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Abstract— Some crucial time series of market data, such as
electricity spot price, exhibit long-memory, in the sense of slowly-
decaying correlations, combined with heteroskedasticity. To be
able to modelized such a behaviour, we consider thek-factor
GIGARCH process. The related parameter estimation problem is
addressed using an extension of Whittle estimation. We develop
the corresponding asymptotic theory for estimation. We apply
this approach to electricity prices (spot prices) from the German
energy market (European Energy eXchange). For these data, we
propose two models of k-factor GIGARCH process. To conclude,
the forecasting performances of these models are analysed in
detail.

I. I NTRODUCTION

However, Long-range dependence is now a phenomenon
which have attracted the attention of more and more
statisticians and economists since the works of Granger and
Joyeux (1980), Hosking (1981). The long memory parameter
d of the FARIMA(p, d, q) model is generally estimated in
the spectral domain by considering a least squares procedure
based on the periodogram, see for instance Geweke and
Porter-Hudak (1983), Robinson (1994, 1995) or Giraitis and
al. (1998) or frequency-domain maximum likelihood (ML)
estimation procedure proposed by Fox and Taqqu (1986),
Sowell (1992) or Cheung and Diebold (1993). For a review
of estimation techniques in long memory models, we refer to
Beran (1994), Guégan (1994), Bisaglia and Guégan (1998)
or Bisaglia (1998).

many empirical time series often possess a persistent periodic
behaviour, especially when dealing with hourly, daily or
monthly frequencies. For intance, the hourly spot prices
of Germany electricity market shows a strong seasonality
of daily and weekly. Unfortunately, the FARIMA process
does not allow to take into account a cyclical or periodic
behaviour. Therefore, many authors proposed different
long memory processes, fo which the common point is to
have a spectral density with one or more singularities, not
restrict at the origin, somewhere on the interval[0, π]. For
instance, we refer to the works of Gray andal. (1989),
Chung (1996(a), 1996(b)) or Yajima (1996) for models

with periodogram having a single peak, see the paper of
Giraitis and Leipus (1995), Hosoya (1997) or Woodward
and al. (1998) for models with periodogram having more
than one peak. Some authors proposed a two-steps procedure
to estimate the parameter the Gegenbauer autoregressive
moving-average (GARMA) model. In the first step, they
estimate the frequency in which the periodogram becomes
unbounded by using a grid-search procedure, see Gray and
al. (1989) or Chung (1996(a), 1996(b)) for more details, or
by taking the maximum of the periodogram (Yajima (1996)).
Then, in a second step, the memory parameter is estimated
by using a classical parametric or semi-parametric methods
of the long memory domain. Later, a simultaneous Whittle’s
method is proposed. For more details, we refer to Férrara
and Guégan (2001), Férrara (2000) or Giraistis and Leipus
(1995). All of the aforementioned works assume that the
conditional variance of time series is a constant over time,
however.

Time series models with a time-varying conditional variance
(ARCH) was first propsed by Engle (1982). This class of
models has important applications, particulary in finance
and economics, see Bollerslev (1986), Bollerslev, Engle and
Woodridge (1988). An extension of this model, considering
the long memory behaviour, has been introduced by Baillie
andal. (1996): it is the so-called FIGARCH models.

Considering the behaviour of very complex data, such that
the electricity spot prices, it seems natural to consider time
series both taking into account persistence with quasi periodic
behaviour and heteroskedasticity. Guégan (2000) introduced
the k-factor GIGARCH process and studied later in (2003) the
properties of stationarity and invertibility of the process. Our
aim is to study in this article, the parameters estimation ofthe
k-factor GIGARCH process and the asymptotic properties of
the estimators. Two estimations procedures were proposed:the
first is based on the conditional sum of squares method (CSS)
and the second approach is an extension of Whittle estimation
procedure. The article is organized as follow. Section 2 gives
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the models definition. Section 3 discusses the two estimations
procedures and the asymptotic properties of the estimators.
Section 4 applies the k-factor GIGARCH process to the hourly
spot prices of German electricity market (August, 15th 2000
to December, 31th 2002).
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II. GIGARCH PROCESSES

