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Abstract: We study rival firms’ incentives in quality-improving Research and Development

(R&D) networks. The analysis stresses the role of free riding associated to collaboration

and three major consequences emerge: R&D efforts decrease with the number of partners,

networks of alliances are over-connected as compared to the social optimum and the profit-
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1 Introduction

The incentives for rival firms to invest in Research and Development (R&D) have been ex-

tensively studied in the literature. First, a long tradition, pioneered by Arrow (1962) and

pursued by Spence (1984), sustains that knowledge creation cannot be fully appropriated,

leading to involuntary knowledge leakages. Its main message is that incentives to invest in

R&D are reduced by the presence of such spillovers. This raised the interest for R&D co-

operation as a means to internalize spillovers. Specifically focusing on cost-reducing R&D,

the literature initiated by d’Aspremont and Jacquemin (1988) compares cooperative and non

cooperative schemes2 in oligopolistic industries in the presence of R&D spillovers. A major

conclusion of that literature is that when spillovers are strong enough, cooperation entails

1EconomiX - Université Paris X - Bâtiment K - 200, avenue de la République - 92001 Nanterre, France.

G.R.E.Q.A.M. - Vieille Charité - 2, rue de la Charité - 13002 Marseille, France. University of Le Havre -

Faculté des Affaires Internationales - 25, Rue Philippe Lebon - B.P 420 76057 LE HAVRE Cedex.

E-mail addresses: fderoian@u-paris10.fr; frederic.gannon@wanadoo.fr.

2‘Cooperative’ [resp. ‘non cooperative’] means that the individual R&D levels maximize the joint profits

[resp. individual profit] of all partners in the subsequent competing stage.
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more R&D, output and welfare.

A recent theoretical trend examines more thoroughly the non cooperative incentives to form

R&D agreements: in Goyal and Moraga-González (2001), oligopolists can set up partner-

ships in order to share R&D, before choosing non cooperatively an individual R&D effort

level. The authors show that increasing the number of partners generally leads to lower

R&D effort. Our paper follows the same approach. We depart from Goyal and Moraga-

González (2001) by exploring quality-improving alliances. In the literature, few studies focus

on quality-improving R&D. Motta (1992) extends to product innovations the d’Aspremont

and Jacquemin’s cooperative framework, and confirms that cooperation leads to a higher

R&D level. Our conclusions differ from Motta (1992) in the non cooperative context, being

clearly in line with Goyal and Moraga-González (2001).

The theoretical literature is supported by a number of empirical studies that document the

emergence of contractual R&D partnerships for the least three decades, distinct from research

joint ventures. Hagedoorn (2002) finds that R&D partnerships are sector-specific and stresses

the importance of the biotech-pharmaceutical and Information Technology sectors (the latter

including computers, telecom, semiconductors, industrial automation and software), both

forming 80 percent of the newly made R&D alliances at the end of the 1990s. A second

message is that the rationale for engaging in many R&D agreements is not only cost-cutting,

but also strategic. R&D agreements may not be related to the core activities of the firms

but to other domains (Teece [1986]). Hence, R&D partnerships are particularly useful for

exploring high-risk areas of knowledge production, especially in turbulent environments. This

flexibility often means horizontal diversification into new product lines (Link [1990], Vonortas

[1997]), emphasizing the role of complementarities (and hence product differentiation) in order

to access new resources (see Hagedoorn et al. [2000], and further references in their footnote

24 p. 579). That is, strategic flexibility is found to be a rationale for establishing contractual

R&D alliances when competition is affected by increased technological development and the

need to generate new products. In this context, product differentiation is an indicator of

complementarities in the respective core competencies.

We relate in detail our results to Goyal and Moraga-González (2001) (GM thereafter).

The authors propose a three-stage game in which firms first form collaborative links, then
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choose their levels of R&D efforts, and finally compete in the product market.

GM first tackle the relationship between collaborative activity and individual R&D levels.

