this section generalizes an approximation theorem of Orkin

(1972) for Blackwell games.

Theorem 5.1. Suppose fn, n ≥ 1, are uniformly bounded Borel, l.s.c. functions on
H such that fn ≤ fn+1. Let f = limn fn, and denote by V, Vn the value functions of
the games Γ(f, ·),Γ(fn, ·), respectively. Then V = limn Vn.

Proof. For each n, choose, by Theorem 2.1, bounded Borel functions gn,k such that

gn,k ≤ gn,k+1, lim
k
gn,k = fn,

and gn,k depends only on the coordinates s1, (a1, b1, s2), . . . , (ak, bk, sk+1). Let

fn,k = max{g1,k, g2,k, . . . , gn,k}.

7
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Then fn,k also depends only on s1, (a1, b1, s2), . . . , (ak, bk, sk+1). Furthermore, fn,k ≤
fn+1,k, and fn,k ≤ fn,k+1.
Now define gk = limn fn,k. We claim that (i) gk ≤ gk+1 and (ii) limk gk = f . Claim

(i) is trivial. For (ii), note that

lim
k
gk = lim

k
lim
n
fn,k

= lim
n
lim
k
fn,k

≥ lim
n
lim
k
gn,k

= lim
n
fn

= f.

Now fn,k ≤ fn. So we also have

lim
k
gk = lim

k
lim
n
fn,k ≤ lim

n
fn = f.

For a function g, let Vg(·) denote the value function of Γ(g, ·). By inspecting the
proof of Theorem 1.1 above, we see that V = limk Vgk . But, by Theorem 4.2, for each
k, limn Vfn,k = Vgk . Now Vfn,k ≤ Vn since fn,k ≤ fn; so limn Vfn,k ≤ limn Vn. Hence,
for each k, Vgk ≤ limn Vn. Consequently, V = limk Vgk ≤ limn Vn.

6 Further remarks

1. It is possible to generalize Theorems 1.1 and 5.1 to a situation where the
actions available to the players depend on the state. More precisely, suppose
that A(s) and B(s) are the actions available to players I and II, respectively, at
state s, s ∈ S. Assume A and B are Borel subsets of Polish spaces and that, for
every s, A(s) and B(s) are compact, nonempty subsets of A and B, respectively.
Suppose further that the sets {(s, a) : a ∈ A(s)} and {(s, b) : b ∈ B(s)} are
Borel subsets of S × A and S × B, respectively. Then Theorems 1.1 and 5.1
remain true. The proofs go through without major changes.

2. The proof of Theorem 1.1 goes through if we replace the assumption that f
is bounded by the assumptions that (a) f is bounded below and (b) for every
p ∈ S∗, there is a strategy τ for player II such that

sup
σ
Eσ[p],τ [p]fp <∞.

Thus positive stochastic games are subsumed by the games treated here.

3. The games considered in this article form a subclass of the "leavable games"
of Maitra and Sudderth (1993). To see this, one need only redefine the state
space in this reference to be the set of partial histories. The formulation of
leavable games is further complicated by allowing player I to use stop rules. In
this article we have done away with stop rules. The ’93 paper also required the
use of universally measurable strategies and upper analytic functions. Here we
have been able to restrict attention to Borel measurable strategies and functions.
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4. The conditions on A and q in Theorems 1.1 and 5.1 can be relaxed as follows:

(a) A is a Borel (rather than compact) subset of a Polish space;

(b) q is a Borel measurable transition function such that for every bounded
Borel function g on A×B × S, the function

(a, b, s) 7→
Z
g(a, b, s0) q(ds|s, a, b)

is continuous in b (rather than a, b) for fixed s and a.

Then Theorem 1.1 holds with the following changes:

(i) For every p, player I has a universally measurable (rather than Borel)
²- optimal strategy in Γ(f, p);

(ii) Player II has a subgame perfect universally measurable (rather than
Borel) strategy in Γ(f, ·);
(iii) The value function V is upper analytic (rather than Borel) on S∗.

Under these weaker conditions Theorem 3.1 has to be replaced by a weaker
statement, similar to Lemmas 3.1 and 3.2 of Maitra and Sudderth (1993), whose
proof relies on Theorem 5.1 in Nowak (1985). Other changes in the proof of
Theorem 1.1 are of a minor nature.

Theorem 5.1 of this paper also remains true under these weaker conditions.

5. Under a continuity assumption on the payoff functions similar to that of
Corollary 1.2, Mertens and Parthasarathy (2003) proved the existence of sub-
game perfect Nash equilibria for n-person games. However, their proof also
required an assumption that the law of motion be a continuous function of the
actions in the norm topology for measures on the state space. We do not know
whether subgame perfect Nash equilibria always exist for n-person games when
the payoffs are bounded, Borel, and continuous, the action sets are compact
metric, and the law of motion q(·|s, a1, . . . , an) has the property that the func-
tion

(a1, . . . , an, s) 7→
Z
g(a1, . . . , an, s

0) q(ds0|s, a1, . . . , an)

is jointly continuous in the actions (a1, . . . , an) for each fixed s and every bounded
Borel function g of s, a1, . . . , an.
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