Assume that(ξt)t∈Z is a white noise process with unit
variance and let the polynomialsφ (B) and θ (B) denote the
ARMA operators. Let B denote the backshift operator and
0 < di < 1

2 if |νi| < 1 or 0 < di < 1
4 if |νi| = 1

for i = 1, · · · , k. We define a centeredk-factor GIGARCH
process(Xt)t∈Z by, ∀ t

φ (B)
k
∏

i=1

(

I − 2νiB + B2
)di

Xt = θ (B) εt, (1)

where

εt =
√

htξt, with ht = a0 +

r
∑

i=1

aiεt−i +

s
∑

i=1

biht−i. (2)

For i = 1, · · · , k, the frequenciesλi = arccos (νi) are
called the Gegenbauer frequencies (or G-frequencies). The
process defined by the equations (??)-(??) was introduced
by Guégan (2000, 2003) generalizing fractionally integrated
generalized autoregressive conditional heteroskedasticity
process (FIGARCH) introduced by Baillie, Bollerslev and
Mikkelsen (1996).

We recall that the Gegenbauer polynomials, often used
in applied mathematics because of their orthogonality and
recursion properties, are defined by:

(

I − 2νz + z2
)−d

=
∑

j≥0

Cj (d, ν) zj , (3)

where|z| ≤ 1 and |ν| ≤ 1.

The coefficients(Cj (d, ν))
j∈Z

of this development can
be computed in many different ways. For example, Rainville
(1960) shows that:

Cj (d, ν) =

[ j

2 ]
∑

k=0

(−1)
k
Γ (d + j − k) (2ν)

j−2k

Γ (d) Γ (k + 1) Γ (j − 2k + 1)
, (4)

where

[

j

2

]

is the integer part of
j

2
. An easiest way to

compute the Gegenbauer polynomials(Cj (d, ν))
j∈Z

is based
on the following recursion formula∀ j > 1:

Cj (d, ν) = 2ν

(

d − 1

j
+ 1

)

Cj−1 (d, ν)

−
(

2
d − 1

j
+ 1

)

Cj−2 (d, ν) , (5)

whereC0 (d, ν) = 1 andC1 (d, ν) = 2dν.

The properties of stationarity and invertibility of ak-factor
GIGARCH process are established and proved by Guégan
(2003).

In this section, we provide some results related to the
asymptotic properties of thek-factor GIGARCH process es-
timators, obtained by two different methods: the conditional
sum of squares (CSS) and the Whittle approach.

III. E STIMATION OF GIGARCH MODELS

Given a stationary k-factor GIGARCH process
{Xt}T

t=1 defined by the equations (??)-(??). We
denote γ = (φ1, · · · , φp, θ1, · · · , θq, d1, · · · , dk),
δ = (a0, a1, · · · , ar, b1, · · · , bs) andω = (γ, δ) its parameters.
We assume thatω0 = (γ0, δ0) is the true value ofω and is in
the interior of the compact setΘ ⊆ Rp+q+k+r+s+1.

A. Conditional Sum of Squares estimation

The conditional sum of squares estimatorω̂T of ω in Θ
maximizes the conditional logarithmic likelihoodL (ω) on
F0, where Ft is the σ-algebra generated by(Xs, s ≤ t). If
we assume that the innovations(εt)t∈Z have a conditional
Gaussian distribution then the conditional log-likelihood is
defined by:

L (ω) =
1

T

T
∑

t=1

ℓt, ℓt = −1

2
log (ht) −

ε2
t

2ht

. (6)

Now, if we assume that the innovations(εt)t∈Z have a
conditional Student distribution withl degrees of freedom,
then the CSS estimator̂ωT maximizes the likelihood function
L (ω) defined by

L(ω) = T

[

log Γ

{

(l + 1)

2

}

− log Γ

(

l

2

)

− 1

2
log (l − 2)

]

− 1

2

T
∑

t=1

{

log(ht) + (l + 1)

[

log(1 +
ε2
t

ht(l − 2)
)

]}

.(7)

In the following Theorem,L (ω) represents the log likelihood
introduced in (??) or in (??).