They show that in different (resp. homogenous) product markets, R&D efforts are increasing

(resp. decreasing) in the number of alliances. In our quality-improving setting, both different

and homogenous product markets entail a decreasing relationship, due to the prominence

of free riding. In strictly different markets, we find that the effort is independent from the

number of partners.

The second result in GM pertains to the relationship between the level of collaboration

and cost reduction. They find that when markets are different the cost reduction is maximal

when the network is complete (i.e. the network in which all possible connections are formed),

whereas in a single homogenous market the relationship is initially increasing and then de-

creasing. This stems from the following tradeoff: on the one hand increasing collaborative

activity lowers the R&D effort necessary to achieve a given marginal cost reduction, on the

other hand the R&D effort decreases with the number of alliances. Shifting the analysis from

cost-reducing to quality-improving alliances, our results show that the relationship between

the number of alliances and product quality is initially increasing and then decreasing (due

to decreasing returns to collaboration).

Third, GM study firms’ incentives to form alliances. In particular, the complete network is

shown to be stable in both homogenous and different product markets. Further, focusing on

regular networks (a regular network is such that all agents in the graph have the same number

of partners), they find that in homogenous product markets firms’ profits are maximized for

an intermediate number of partners. Actually, as links add up a tradeoff emerges between

savings in R&D efforts and the cost-reducing effect of lower R&D effort. This tradeoff also

appears in our context for sufficiently low levels of product differentiation. Also, we provide an

additional result: since GM only present two extreme market configurations, one could infer

from their study that the larger the inverse measure of product differentiation, the smaller

the number of alliances in stable networks. We address the issue. Considering all regular

networks, it is possible to select the number of partners that maximizes individual profits,

for a given level of horizontal product differentiation. Then, we demonstrate the possibility

of a non monotonic relationship between this profit-maximizing number of partners and the

inverse measure of product differentiation: while decreasing for relatively different markets,
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it may increase as we approach homogenous markets.

At last, GM suggest that competing firms may form too many alliances with respect to social

welfare, and our findings are similar.

The paper is organized as follows. Section two describes the model. Section three studies

firms’ behavior and social welfare. Section four concludes.

2 The model

We adopt the three-stage game introduced by Goyal and Moraga-González (2001).

Graphs. The structure of alliances between the firms can be described as a non directed

graph, in which nodes represent the firms and edges the R&D alliances. A typical graph of

alliances g is thus a pair (N,L) where N is a set of firms and L is a subset of all pairs of

firms. We denote by G the set of all non directed graphs with N nodes. We shall abuse

notation by writing that some link ij ∈ g when firms i and j form an alliance in the graph

g. We denote by Ni(g) the set of firms with which firm i forms a link in the graph g and

ki(g) represents the cardinal of Ni(g) or firm i’s degree (we shall replace ki(g) by ki when

there is no confusion). Given a network g, we denote by πi(g) the profit made by firm i on

this network. A regular network of degree k, k ∈ {0, ..., n − 1}, is such that all firms have k

partners, i.e. ki(g) = k for all i ∈ N . The complete network is such that ki(g) = n− 1 for all

i ∈ N .

Industry. In the spirit of Sutton (1997), we consider a set N = {1, · · · , n} of firms, with

n ≥ 2, each producing a differentiated good. Each good i is described by a quality index ui

and by the quantity xi ≥ 0 sold to each consumer. There are S identical consumers, each

buying the entire variety of the n brands. Their utility is represented by a quality augmented

version of the standard quadratic utility function U =
∑

i∈N

(
xi−

x2
i

u2
i

)
−σ

∑
i

∑
j<i

xi
ui

xj

uj
+M ,

where M = Y −
∑

i pixi denotes expenditures on outside goods, and the parameter σ ∈ [0, 2] is

an inverse measure of the degree of horizontal product differentiation (from different products

as σ tends to 0 to homogenous products as σ tends to 2). The derived individual inverse

demand function for variety i writes pi = 1− 2xi

u2
i
− σ

ui

∑
j 6=i

xj

uj
, in the region where prices and

quantities are positive.
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R&D efforts and spillovers. Firms can invest in R&D in order to increase quality. We

denote by ei the effort made by firm i and by E = {e1, · · · , en} the effort profile in the indus-

try. Firms can form alliances in order to share R&D efforts and benefit from the resulting

increased quality level. For simplicity, we suppose that any firm’s effort both exclusively and

fully spills over her partners. Furthermore, there are no spillovers from outside the industry.