Theorem 3.1:Suppose that the process(Xt)t∈Z is
generated by equations (??)-(??). Assume that

a0 > 0, a1, · · · , ar, b1, · · · , bs ≥ 0,
r
∑

i=1

ai +

s
∑

i=1

bi < 1,

E
(

ε4
t

)

< ∞, 0 < di < 1
2 if |νi| < 1 or 0 < di < 1

4 if
|νi| = 1 for i = 1, · · · , k and all roots of the polynomials
φ (B) andθ (B) lie outside the unit circle. If we assume that
all the G-frequencies are known. Then

1) There exists a CSS estimatorω̂T that satisfies∂L(ω)
∂ω

= 0

and ω̂T
P→ ω0 asT → ∞.

2)
√

T (ω̂T − ω0)
D→ N

(

0,Ω−1
0

)

asT → ∞, where
P→ and

D→ denotes respectively the convergence in probability



and in distribution. Furthermore,Ω0 = diag (Ωγ0
,Ωδ0

)
and Ωγ0

and Ωδ0
are values ofΩγ and Ωδ at ω = ω0,

with Ωγ = E
([

1
ht

∂εt

∂γ
∂εt

∂γT + 1
2h2

t

∂ht

∂γ
∂ht

∂γT

])

and

Ωδ = E
([

1
2h2

t

∂ht

∂δ
∂ht

∂δT

])

.

3) The information matricesΩγ and Ωδ can be estimated
consistently by

Ω̂γ =
1

T

T
∑

t=1

[

1

ht

∂εt

∂γ

∂εt

∂γT
+

1

2h2
t

∂ht

∂γ

∂ht

∂γT

]

, (8)

and

Ω̂δ =
1

T

T
∑

t=1

([

1

2h2
t

∂ht

∂δ

∂ht

∂δT

])

. (9)

The proof is given in for the Gaussian case (Diongue and
al. (2003)). Note that, if the innovations(εt)t∈Z have a
conditional Student distribution withl degrees of freedom,
then the proof can easily done using the same steps as in
previous case.

B. Whittle estimation

In this paragraph, we investigate the Whittle’s method to
estimate all parameters of thek-factor GIGARCH process
defined by equations (??)-(??). The first step consists to
estimate the long-memory parametersd = (d1, · · · , dk) and
the ARMA(p, q) parametersα = (φ1, · · · , φp, θ1, · · · , θq)
using the Whittle’s approach (for more details, see
Chung (1996(a), 1996(b))) or Férrara and Guégan
(2001)). In the second step, the GARCH(r, s) parameters
δ = (a0, a1, · · · , ar, b1, · · · , bs) are estimated using Whittle’s
method applied to the residuals of the long-memory process
(see Giraitis and Robinson (2001) for more details).

Theorem 3.2:Let {Xt}T
t=1 be ak-factor GIGARCH pro-

cess defined by equations (??)-(??). Let us assume that the
same hypothesis given in Theorem (??) are verified. Then

1) γ̂T
a.s→ γ0 asT → ∞.

2) Furthermore:
√

T (α̂T − α0)
D→

N
(

0, 4πV (α0)
−1
)

, asT → ∞, Where,

V (α)ij =

∫ π

−π

g2 (λ, ω)
∂g−1 (λ, ω)

∂αi

∂g−1 (λ, ω)

∂αj

dλ.

(10)
Hereg (λ, ω) denotes the spectral density of the process
(Xt)t∈Z .

3) Moreover
√

T
(

d̂T − d
)

D→ N
(

0, 4πV (d)
−1
)

, with

V (d)ij =

∫ π

−π

log

∣

∣

∣

∣

4 sin

[

(λ − λi)

2

]

sin

[

(λ + λi)

2

]

× log

∣

∣

∣

∣

4 sin

[

(λ − λj)

2

]

sin

[

(λ + λj)

2

]∣

∣

∣

∣

dλ.

(12)

The Theorem?? follows from the proof of Hosoya’s Theorem
2.3 (1997).

To estimate the GARCH(r, s) parametersδ, we consider the
process

(

ε2
t

)

t∈Z
in its ARMA representation. This means

that we can rewritte (??) as: ε2
t −

max(r,s)
∑

i=1

(ai + bi) ε2
t−i =

a0 + υt −
s
∑

j=1

bjυt−j , where bi = 0 if i ∈ (s, r] and

ai = 0 if i ∈ (r, s]. The process(υt)t∈Z defined by
υt = ε2

t − ht constitutes a white noise sequence with mean
zero and varianceσ2. We introduce now some complementary
assumptions to get the consistency and asymptotic normality
of δ̂T :

(H0). For t = 0,±1, . . ., the process(ξt)t∈Z introduced
in equation (??), is strictly stationary, ergodic with finite
Jth moment andE(ξt|Ft−1) = 0, E(ξ2

t |Ft−1) = 1, and
E(ξ2j

t |Ft−1) = υ2j almost-surely, withj = 2, · · · , J
2 , where

υ2j are constants such that|υJ |
2

J

(

r
∑

i=1

ai +

s
∑

i=1

bi

)

< 1.

(H1).
1)
∫ π

−π
log f (λ, δ) dλ = 0, for all δ, with f (λ, δ) the

spectral density of the process(εt)t∈Z .

2) f (λ, δ)
−1 is continuous in(λ, δ) ∈ [−π, π] × Λ, where

Λ ⊂ Rr+s+1 is a compact.

3) µL ({λ; f (λ, δ) 6= f (λ, δ0)}) ≥ 0, for δ ∈ Λ with µL

the Lebesque measure.

(H2).
1) δ0 is an interior point ofΛ and in a neighborhood of

δ0, ∂f(λ,δ)−1

∂δ
and ∂2f(λ,δ)−1

∂δ∂δT exist and are continuous
in λ andδ.

2) ∂f(λ,δ0)
−1

∂δ
is K-Lipchitzienne withK > 1

2 .

3) The matrix W given by

W =
1

2π

∫ π

−π

∂ log f (λ, δ0)

∂δ

∂ log f (λ, δ0)

∂δT
dλ (13)

is non singular.
Theorem 3.3:Let (Xt)t∈Z be a stationary, causal and in-

vertible process defined by the equations (??)-(??).

1) Under (H0) with J = 4 and (H1), δ̂T
P→ δ0, asT → ∞.

2) Under (H0) with J = 8, (H1)
and (H2),

√
T
(

δ̂T − δ0

)

→
N
(

0, 2W−1 + W−1V W−1
)

, as T → ∞. Here
V is given by

V =
2π

σ2

∫ π

−π

∫ π

−π

∂f (λ, δ0)
−1

∂δ

∂f (ω, δ0)
−1

∂δT
h (λ,−ω, ω) dλdω,

(14)



TABLE I

GENERAL DESCRIPTIVE STATISTICS.

Statistics Value

Mean 2.97

Variance 0.375

Skewness -2.6

Kurtosis 29.67

with h (λ, ω, υ) = 1
8π3

+∞
∑

j,k,l=−∞

eijλ−ikω−ilυCum (ε0, εj , εk, εl),

and Cum is the order four’s cumulant for the process
(εt)t∈Z .

The proof of Theorem?? is similar to the proofs of Theorem
2.1 and Theorem 2.2 given in Giraitis and Robinson’s (2001).