Given a network g, knowledge sharing between firm i and her partners aggregates in product

i’s quality in the following way: ui(E, g) = ε
[
ei +

∑
j∈Ni(g) ej

] 1
γ , with γ ≥ 2 and ε > 0. This

formulation is a slight modification of Symeonidis (2003) and Motta (1992) and captures the

public good nature of knowledge like Levin and Reiss (1988, equation (6) p. 541). A quality

index should be interpreted as the perceived quality or attractiveness of the firm’s product.

It entails decreasing returns to R&D efforts produced by the partners. For instance, Levin

and Reiss (1988) argue that “In a purely technological sense, the spillover of a rival’s product

R&D should enhance the quality of one’s own product. But the output weights [...] reflect both

tastes as well as technological attributes. Thus, the hedonic benefits derived from a product

may decrease in response to a rival’s product innovation.” Furthermore, like in Goyal and

Moraga-González (2001), the cost of producing individual effort ei is quadratic and given by

αe2
i , α > 0. Given the effort profile E and the network g, firm i’s profit is denoted πi(E, g).

Timing of moves. At stage 1, firms simultaneously form collaborative links, in order to

share R&D knowledge with partners. For the sake of simplicity, forming links is costless.

At stage 2, the R&D alliances are set up and firms choose the individual level of R&D

expenditure that maximizes their expected payoff. At stage 3, firms compete à la Cournot.

Stability. In principle, in a network formation game a stability criterion is posited. Here,

however, the complexity of the strategic context leads us to follow the approach of Goyal and

Moraga-González (2001) or Goyal et al. (2003), restricting analysis to regular networks. In

the second stage, we focus on Nash-equilibria (concerning R&D effort): a profile of efforts

{e∗1, ..., e∗n} is said to be a Nash equilibrium on the graph g if πi(e∗i , e
∗
−i, g) ≥ πi(ei, e

∗
−i, g)

for all ei ≥ 0 and for all i ∈ N ; a symmetric Nash equilibrium on the graph g is such that

e∗i = e∗ for all i ∈ N . We denote by e∗(k) the symmetric Nash equilibrium individual effort

on a regular network of degree k. The last stage is a standard Cournot competition, i.e. firm

i chooses the quantity S · x∗i that maximizes her profit, given the quantities chosen by the

other firms.
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3 Results

We first address the issue of firms’ behavior, before studying social welfare.

Firms’ behavior. We proceed by backward induction. At stage 3, firms choose a profit-

maximizing quantity level, given a set of partners and a level of R&D effort. Standard

optimization leads to the following equilibrium reduced-form payoff functions:

πi(E, g) =
2S

(4− σ)2(4 + σ(n− 1))2

[
(4 + σ(n− 2))ui(E, g)− σ

∑
j 6=i

uj(E, g)
]2

− αe2
i , ∀i ∈ N.

Let us emphasize a distinctive feature of this model with respect to vertical oligopoly models

à la Shaked and Sutton (1982). Here, quality levels turn out to be strategic substitutes in

the sense that a firm decreases its level of quality whenever competitive firms increase their

qualities. This reinforces the tradeoff between R&D collaboration and competition.