IV. A PPLICATION

In this section, we provide an application ofk-factor GI-
GARCH process, which points out the interest of such model
to analyze and to forecast time series with long-range de-
pendence, especially when the forecast horizon is wide. We
consider here the hourly series{St}20856

t=1 of the spot prices
of German electricity market from August, 15th 2000 to
December, 31th 2003, and we noteYt = log (St) (??) this
series of 20856 points. As shows in Figure??, the serie studied
seems to be stationary in mean but we observe the presence
of peaks around December 2001 and July 2001. Let us look
at the ACF (AutoCorrelation Function), represented in Figure
??. The ACF of the seriesYt seems to exhibit a slow decay
pattern for the 2500 lags and a strong seasonality of twenty
four hours and one hundred sixty eight hours is observed.
The periodogram (Figure??) of the series is unbounded for
relatively three frequencies. Note that the frequencies coincid
respectively to the period of one week, one day and one half-
day.
Summary statistics of the data over the sample period are
presented in Table??. The skewness is non positive, indicating
that the series have long left hand side tails, and the kurtosis
statistic is greater than 3, signifying that the series havefat
tails.
Our aim is to forecast from January,1th 2003 to January,
30th 2003. To reach our goal, we consider two different
approachs of modelling and we compare them according to
their predictive ability. Note that all the approachs are long
memory approach. We assess the predictive ability of each
model by considering the RMSE forecast criterion defined by:

RMSE (f) =

√

√

√

√

1

h

h
∑

k=1

(

Xt+k − X̂t (k)
)2

,

where h is the forecast horizon and̂Xt (k) is the predict
value ofXt+k.

First approach:
When dealing with time series having a strong seasonality,

TABLE II

PARAMETER ESTIMATES FOR THE1-FACTOR GIGARCH PROCESS WITH

CONDITIONAL STUDENT DISTRIBUTION WITH 3 DEGREES OF FREEDOM.

Parameter Estimate St. dev.

d 0.38 0.017

φ24 0.874 0.342

θ24 0.706 0.342

θ168 0.851 0.303

a0 0.0167 3.3610
−4

a1 0.594 0.072

TABLE III

PARAMETER ESTIMATES FOR THE3-FACTOR GIGARCH PROCESS WITH

CONDITIONAL STUDENT DISTRIBUTION WITH 3 DEGREES OF FREEDOM.

Parameter Estimate St. dev.

d1 0.135 0.009

d2 0.214 0.006

d3 0.141 0.015

φ24 0.863 0.179

φ168 0.951 0.221

θ24 0.720 0.331

θ168 0.794 0.298

a0 0.0141 3.3910
−4

a1 0.756 0.365

denote S, a first idea is to remove this seasonality by using
the
(

I − BS
)

filter. Let us denoted(Zt)t the seasonally filterd
series such that:

(

I − B168
) (

Yt − Ȳ
)

= Zt.

The ACF of the series(Zt)t (Figure ??) seems to exhibit a
relatively slow decay pattern for the 2500 first lags. Moreover,
the periodogram of the series(Zt)t (Figure ??) clearly pos-
sesses a peak for a frequency located very close, but not equal,
to zero. We assume here that the spectral density of this series
is unbounded for only one frequency. Furthermore, we have
detect great variability in the variance of this series (Figure
??).

The parameter estimation is done using the Whittle’s
method and the values are resumed in Table??. Using Yajima
(1996), the periodogram is unbounded at the frequencyλ =
0.001.
Second approach:
In this approach, we assume that the periodogram of the series
(Yt)t is unbounded for three frequencies. Therefore, we fit a
3-factor GIGARCH process to the series(Yt), considering the
frequenciesλ1 = 0.2658, λ2 = 0.0374, λ3 = 0.5236. The
parameter estimation is resumed in Table??.

V. CONCLUSION

The conclusion goes here.



[Evolution] [ACF] [Periodogram]

Fig. 1. Evolution (top), estimation of the ACF (center) and the spectral density (buttom) of the hourly log spot prices of German elctricity market

[Evolution] [ACF] [Periodogram]

Fig. 2. Evolution (top), estimation of the ACF (center) and the spectral density (buttom) of the hourly log spot prices of German elctricity market
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