At stage 2, firms choose a profit-maximizing level of R&D effort, given the network of al-

liances. Replacing quality indexes by their expressions in terms of R&D efforts and partially

differentiating function πi with respect to ei, any candidate to (non constrained) maximiza-

tion satisfies:

A

γ

[
(4 + σ(n− 2))

(
ei +

∑
k∈Ni(g)

ek

) 1−γ
γ

− σ
∑

k∈Ni(g)

(
ek +

∑
l∈Nk(g)

el

) 1−γ
γ

]
×

[
(4 + σ(n− 2))

(
ei +

∑
k∈Ni(g)

ek

) 1
γ

− σ
∑
j 6=i

(
ej +

∑
l∈Nj(g)

el

) 1
γ

]
= αei,

with A = 2Sε2

(4−σ)2(4+σ(n−1))2
(note that the sum over all agents k 6= i contains ki(g) times the

element ei, since ki(g) of them have agent i as partner). Focusing on regular networks of

degree k and symmetric equilibria in R&D efforts, the interior solutions are written: e∗(k) =

(k+1)
2−γ

2(γ−1)

(
A(4−σ)(4+σ(n−2−k))

αγ

) γ
2(γ−1)

, entailing the equilibrium quantity S [(k+1)e∗(k)]
2
γ

4+σ(n−1) , the

equilibrium price 2
4+σ(n−1) and the equilibrium profit π∗(k) = A(4 − σ)2

[
(k + 1)e∗(k)

] 2
γ −

αe∗(k)2.

We denote γp = 4+σ(n−2−k)
(4−σ)(k+1) . The following claim imposes a necessary and sufficient
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condition on the parameter γ for a regular network of degree k to support both positivity

and concavity of profit functions.

Claim 3.1 Consider a regular network of degree k and suppose that γ > γp. Then profits

are positive and concave with respect to the effort level on this regular network.

Proof. At equilibrium positivity implies concavity if γ ≥ 2: first, profits are positive iff k > kp

with kp = 4+σ(n−2)−γ(4−σ)
γ(4−σ)+σ . Second, let us consider profit concavity in ei: differentiating twice

the profit function with respect to ei, then focusing on the symmetric case, we obtain after

rearrangement the condition k > kc with kc = 4+σ(n−2)−(2γ−1)(4−σ)
γ(4−σ)+σ . Finally kc < kp iff γ > 1.

Moreover, the positivity condition can be written γ > γp. �

In what follows, we assume γ > 4+σ(n−2)
(4−σ) , so that both positivity and concavity of profits

prevail on any regular network. For lower values of γ, the conditions only hold on regular net-

works with sufficiently high degree; otherwise firms do not collaborate with each other. The

following proposition shows that the equilibrium R&D efforts on regular networks decrease

with the number of partners.

Proposition 3.1 Consider a regular network of degree k. Then, individual R&D efforts

decrease with the number of partners.

Proof. Approximating e(k + 1)− e(k) by partial derivative, the condition is written:

∂e(k)
∂k

∼ (k + 1)
4−3γ
2γ−2

(
4 + σ(n− 2− k)

) 2−γ
2γ−2

(
(2− γ)(4 + σ(n− 2))− γσ − 2σk

)
.

The derivative is negative for γ > 24+σ(n−2−k)
+σ(n−1) , with RHS less than 2. �

This result is in line with Goyal and Moraga-González (2001) and stems from the fact that

high individual R&D efforts strongly benefit partners.

The profit-maximizing quality is u∗(k) =
[
(k + 1)e∗(k)

] 1
γ . Therefore, given the decreasing

returns to cooperation, the following proposition obtains.

Proposition 3.2 Consider a regular network of degree k. The symmetric equilibrium level

of quality u∗(k) is a non monotonic function of the degree k. It increases until ku = 4+σ(n−3)
2σ

and then decreases.

7



Proof. u∗(k) is proportional to
[
(k + 1)(4 + σ(n− 2− k))

] 1
2γ−2

. The result follows directly,

noting that ku > kp iff γ > σ
4−σ , which is valid for all γ ≥ 2 and all σ ∈ [0, 2]. �

In other words, when firms ally with few partners the collaborative activity generates high

returns, so that the addition of one link per firm increases quality even if the individual

effort is decreasing. By contrast, when the number of partners is large, the return from one

additional link does not compensate for the decrease in individual effort.

We determine the (symmetric equilibrium) profit levels attained on each regular network. Let

us define by k∗ the profit-maximizing degree, i.e. the degree for which the largest individual

profits obtain.

Proposition 3.3 When markets are different (σ = 0), the complete network maximizes

firms’ profits (k∗ = n − 1). When markets are homogenous (σ = 2), the profit-maximizing

degree is equal to (2+
√

2γ(γ−1))n+
√

2γ(γ−1)−2γ

2(1+γ) , which is less than n− 1.

Proof. Replacing e∗(k) by its expression in the equilibrium profit, we find

π∗(k) = E ·
[
(k + 1)(4 + σ(n− 2− k)

] 1
γ−1

− F · (k + 1)
2−γ
γ−1 (4 + σ(n− 2− k))

γ
γ−1 ,

with E and F two constants such that E
F = (4− σ)γ. Then ∂π∗(k)

∂k < 0 iff:

(4− σ)γ
(
4 + σ(n− 3)− 2σk

)
(k + 1) <

(
4 + σ(n− 2− k)

)(
(2− γ)(4 + σ(n− 2))− σγ − 2σk

)
.

When markets are different (σ = 0), the condition becomes k < 21−γ
γ , which is impossible;

then k∗ = n − 1. When markets are homogenous (σ = 2), we obtain ∂π∗(k)
∂k < 0 iff 2(1 +

γ)k2 + 4(γ − n)k + (2 − γ)n2 − 2γn + γ > 0; computations indicate that the first root is

negative for all γ ≥ 2 and the second root is given by k∗ = (2+
√

2γ(γ−1))n+
√

2γ(γ−1)−2γ

2(1+γ) . �

When σ ∈]0, 2[, it can be shown that positive equilibrium profits are increasing and then

possibly decreasing in k for γ ≥ 2. In what follows we set γ = 2. This is because for this

8



specific value closed-form solutions obtain; otherwise the analysis is cumbersome3. First note

that, given the above claim, low values of k may not be compatible with positive profit. Second

we have e∗(k) = A
2α(4−σ)(4+σ(n−2−k)). Denoting K = A2(4−σ)2

4α , and rearranging the profit

function, we obtain a profit quadratic in k: π∗(k) = K(4 + σ(n− 2− k))
[
(8− σ)k + 4− σn

]
,

for all k such that profit is positive. From this equation we derive the profit-maximizing

value of collaborative activity and we express it as a function of product differentiation:

k∗(σ) = σ2+4(n−3)σ+16
σ(8−σ) . The value of σ that minimizes k∗ is σ̃ = 4

√
2n−1−1
n−1 , which is less than

2 for n > 5. Further, we easily obtain k∗(σ̃(n)) = 4n−1+
√

2n−1(n2−4n+1)

2(n
√

2n−1−2n+1)
, which tends to n

2

when n tends to infinity. The results are summarized in the following proposition.

Proposition 3.4 When γ = 2, the profit-maximizing degree is n − 1 for different markets

(σ = 0) and is 2n−1
3 for homogenous markets (σ = 2). Furthermore, in large industries

the relationship between the profit-maximizing degree and the inverse measure of product

differentiation is non monotonic.

Proof. The proof will be complete when checking positivity and second order constraints.

As stated in the above claim, the second order condition is guaranteed by the positivity

condition. We note that kp increases with σ and kp
|σ=2 = n−2

3 . This value is less than the

profit-maximizing value k∗(σ). Hence, when k ≤ kp, profit is negative for any positive effort,

which is inconsistent with firms’ maximizing behavior. Then firms do not form alliances and

get equilibrium profit equal to A2(4−σ)2(4+σ(n−2))(4−σn)
4α (with A defined as above). But this

value is smaller than π∗(k∗(σ)) = A2(4−σ)2(−σ2(n−1)+4(n−2)σ+16)2

4ασ(8−σ) for all σ ∈ [0, 2]. �

The proposition has different implications for small versus large oligopolies. For relatively

small oligopolies (n ≤ 5), k∗(σ) is decreasing whereas for n ≥ 6 the relationship is decreasing

3Indeed, from the above inequality we obtain that ∂π∗(k)
∂k

< 0 iff C1k
2 + C2k + C3 > 0, with

C1 = 2σ
(
σ + (4− σ)γ

)
C2 = −4σ(4 + σ(n− 2))− 2γ(−σ2(n− 3) + 2(n− 7)σ + 8)

C3 = 2(4 + σ(n− 2))2 − γ
[
32 + 4σ(3n− 7) + σ2(n2 − 4n + 5)

]
with C3 < 0 iff γ > 2(4+σ(n−2))2

32+4σ(3n−7)+σ2(n2−4n+5)
. When σ = 2, this means γ > 2n2

n2+2n−1
, the RHS of which is less

than 2. Further, defining f(σ) = (4+σ(n−2))2

32+4σ(3n−7)+σ2(n2−4n+5)
, f ′(σ) ∼ (n− 1)

[
σ2(n− 2)(n− 4)+8σ(n− 3)+16

]
,

which is positive. Hence we are sure that for any γ > 2, C3 < 0. Thus there are two roots, the smallest of

which being negative: profits increase and eventually decrease if the largest root is less than n− 1.
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and then increasing. Indeed, the strength of the free riding effect increases with the size of

the industry, in the sense that when goods are relatively homogenous, firms are led to form

more alliances in order to alleviate the cost of their individual R&D effort.

Consumer surplus and total welfare. We find a general tendency to over-connection

and under-investment in R&D with respect to social welfare (defined as the sum of aggregate

profits and consumer surplus). Indeed, in such a competitive environment, spillovers lower

individual incentives to exert effort, and firms behave partly as free riders, using links as a

means to decrease the effort necessary to produce quality.

The relationship between consumer surplus (denoted CS) and the number of collaborative

links is non monotonic, reaching its maximum value kcs for intermediate values of k. Indeed,

CS = S ·V with V = U −
∑

pixi, which writes as V = n2+σ(n−1)
2

(
x∗

u∗

)2 at equilibrium. Given

that x∗

u∗ = u∗

4+σ(n−1) , consumer surplus at equilibrium is proportional to the square of quality

index, and kcs = ku = 4+σ(n−3)
2σ (which is independent from γ). The comparison with the

profit-maximizing degree reveals a general over-connection problem.

Proposition 3.5 For all σ ∈ [0, 2], the profit-maximizing degree is greater than both the

consumer surplus-maximizing degree and the welfare-maximizing degree.

Proof. As γ = 2, consumer surplus is quadratic (concave) in k. Hence, the profit-maximizing

degree is greater than the consumer surplus-maximizing degree if the condition ∂π(kcs)
∂k > 0

holds. Therefore, using footnote 3 and replacing both kcs by its expression 4+σ(n−3)
2σ and

parameters C1, C2, C3 by their respective values, we find after development that ∂π(kcs)
∂k > 0

iff 1 < γ. As a consequence, the social welfare-maximizing degree is by definition less than

the profit-maximizing degree. �

4 Concluding remarks

We have studied quality-improving R&D alliances in an oligopolistic context. We have

shown that R&D efforts decrease with the number of partners, networks of alliances are

over-connected as compared to the social optimum and the profit-maximizing number of al-

liances is non monotonic (decreasing and then increasing) with respect to the inverse measure
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of product differentiation for large industries.

There are several directions in which the model could be extended. First, the analysis is

restricted to regular networks, which limits the generality of the results. Second, comparing

Bertrand and Cournot equilibria could be a useful follow-up to the present analysis, both in

terms of profit-maximizing behavior and welfare analysis (see Symeonidis [2003] in duopolistic

competition). Third, our results are sensitive to our specification of the relationship between

R&D expenditures and quality indexes. Further, spillovers might disseminate to non-partner

firms, or come from outside the industry. Fourth, the usual dichotomy between process and

product innovation could be qualified for at least two reasons. Complementarities exist in

the sense that product innovation often requires a decrease in marginal costs to be effective.

Moreover, firms may have to choose between process and product innovation (Bonanno and

Haworth [1998]). Finally, the empirical literature suggests that product differentiation is a

decisive factor in partner choice, which pleads for making this parameter endogenous.
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